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Abstract

modulators of immune checkpoints.

Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-
proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug
resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical
path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with
anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin,
ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone |, oridonin, shikonin, gambogic
acid, artesunate, wogonin, 3-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline,
Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated
pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in
combined therapy and immunomodulation. In addition, the present review has extended to describe other promis-
ing compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, |, tanshinone IlA and
cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodula-
tory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and
further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as
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Background

Cancer is a leading public health problem worldwide with
an estimated 18.1 million new cases and 9.6 million can-
cer deaths in 2018 [1]. Chinese herbal medicine has been
used as anti-cancer agents for a long time, they exhibit
anti-inflammatory activities and contain abundant anti-
cancer compounds that exert direct cytotoxicity effects
and indirect regulation in tumor microenvironment
and cancer immunity, as well as improve chemotherapy
[2-5]. For examples, PNAS reported that epigallocat-
echin gallate (EGCG) targeting Laminin receptor (Lam
67R) shows promising efficacy in treating prostate cancer
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[6]. British Journal of Pharmacology described that gin-
senoside Rh2 inhibits P-glycoprotein (P-gp) activity to
reverse multidrug resistance [7]. The American Journal of
Chinese Medicine demonstrated that curcumin induces
autophagy to enhance apoptotic cell death [8]. Journal of
Ethnopharmacology reviewed that berberine potentially
represses tumor progression and is expected to be safe,
effective and affordable agent for cancer patients [9]. Chi-
nese Medicine presented that shikonin exerts synergistic
effects with chemotherapeutic agent [10]. However, the
anti-cancer targets of these pharmacodynamic com-
pounds are still not clear, and this is the major obstacle
for the application and development of Chinese herbal
medicine.

This review in Chinese herbal medicine and cancer
focuses on summarizing experimental results and con-
clusions from English literatures reported since 2011.
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Literature search was conducted in peer-reviewed
and clinical databases, which include PubMed (https
://www.ncbi.nlm.nih.gov/pubmed), Web of Science
(http://www.webofknowledge.com), Medline (https://
www.medline.com), Scopus (https://www.scopus.com),
and Clinical Trials (https://clinicaltrials.gov) using the
following keywords: Cancer, Tumor, Neoplasm, Chi-
nese herbs, Chinese medicine, Herbal medicine. To
provide new insights into the critical path ahead, the
pharmacological effects, novel mechanism of action,
relevant clinical studies, innovative applications in
combined therapy, and immunomodulation of the pop-
ular compounds originated from Chinese herbal medi-
cine were reviewed systemically.

Different natural products derived from Chinese
herbal medicine, including curcumin, EGCG, ber-
berine, artemisinins, ginsenosides, ursolic acid (UA),
silibinin, emodin, triptolide, cucurbitacins, tanshi-
nones, ordonin, shikonin, gambogic acid (GA), artesu-
nate, wogonin, B-elemene, and cepharanthine, were
identified with emerging anti-cancer activities, such
as anti-proliferative, pro-apoptotic, anti-metastatic,
anti-angiogenic effects, as well as autophagy regula-
tion, multidrug resistance reversal, immunity balance,
and chemotherapy improvement in vitro and in vivo.
These compounds are considered popular with over
100 supported publications and are selected to be dis-
cussed in more details. Figure 1 shows the word cloud
of these compounds. In this review, the advantages and
drawbacks of representative Chinese herbal medicine-
derived compounds in different types of cancers were
also highlighted and summarized.
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Fig. 1 The anti-cancer compounds from Chinese herbal medicine
(CHM). The popular anti-cancer compounds in CHM presented as a
“word cloud’, in which the size of each name is proportional to the
number of publications of the compounds
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Curcumin

Curcumin (Fig. 2) is a polyphenol compound extracted
mainly from the rhizomes of Curcuma longa, Curcuma
zedoaria and Acorus calamus L. with many biological
activities, but it has poor water solubility and stability
[11]. Clinical evidence and extensive studies showed that
curcumin has various pharmacology effects, including
anti-cancer, anti-inflammatory, and anti-oxidative activi-
ties [12—14]. Curcumin and its analogues are shown to
be emerging as effective agents for the treatment of sev-
eral malignant diseases such as cancer. Numerous stud-
ies have shown that curcumin and its preparations can
inhibit tumors in almost all parts of the body, including
head and neck, ovarian, skin and gastric cancers [15-20].
Curcumin is shown to exhibit many anti-cancer effects
through the inhibition of cell proliferation, promotion
of cell apoptosis, prevention of tumor angiogenesis and
metastasis, and the induction of autophagy [21-25].

Curcumin inhibits cell growth, induces cell cycle arrest
and apoptosis in esophageal squamous cell carcinoma
EC1, EC9706, KYSE450, TE13 cells through STAT3 acti-
vation [12]. It also induces oxidative stress, which dis-
rupts the mitochondrial membrane potential and causes
the release of cytochrome c, thus inducing apoptosis [26].
Besides, curcumin is shown to induce autophagy [8, 21,
27-30]. It induces autophagy through 5’ AMP-activated
protein kinase (AMPK) activation, leading to Akt deg-
radation, thus inhibiting cell proliferation and migra-
tion in human breast cancer MDA-MB-231 cells [21],
while it inhibits cell growth partially through autophagy
induction in human hepatocellular carcinoma HepG2
cells [29]. Moreover, curcumin can ameliorate Warburg
effect in human non-small cell lung cancer (NSCLC)
H1299, breast cancer MCF-7, cervical cancer HeLa and
prostate cancer PC-3 cells through pyruvate kinase M2
down-regulation, a key regulator of Warburg effect [18].
In addition, tumor metastasis has always been a frustrat-
ing problem for anti-cancer therapy, and curcumin also
exhibits anti-metastasis effects [31-35]. Curcumin inhib-
its cell invasion via AMPK activation in human colorectal
cancer SW-480 and LoVo cells [31], whilst low-toxic level
of curcumin efficiently inhibits cell migration and inva-
sion through the inhibition of Ras-related C3 botulinum
toxin substrate 1/p21 (Racl) activated kinase 1 (Racl/
PAK1) pathway in human NSCLC 801D cells, and this
effect is also confirmed in 801D xenograft mice [32]. By
pulmonary administration of curcumin in mice, it over-
comes the problem of its low bioavailability, and inhibits
lung metastasis of melanoma [35].

The main target molecules and signaling involved in the
pharmacological processes include reactive oxygen spe-
cies (ROS), matrix metalloproteinases (MMPs), nuclear
factor kappa-light-chain-enhancer of activated B cells
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Fig. 2 Chemical structures of anti-cancer compounds from Chinese herbal medicine

(NF-kB), signal transducer and activator of transcrip-
tion and cell cycle-related proteins [36—46]. Curcumin is
shown to induce anti-cancer activities through the dis-
ruption of mitochondrial membrane potential and block-
ade at G2/M phase of the cell cycle in human epidermoid
carcinoma A-431 cells [47]. In addition, mammalian tar-
get of rapamycin (mTOR) plays a vital role in curcumin-
induced autophagy and apoptosis [30, 48—50]. Curcumin
induces apoptosis and autophagy through the inhibition
of phosphoinositide 3-kinase (PI3K)/Akt/mTOR path-
way in human NSCLC A549 cells [30], while it induces
autophagy by reducing Akt phosphorylation and mTOR
in human melanoma A375 and C8161 cells [49].
Curcumin can also exert immunomodulatory effects
against cancer cells. Theracurmin, a highly bioavailable
form of curcumin, decreases pro-inflammatory cytokine

secretion from activated T cells, and enhances T cell-
induced cytotoxicity in human esophageal adenocarci-
noma OE33 and OE19 cells, so it increases the sensitivity
of the cells to T cell-induced cytotoxicity [51]. The natu-
ral killing (NK) cells can directly kill cancer cells, and
curcumin can enhance the cytotoxicity effect of NK cells
when NK cells are co-cultured with human breast cancer
MDA-MB-231 cells, which is highly associated with sig-
nal transducer and activator of transcription 4 (STAT4)
and signal transducer and activator of transcription 5
(STAT5) activation [52]. Besides, myeloid-derived sup-
pressor cells (MDSCs) are immune-suppressive cells
which are found in most cancer patients. Curcumin
decreases interleukin (IL)-6 levels in the tumor tissues
and serum of Lewis lung carcinoma (LLC)-bearing mice
to impair the growth of MDSCs, so targeting MDSCs is
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important for the treatment of lung cancer [13]. More-
over, the anti-tumor immune response of curcumin is
mediated through increased cluster of differentiation
(CD)8" T cell population and decreased regulatory T
cell (T,.,) population in tongue squamous cell carcinoma
[53-55].

In order to overcome the solubility issues of curcumin
and facilitate its intracellular delivery, a curcumin-loaded
nanoparticle, curcumin-PLGA-ND, is synthesized. It has
a tenfold increase in water solubility compared to cur-
cumin, and shows threefold increased anti-cancer activi-
ties in human breast cancer MDA-MB-231 and NSCLC
A549 cells [56]. Another curcumin-capped nanoparti-
cle exhibits promising anti-oxidative and selective anti-
cancer activities in human colorectal cancer HT-29 and
SW-948 cells [57]. Moreover, a curcumin analog, WZ35,
has high chemical stability, and higher efficacy in anti-
cancer effects compared to curcumin in human gastric
cancer SGC-7901 cells and SGC-7901 xenograft mice
[20]. Another analog, B63, induces cell death and reduces
tumor growth through ROS and caspase-independent
paraptosis in human gastric cancer SGC-7901, BGC-823
and SNU-216 cells, 5-fluorouracil-resistant gastric cancer
cells, and SGC-7901 xenograft mice [58].

Curcumin can be used with other chemotherapeu-
tic agents to achieve synergistic effects, reduce adverse
effects and enhance sensitivity. Tamoxifen and curcumin
are packed into a diblocknanopolymer, and this nanopo-
lymer reduces the toxicity of tamoxifen in normal cells
and exhibits better anti-proliferative and pro-apoptotic
effects in human breast cancer tamoxifen-sensitive and
-resistant MCEF-7 cells [59]. Triptolide has strong liver
and kidney toxicities, and when combined with cur-
cumin, they exert synergistic anti-cancer effects in ovar-
ian cancer, as well as reduce the side effects of triptolide
[60]. In addition, adriamycin, sildenafil, 5-fluorouracil,
irinotecan, doxorubicin, paclitaxel, sorafenib, Kruppel-
like factor 4, emodin, docosahexaene acid and apigenin
are shown to exhibit synergistic effects with curcumin
[61-71]. Similarly, copper supplementation significantly
enhances the anti-tumor effects of curcumin in several
oral cancer cells [72], while epigallocatechin-3-gallic acid
ester (EGCQ) increases the ability of curcumin to inhibit
cell growth and induce apoptosis in human uterine leio-
myosarcoma SKN cells [73].

Clinical trials can confirm or reveal the effects, adverse
reactions and pharmacokinetics of the drugs. As the bio-
availability of curcumin is very poor, many curcumin
preparations are synthesized and tested in clinical tri-
als [74-76]. A phase I study was conducted to investi-
gate the safety and pharmacokinetics of theracurmin in
pancreatic and biliary tract cancer patients who failed
with standard chemotherapy [76]. They administered
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theracurmin every day with standard gemcitabine-
based chemotherapy. No new adverse effects and no
increase in the incidence of adverse effects were observed
among these patients. A pilot phase II study demon-
strated encouraging results for the combination of
docetaxel/prednisone and curcumin in patients with cas-
tration-resistant prostate cancer. It was found that 59% of
patients had prostate-specific antigen response and 40%
of patients achieved partial response. This study has pro-
vided additional evidence for a high response rate and
better tolerability with the use of curcumin during cancer
therapy [77].

Epigallocatechin gallate (EGCG)
EGCQG, also known as epigallocatechin-3-gallate (Fig. 2),
is the main polyphenol in green tea (Camellia sinensis).
Epidemiological studies have indicated that consumption
of green tea has potential impact of reducing the risk of
many chronic diseases, such as cardiovascular diseases
and cancer [78, 79]. EGCG possesses various biological
effects including anti-obesity and anti-hyperuricemia,
anti-oxidative, anti-viral, anti-bacterial, anti-infective,
anti-angiogenic, anti-inflammatory and anti-cancer activ-
ities [80—84]. It is reported to present anti-cancer effects
in variety of cancer cells, including lung, colorectal, pros-
tate, stomach, liver, cervical, breast, leukemia, gastric,
bladder cancers [85-90]. Among its anti-cancer activi-
ties, EGCG exhibits multiple pharmacological actions,
including the suppression of cell growth, proliferation,
metastasis and angiogenesis, induction of apoptosis, and
enhancement of anti-cancer immunity [85, 86, 91-94].
EGCG can inhibit cell proliferation through multiple
ways in many types of cancer cells. It inhibits cell pro-
liferation in human bladder cancer SW-780, breast can-
cer MDA-MB-231 and NSCLC A549 cells, and inhibits
tumor growth in gastric cancer SGC-7901 xenograft
mice [89, 94, 95]. It also induces apoptosis in human oral
cancer KB, head and neck cancer FaDu, NSCLC A549,
and breast cancer MCF-7 cells [96, 97]. Besides, EGCG
induces autophagy, and inhibition of autophagy can
enhance EGCG-induced cell death in human mesothe-
limoa ACC-meso, Y-meso, EHMES-10, EHMES-1 and
MSTO-211H, and primary effusion lymphoma BCBL-1
and BC-1 cells [98, 99]. In contrast, it induces cell death
via apoptosis and autophagy in oral squamous cell carci-
noma SCC-4 cells [84], so autophagy plays a dual role in
EGCG-induced cell death. It can also suppress metastasis
in human melanoma SK-MEL-5, SK-MEL-28, A375 and
G361, NSCLC CL1-5, A549 and H1299 cells, and lung
metastasis mice [85, 93, 100]. In addition, EGCG sup-
presses tumor angiogenesis in human NSCLC A549 cells
and A549 xenograft mice [101].
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EGCG mediates apoptosis which involves pro- and
anti-apoptotic proteins in various cancer cells. It up-reg-
ulates pro-apoptotic proteins such as Bcl-2-associated X
protein (Bax), and down-regulates anti-apoptotic pro-
teins including B-cell lymphoma 2 (Bcl-2), B-cell lym-
phoma-extra large (Bcl-xL) and survivin [97, 102—-104].
ER stress also plays an important role in EGCG-induced
cell death. EGCG inhibits endoplasmic reticulum (ER)
stress-induced protein kinase R-like endoplasmic reticu-
lum kinase (PERK) and eukaryotic translation-initiation
factor 2a (eIF2a) phosphorylation [105]. Besides, poly
(ADP-ribose) polymerase (PARP) 16 is shown to activate
ER stress markers, PERK and inositol-requiring enzyme
la (IREla) [106]. ER stress-induced apoptosis, PERK
and elF2a phosphorylation by EGCG are suppressed in
PARP16-deficient hepatocellular carcinoma QGY-7703
cells, so EGCG mediates apoptosis through ER stress,
which is dependent on PARP16 [105]. Similarly, EGCG
causes 78-kDa glucose-regulated protein (GRP78) accu-
mulation in the ER, which up-regulates ER stress markers
such as activating transcription factor 4 (ATF-4), X-box
binding protein 1 (XBP-1) and C/EBP homologous pro-
tein (CHOP), and shifts into pro-apoptotic ER stress,
leading to increased caspase-3 and -8 activities [107].
Furthermore, it suppresses cell migration and invasion
by blocking tumor necrosis factor (TNF) receptor-associ-
ated factor 6 (TRAF6), MMP-2/c-Jun N-terminal kinase
(JNK) and transforming growth factor-p (TGF-p) path-
ways [85, 93, 100].

In addition to anti-cancer effects, EGCG shows a sig-
nificant inhibitory effect on interferon-y (IFN-y)-induced
indoleamine 2,3-dioxygenase (IDO) expression, an
enzyme that guides cancer to regulate immune response,
in human colorectal cancer SW-837 cells [108], so this
suggests that EGCG might be useful for chemopreven-
tion and colorectal cancer treatment, and could be a
potential agent for anti-tumor immunotherapy. EGCG is
also found to be a potential immune checkpoint inhibitor,
which down-regulates IFN-y-induced B7 homolog 1 (B7-
H1) levels, an immunoglobulin-like immune suppressive
molecule, in human NSCLC A549 cells [109].

Although EGCG has numerous biological activities
through different pathways, its efficacy demonstrated in
in vivo studies is not always consistent with the results
of in vitro studies. This can be due to its low oil solubil-
ity, metabolic instability and poor bioavailability [110].
Therefore, EGCG analogs and EGCG-loaded nanopar-
ticles by modifying EGCG are developed, and they have
been reported to enhance anti-cancer effects [111-113].
The peracetate-protected (—)-EGCG, a prodrug of EGCG
obtained by modifying the reactive hydroxyl groups with
peracetate groups, is shown to increase the bioavailability
of EGCG and inhibit angiogenesis in endometrial cancer
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xenograft mice [111]. Besides, EGCG-DHA (docosahex-
aenoic) ester, a lipophilic derivative of EGCG, shows
improved anti-oxidative effects compared to EGCG,
and suppresses colon carcinogenesis in mice [112, 113].
In the last decade, many studies were carried out using
EGCG-loaded nanoparticles including FA-NPS-PEG and
FA-PEG-NPS (epigallocatechin gallate-B-lactoglobulin
nanoparticles), EGCG-SLN (solid lipid nanoparticle),
DT-EGCG-nanoethosomes, FCS-EGCG-NPs (chi-
tosan coated nanoparticles), EGCG-dispersed selenium
nanoparticles, *®AuNP-EGCg (gold nanoparticles),
EGCG-loaded microspheres (EGCG/MS), and FCMPs
(ferritin-chitosan Maillard reaction products) [6, 110,
114-121]. These EGCG nanoparticles can improve the
targeting ability and efficacy of EGCG, which greatly pro-
mote the clinical application and development of EGCG
analogs.

EGCG antagonizes toxicity induced by anti-cancer
chemotherapeutic agents, and sensitizes chemo-resist-
ant cancer cells. It also exerts synergistic effects with
anti-cancer agents in various cancer cells, such as cis-
platin, oxaliplatin, temozolomide, resveratrol, doxoru-
bicin, vardenafil, curcumin, erlotinib [122-129]. EGCG
can enhance the sensitivity of cisplatin through copper
transporter 1 (CTR1) up-regulation, which results in the
accumulation of cellular cisplatin and cisplatin—-DNA
adducts in human ovarian cancer SKOV3 and OVCAR3
cells, and the combination of EGCG and cisplatin sup-
presses tumor growth in OVCAR3 xenograft mice [122].
The combined low concentration of EGCG and curcumin
remarkably inhibits cell and tumor growth in human
NSCLC A549 and NCI-H460 cells, and A549 xenograft
mice through cell cycle arrest [123].

To evaluate the tolerance, safety, pharmacokinetics and
efficacy of EGCG in humans, clinical trials have been or
are currently being conducted for cancer treatment. Dur-
ing a phase I clinical trial for the treatment of radiation
dermatitis, patients with breast cancer received adjuvant
radiotherapy and EGCG solution. It was found that the
maximum dose (660 uM) of EGCG was well tolerated and
the maximum tolerated dose was undetermined [130].
It was concluded that EGCG was effective for treating
radiation dermatitis. Moreover, a phase II clinical trial
was conducted to investigate the benefits of EGCG as a
treatment for acute radiation-induced esophagitis (ARIE)
for patients with stage III lung cancer. The oral admin-
istration of EGCG was shown to be effective and phase
III clinical trial to study the potential effects of EGCG to
ARIE treatment was anticipated [131].

Berberine
Berberine (Fig. 2) is an isoquinoline alkaloid mainly
extracted from medicinal plants such as Coptidis
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chinensis Franch., Mahonia bealei (Fort.) Carr., and Phel-
lodendron chinense Schneid. [132]. Berberine has diverse
pharmacological effects and is normally used for the
treatment of gastroenteritis [133, 134]. It exhibits sig-
nificant anti-cancer effects in a wide spectrum of cancers
including ovarian, breast, esophageal, and thyroid can-
cers, leukemia, multiple myeloma, nasopharyngeal car-
cinoma, and neuroblastoma, through inducing cell cycle
arrest and apoptosis, inhibiting metastasis and angiogen-
esis [135-143].

Berberine can induce cell cycle arrest in various can-
cer cells [137, 144, 145]. Berberine induces G1 and G2/M
phase arrest in murine prostate cancer RM-1 cells, and
G1 cell arrest by regulating cyclins D1 and E expressions
in human HER2-overexpressed breast cancer cells [144,
145]. However, berberine induces G1 phase arrest in
human estrogen receptor positive breast cancer MCF-7
cells but not in estrogen receptor negative MDA-MB-231
cells [137]. Besides, it inhibits cell proliferation by induc-
ing apoptosis in human colorectal cancer HCT-8 cells
[146]. In p53-null leukemia EU-4 cells, berberine induces
p53-independent and X-linked inhibitor of apoptosis
protein (XIAP)-mediated apoptosis, which is associated
with mouse double minute 2 homolog (MDM?2) and pro-
teasomal degradation [135]. Mitochondrial-mediated
apoptosis with Bcl-2-like protein 11 (Bim) up-regulation
and Forkhead box O (FoxO) nuclear retention is vital
in berberine-induced apoptosis [147]. In addition, ber-
berine can induce autophagic cancer cell death through
increased GRP78 levels and enhancing the binding ability
of GRP78 to VPS34 in human colorectal cancer HCT-116
cells [148], whilst it induces autophagy through inhibiting
AMPK/mTOR/UNC-51-like kinase 1 (ULK-1) pathway
in human glioma U251 and U87 cells [149]. In contrast,
berberine induces protective autophagy in human
malignant pleural mesothelioma NCI-H2452 cells, and
inhibition of autophagy promotes berberine-induced
apoptosis [150]. Therefore, autophagy plays a dual role
in berberine-induced apoptosis. Furthermore, berberine
also inhibits tumor migration and invasion [143, 151]. It
up-regulates plasminogen activator inhibitor-1 (PAI-1),
a tumor suppressor that down-regulates urokinase-type
plasminogen activator (uPA) and antagonizes uPA recep-
tor to suppress metastasis in human hepatocellular car-
cinoma Bel-7402 and SMMC-7721 cells [143]. Berberine
also inhibits epithelial mesenchymal transition through
PI3K/Akt pathway in murine melanoma B16 cells, [151],
and suppresses angiogenesis in glioblastoma U87 xeno-
graft mice and HUVECs [152, 153].

Berberine interacts with diverse molecular targets
as it binds to nucleic acids via specific deoxyribonu-
cleic acid (DNA) sequences [154]. Several mechanisms
have been identified for the anti-proliferative effects of
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berberine, including down-regulation of cyclins A, D,
cyclin-dependent kinase (CDK) 1, CDK4, MMP-2 and
janus kinase 2 (Jak2)/vascular endothelial growth factor
(VEGF)/NEF-kB/activator protein 1 (AP-1) pathway, and
induction of autophagic cell death via mTOR signaling
pathway [149, 155, 156]. Berberine also induces mito-
chondrial-mediated apoptosis through the loss of mito-
chondrial membrane potential, cytochrome c release,
caspase and PARP activation, up-regulation of pro-apop-
totic Bcl-2 family proteins, and down-regulation of anti-
apoptotic Bcl-2 family proteins [150, 157-159]. It can
also activate apoptosis-inducing factor to induce ROS-
mediated cell death in pancreatic, breast, and colon can-
cers [158, 160, 161].

Immunotherapy has made great progress to cancer
treatment over the past few years. Toll-like receptors
(TLRs) can activate innate immune responses for host
defense [162]. Berberine inhibits proto-oncogene tyros-
ine kinase Src activation and TLR4-mediated chemotaxis
in lipopolysaccharide (LPS)-induced macrophages [163].
Besides, IDO1 inhibitors are promising candidates for
cancer immunotherapy [164]. Berberine and its deriva-
tives are shown to exhibit anti-cancer activity through
cell killing by NK cells via IDO1 [165]. IL-8 is associated
with metastasis, and berberine decreases IL-8 levels to
inhibit cell growth and invasion in triple-negative breast
cancer cells [166].

Berberine has low oral bioavailability as well as poor
intestinal absorption [167]. As it has pronounced anti-
microbial activity against gut microbiota, high dosage can
translates into adverse events [168]. This limits the clini-
cal use of berberine, and different approaches have been
applied to improve the bioavailability of berberine. p-a-
Tocopheryl polyethylene glycol 1000 succinate enhances
the intestinal absorption of berberine by inhibiting P-gp
activity in rats [167]. A self-microemulsifying drug deliv-
ery system is developed to improve the bioavailability
of berberine, the bioavailability is increased by 2.42-fold
[169]. Ber8, a 9-alkylated derivative of berberine, has bet-
ter cytotoxicity and cellular uptake than berberine, and
further inhibits cell proliferation and induces cell cycle
arrest in different cell lines, including SiHa, HL-60, and
A549 cells [170].

The combination of berberine and chemo- or radio-
therapies provides synergistic anti-cancer effects [171,
172]. Taxol combined with berberine significantly slows
down cell growth in human epidermal growth factor
receptor 2 (HER2)-overexpressed breast cancer cells
[145], while the combined administration of berberine
and caffeine enhances cell death through apoptosis and
necroptosis in human ovarian cancer OVCAR3 cells
[173]. The combination therapy of berberine and nira-
parib, a PARP inhibitor, markedly enhances apoptosis
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and inhibits tumor growth in ovarian cancer A2780
xenograft mice [174]. Therefore, combination of berber-
ine with other therapies is a promising treatment for the
alternative cancer therapy.

Previous pre-clinical research and animal studies
have demonstrated the anti-tumor action of berberine
hydrochloride. The people with a history of colorectal
cancer might be at higher risk for adenomas, thus they
are particularly suitable for the study of the chemopre-
ventive effects of berberine hydrochloride in adenomas.
A randomized, double-blind, placebo-controlled trial
was designed to determine whether the daily intake of
300 mg of berberine hydrochloride could decrease the
occurrence of new colorectal adenomas in patients with
a history of colorectal cancer, and it is currently ongoing.
Another phase II clinical trial of berberine and gefitinib is
also ongoing in patients with advanced NSCLC and acti-
vating EGFR mutations.

Artemisinins

Artemisinin (Fig. 2) is a sesquiterpene peroxide derived
from annual wormwood (Artemisia annua L.), which
was originally used as Traditional Chinese Medicine for
treating malaria and related symptoms such as fever and
chills [175]. Since the 2015 Nobel Prize in Physiology
or Medicine conferred to Chinese scientist, Youyou Tu,
artemisinin drew attention to worldwide [176]. Beside
from their well-established anti-malarial effects, arte-
misinin and its derivatives (ARTs), including dihydroar-
temisinin (DHA), artesunate, artemether and arteether,
are also found to exhibit potent anti-cancer activities in
many studies [177-182]. DHA and artesunate are the
most studied ART derivatives for cancer treatment, and
artesunate will be discussed in a separate section. The
anti-cancer effects of ARTs are demonstrated in a broad
spectrum of cancer cells including lung, liver, pancreatic,
colorectal, esophageal, breast, ovarian, cervical, head and
neck, and prostate cancers [183-191]. The anti-cancer
activities of ARTs include induction of apoptosis and cell
cycle arrest, inhibition of cell proliferation and growth,
metastasis and angiogenesis [189, 192-195].

ART inhibits cell proliferation, migration and invasion,
and induces apoptosis in human breast cancer MCF-7
cells [193, 196], while DHA suppresses cell growth
through cell cycle arrest and apoptosis in human hepa-
tocellular carcinoma HepG2 cells and HepG2 xenograft
mice [178]. Similarly, ART induces apoptosis in murine
mastocytome P815 cells and hamster kidney adenocarci-
noma BSR cells, and inhibits tumor growth in P815 xeno-
graft mice [177]. Moreover, autophagy plays a vital role
in ART-mediated anti-cancer activities [190, 197-201].
DHA can induce autophagy-dependent cell death in
human cervical cancer HeLa cells, cholangiocarcinoma
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KKU-452, KKU-023 and KKU-100, and tongue squa-
mous cell carcinoma Cal-27 cells [190, 198, 199], while
ART induces autophagy-mediated cell cycle arrest in
human ovarian cancer SKOV3 cells [200]. DHA is also
shown to induce autophagy by suppressing NF-«B acti-
vation in several cancer cells including RPMI 8226, NB4,
HCT-116, and HeLa cells [202]. Furthermore, ART and
DHA can also inhibit metastasis in various cancer cells
such as non-small-cell lung carcinoma (NSCLC), ovar-
ian and lung cancer cells [184, 189, 203]. Apart from
apoptosis and metastasis, the inhibition of angiogen-
esis is also a crucial approach in cancer treatment. ART
inhibits angiogenesis through mitogen-activated protein
kinase (MAPK) activation in osteosarcoma [204], whilst
DHA exerts strong anti-angiogenic effect by repressing
extracellular signal-regulated kinase (ERK) and NF-«xB
pathways in human umbilical vein endothelial cells
(HUVEC:) and pancreatic cancer, respectively [194, 195].

In the past decades, studies have been focused on stud-
ying the anti-cancer mechanisms of ARTs, but there are
contentions. ARTs inhibit cancer cell proliferation mainly
by the induction of apoptosis through mitochondrial-
dependent pathways [196, 205, 206]. ART mediates the
release of cytochrome c and caspase-9 cleavage, leading
to increased apoptosis in human breast cancer MCF-7
cells [196]. DHA induces apoptosis through Bcl-2 down-
regulation in human cervical cancer HeLa and Caski
cells [205], and via Bim-dependent intrinsic pathway in
human hepatocellular carcinoma HepG2 and Huh7 cells
[206]. Interestingly, ART is demonstrated to be an inhibi-
tor of anti-cancer target, histone deacetylases (HDAC)
[196]. In addition, another mechanism of killing tumor
cells by ARTs is iron-dependent cell death called ferrop-
tosis, a new form of cell death, so ferroptosis becomes an
attractive strategy for cancer treatment [183, 207].

DHA can enhance the anti-tumor cytolytic activity
of y0 T cells against human pancreatic cancer SW1990,
BxPC-3 and Panc-1 cells [208], and ART also potenti-
ates the cytotoxicity of NK cells to mediate anti-tumor
activity [209]. Similarly, ART inhibits tumor growth
through T cell activation and T, suppression in breast
cancer 4T1 xenograft mice [188]. Therefore, this pro-
vides a novel strategy for treating pancreatic cancer with
immunotherapy.

ART has poor water solubility and bioavailability.
In order to solve this issue, ART is encapsulated into
micelles by nanoprecipitation to form ART-loaded
micelles [210]. The ART-loaded micelles enhance the
drug exposure time and accumulation in breast can-
cer 4T1 xenograft mice, and shows specific toxicity in
human and murine breast cancer MCF-7 and 4T1 cells.
A mitochondrial-targeting analog of ART is also synthe-
sized to specifically target mitochondria for enhancing
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the inhibition of cell proliferation in various cancer cells
including HCT-116, MDA-MB-231, HeLa and SKBR3
cells [211]. Moreover, dimmers of ART are also synthe-
sized by polyamine linkers, and they further inhibit cell
proliferation in human breast cancer MCF-7 cells and
angiogenesis in HUVECs [212].

Many studies show the synergistic effects of ARTs
with other compounds or therapeutic approaches. The
combined treatment of ART and resveratrol markedly
inhibits cell proliferation and migration, and enhances
apoptosis and ROS production in human cervical can-
cer HeLa and hepatocellular carcinoma HepG2 cells
[213]. Similarly, the use of combined DHA and gemcit-
abine exhibits strong synergistic effects on the loss of
mitochondrial membrane potential and induction of
apoptosis in human NSCLC A549 cells [214]. DHA also
reinforces the anti-cancer activity of chemotherapeu-
tic agent, cisplatin, in cisplatin-resistant ovarian cancer
cells [215]. Studies also demonstrate the enhancement of
sensitivity by DHA in photodynamic therapy in esopha-
geal cancer [182, 216]. Therefore, this suggests that ARTs
could be potential anti-cancer agents.

The population pharmacokinetic properties of DHA
were investigated using the plasma and saliva of breast
cancer patients for long-term treatment (>3 weeks)
[217]. The salivary DHA concentration was proportion-
ally correlated with the plasma DHA concentration, so
saliva is a good use for monitoring DHA levels in the
body. An artemisinin analog, Artenimol-R, was shown
to improve clinical symptoms and tolerability in patients
with advanced cervical cancer [218].

Ginsenosides

Ginsenosides (Fig. 2) are the main bioactive dammarane
triterpenoids derived from the rhizomes of many plants
including Panax notoginseng (Burk.) E. H. Chen, Panax
ginseng and Cinnamomum cassia Presl, with various
biological effects including anti-oxidative, anti-inflamma-
tory, and anti-cancer activities [219-222]. Ginsenosides
mainly exert anti-cancer effects in colorectal, breast, liver
and lung cancers, through inhibiting cell proliferation
and migration, angiogenesis, and reversing drug resist-
ance [7, 223-230]. Ginsenoside Rg3, ginsenoside Rh2,
and compound K are the primary bioactive compounds
among ginsenosides for cancer prevention.

Ginsenoside Rg3 inhibits cell viability and induces cell
apoptosis in human ovarian cancer HO8910 cells [231],
hepatocellular carcinoma Hepl-6, HepG2 and SMMC-
7721, breast cancer MCF-7, MDA-MB-231, MDA-
MB-453 and BT-549, and NSCLC A549, H23 and Lewis
lung carcinoma cells [232-238]. It induces cell cycle
arrest at G1 phase in human melanoma A375, and mul-
tiple myeloma U266, RPMI 8226 and SKO-007 cells [239,
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240], and inhibits cell migration in human colorectal can-
cer LoVo, SW-620 and HCT-116 cells [240]. Ginsenoside
Rg3 can also modulate the tumor environment through
inhibiting angiogenesis and enhancing anti-tumor
immune responses [241]. Moreover, ginsenoside Rh2
exhibits anti-tumor activity in human NSCLC H1299
cells and H1299 xenograft mice, through the induction
of ROS-mediated ER-stress-dependent apoptosis [242].
It also suppresses cell proliferation and migration, and
induces cell cycle arrest in human hepatocellular car-
cinoma HepG2 and Hep3B cells, and inhibits tumor
growth in HepG2 xenograft mice [243]. Compound K,
an intestinal bacterial metabolite of ginsenosides, also
induces cell cycle arrest and apoptosis in human colorec-
tal cancer HCT-116 cells, and suppresses tumor growth
in HCT-116 xenograft mice [244]. It also efficiently
inhibits cell proliferation and induces apoptosis through
mitochondrial-related pathways in human hepatocel-
lular carcinoma MHCC97-H cells [245]. Furthermore,
20(S)-ginsenoside Rg3 induces autophagy to mediate cell
migration and invasion in human ovarian cancer SKOV3
cells [246]. In contrast, it sensitizes NSCLC cells to ico-
tinib and hepatocellular carcinoma cells to doxorubicin
through the inhibition of autophagy [247, 248]. Besides,
ginsenoside Rh2 inhibits cell growth partially through the
coordination of autophagy and [B-cateninin signaling in
human heptocellular carcinoma HepG2 and Huh7 cells
[249]. Compound K induces autophagy-mediated apop-
tosis through AMPK/mTOR and JNK pathways in human
NSCLC A549 and H1975 cells [250], while it also induces
autophagy and apoptosis through ROS and JNK path-
ways in human colorectal cancer HCT-116 cells [251].
Therefore, autophagy plays a dual role in cancer via dif-
ferent signaling routes.

In recent years, the potential anti-cancer mechanisms
of ginsenoside Rg3 have been demonstrated in various
cancer models, which include the inhibition of cell pro-
liferation and induction of apoptosis via down-regulating
PI3K/Akt, and activation of caspase-3 and -9 and Bcl-2
family proteins [234, 252], induction of cell cycle arrest
by regulating CDK pathway [240], inhibition of metas-
tasis through reducing the expressions of aquaporin
1, C-X-C chemokine receptor type 4 (CXCR4) and
hypoxia-inducible factor la (HIF-la) [253-255]. More-
over, 20(S)-ginsenoside Rh2 is shown to bind to recom-
binant and intracellular annexin A2 directly, and this
inhibits the interaction between annexin A2 and NF-«xB
p50 subunit, which decreases NF-kB activation [256].
NF-«B is important in cell survival, and 20(S)-ginseno-
side Rh2 can inhibit cell survival through NF-kB pathway.
Furthermore, p53 also plays a vital role in ginsenoside-
induced anti-cancer activities [244, 257, 258]. Ginse-
noside Rh2 induces cell death through p53 activation
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in human colorectal cancer HCT-116 and SW-480 cells
[257], while ginsenoside Rg3 and compound K induces
apoptosis and cell cycle arrest through p53/p21 up-regu-
lation in human colorectal cancer HCT-116, SW-480 and
HT-29, and gallbladder cancer NOZ and GBC-SD cells,
respectively [244, 258].

For the promotion of immunity, ginsenoside Rg3 can
enhance lymphocyte proliferation and T helper type 1
cell (Thl)-related cytokine secretion including IL-2 and
IEN-y in hepatacellular carcinoma H22-bearing mice,
and inhibit tumor growth partly through the induc-
tion this cellular immunity [259]. Ginsenoside Rg3 can
also down-regulate the levels of B7-H1 and B7 homolog
3 (B7-H3), immunoglobulin-like immune suppressive
molecules, to modulate tumor microenvironment and
enhance anti-tumor immunity, and these molecules are
negatively associated with overall survival in colorectal
cancer patients [241]. It also ameliorates cisplatin resist-
ance by down-regulating B7-H1 levels and resuming T
cell cytotoxicity in human NSCLC A549 and A549/DDP
cells [260]. In addition, ginsenoside Rh2 can also enhance
anti-tumor immunity in melanoma mice by promoting
T cell infiltration in the tumor and cytotoxicity in spleen
lymphocytes [261].

The combination of ginsenosides with other chemo-
therapeutic agents provides significant advantages for
cancer treatment. Ginsenoside Rg3 alone demonstrates
modest anti-angiogenic effects, and displays additive
anti-angiogenic effects in B6 glioblastoma rats when
combined with temozolomide [262]. When it is com-
bined with paclitaxel, it enhances cytotoxicity and apop-
tosis through NF-«B inhibition in human triple-negative
breast cancer MDA-MB-231, MDA-MB-453 and BT-549
cells [233].

Ginsenosides have a long history of use as traditional
medicine to treat many diseases in China. Relatively few
clinical studies have been performed in humans even-
though ginseng products are widely recognized to have
therapeutic effects when used alone or in combination
with other chemotherapeutic agents. Therefore, clinical
studies are needed to confirm the safety of such uses. A
phase II clinical trial is conducting to assess the safety
and efficacy of ginsenoside Rg3 in combination with first-
line chemotherapy in advanced gastric cancer. Patients
with advanced NSCLC and epidermal growth factor
receptor-tyrosine kinase inhibitor (EGFR-TKI) muta-
tion were recruited in a study that investigated the safety
and efficacy of the combined therapy, ginsenoside Rg3
and EGFR-TKI. It was shown that this therapy increased
progression-free survival, overall survival and objective
response rate compared to EGFR-TKI alone [263]. In
another study, the safety and efficacy of combined ginse-
noside Rg3 and transcatheter arterial chemoembolization
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(TACE) were studied in patients with advanced hepa-
tocellular carcinoma. The results showed that this ther-
apy ameliorated TACE-induced adverse effects and
prolonged the overall survival compared to the use of
TACE alone [264].

Ursolic acid (UA)

As an ursane-type pentacyclic triterpenic acid, UA
(Fig. 2) can be found in the berries and leaves of a series
of natural medicinal plants, including Vaccinium mac-
rocarpon Ait. (cranberry), Arctostaphylos uva-ursi (L.)
Spreng (bearberry), Rhododendron hymenanthes Makino,
Eriobotrya japonica, Rosemarinus officinalis, Calluna
vulgaris, Eugenia jambolana and Ocimum sanctum, as
well as in the wax-like protective coatings of fruits such
as pears, apples and prunes [265]. UA has numerous
biochemical and pharmacological effects including anti-
inflammatory, anti-oxidative, anti-proliferative, anti-ath-
erosclerotic, anti-leukemic, anti-viral, and anti-diabetic
effects [266—-272]. It also exerts anti-cancer activities in
ovarian, breast, gastric, prostate, lung, liver, bladder, pan-
creatic, and colorectal cancers [273-281].

UA can be used as a potential therapeutic agent for
the treatment of various cancers [281-289]. It induces
apoptosis through both extrinsic death receptor and
mitochondrial death pathways in human breast cancer
MDA-MB-231 cells [289], and inhibits cell prolifera-
tion and induces pro-apoptosis in human breast cancer
MCE-7 cells by FoxM1 inhibition [282]. UA also inhib-
its cell and tumor growth through suppressing NF-xB
and STAT3 pathways in human prostate cancer DU-145
and LNCaP cells, and DU-145 xenograft mice [283], and
induces apoptosis in human prostate cancer PC-3 cells
[284]. Similarly, UA induces apoptosis and inhibits cell
proliferation in human colorectal cancer HCT-15, HCT-
116, HT-29 and Caco-2 cells [286, 287]. UA is also shown
to induce autophagy to mediate cell death in murine
cervical cancer TC-1 cells [290], and promote cytotoxic
autophagy and apoptosis in human breast cancer MCEF-7,
MD-MB-231 and SKBR3 cells [291]. It also inhibits cell
growth by inducing autophagy and apoptosis in human
breast cancer cells T47D, MCF-7 and MD-MB-231 cells
[279]. In contrast, UA induces autophagy, but the inhi-
bition of autophagy enhances UA-induced apoptosis in
human oral cancer Ca922 and SCC2095, and prostate
cancer PC-3 cells [265, 292]. Therefore, autophagy plays a
dual role in UA-induced apoptosis via different signaling
pathways. In addition, UA inhibits tumor angiogenesis
through mitochondrial-dependent pathway in Ehrlich
ascites carcinoma xenograft mice [293].

Increasing evidence has linked the anti-cancer activi-
ties of UA to the activation of mitochondrial-dependent
signaling pathways, including mitochondrial energy
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metabolism, oxidative stress and p53-mediated mito-
chondrial pathways [289, 291, 293]. UA is demonstrated
to have apoptosis-promoting and anti-proliferative
capacities via modulating the expressions of mitochon-
drial-related proteins such as Bax, Bcl-2, cytochrome
¢ and caspase-9 [289, 293]. It can also induce oxidative
stress and disruption of mitochondrial membrane per-
meability to mediate apoptosis in human osteosarcoma
MG63 and cervical cancer HeLa cells [294, 295]. In
addition, p53 pathway also contributes to the anti-can-
cer effects of UA. UA induces apoptosis and cell arrest
through p21-mediated p53 activation in human colorec-
tal cancer SW-480 and breast cancer MCF-7 cells [296,
297], and this p53 activation is through inhibiting nega-
tive regulators of p53, MDM2 and T-LAK cell-originated
protein kinase (TOPK) [297].

Studies have reported the cancer immunomodulatory
activities of UA [279, 293]. UA down-regulates NF-«B to
inhibit cell growth and suppress inflammatory cytokine
levels including TNF-a, IL-6, IL-1f, IL-18 and IFN-y in
human breast cancer T47D, MCF-7 and MDA-MB-231
cells [279]. It also modulates the tumor environment
by modulating cytokine production such as TNF-a and
IL-12 in ascites Ehrlich tumor [293].

UA is insoluble in water, with poor pharmacokinetic
properties including poor oral bioavailability, low dis-
solution and weak membrane permeability [298]. Some
new drug delivery technologies have been developed to
overcome these problems including the uses of liposomes
[280, 299-302], solid dispersions [303], niossomal gels
[304], and nanoliposomes [278]. Liposome is the most
commonly used drug delivery system. A chitosan-coated
UA liposome is synthesized with tumor targeting and
drug controlled release properties, and has fewer side
effects [302]. It enhances the inhibition of cell prolifera-
tion and tumor growth in human cervical cancer HeLa
cells and Ul4 xenograft mice. Besides, a pH-sensitive
pro-drug delivery system is also synthesized, and this
pro-drug enhances cellular uptake and bioavailability of
UA [305]. It further inhibits cell proliferation, cell cycle
arrest and induces apoptosis in human hepatocellular
carcinoma HepG2 cells.

UA can also be used in combination with other drugs.
The combined treatment of zoledronic acid and UA
enhances the induction of apoptosis and inhibition of cell
proliferation through oxidative stress and autophagy in
human osteosarcoma U20S and MG63 cells [306], whilst
the combination of UA and curcumin inhibits tumor
growth compared to UA alone in skin cancer mice [307].
Moreover, UA combined with doxorubicin enhances the
cellular uptake of doxorubicin, and reverses multi-drug
resistance (MDR) in human breast cancer MCF-7/ADR
cells [308].
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A human clinical study was conducted to investigate
the toxicity and pharmacokinetics of UA-liposomes
(UAL) including dose-limiting toxicity and maximum
tolerated dose in healthy adult volunteers and patients
with advanced solid tumors [309]. UAL had manageable
toxicities under the dose of 98 mg/mz, as well as a lin-
ear pharmacokinetic profile, so it was suggested that UA
could be developed as a potential and safe drug [309].

Silibinin

Silibinin (Fig. 2), one of the flavonoids isolated from Sily-
bum marianum L. Gaertn, is commonly exploited for the
treatment hepatic diseases in China, Germany and Japan.
In addition, silibinin is also found to display various
biological activities including anti-oxidative, anti-pro-
liferative, anti-bacterial, anti-fungal, neuro-protective,
anti-leishmanial, anti-osteoclastic and anti-metastatic
activities [310-317]. Previous studies have reported that
silibinin exerts remarkable effects in numerous cancers
such as renal, hepatocellular and pancreatic carcinoma,
bladder, breast, colorectal, ovarian, lung, salivary gland,
prostate and gastric cancers, through the induction of
apoptosis, inhibition of tumor growth, metastasis and
angiogenesis [318—-328].

Silibinin suppresses epidermal growth factor-induced
cell adhesion, migration and oncogenic transformation
through blocking STAT3 phosphorylation in triple nega-
tive breast cancer cells [329]. It strongly suppresses cell
proliferation and induces apoptosis in human pancreatic
cancer AsPC-1, BxPC-3 and Panc-1 cells, and induces
cell cycle arrest at G1 phase in AsPC-1 cells [330]. It can
also induce apoptosis via non-steroidal anti-inflamma-
tory drug-activated gene-1 (NAG-1) up-regulation in
human colorectal cancer HT-29 cells [331], and induces
mitochondrial dysfunction to mediate apoptosis in
human breast cancer MCF-7 and MDA-MB-123 cells
[332]. Moreover, silibinin induces autophagic cell death
via ROS-dependent mitochondrial dysfunction in human
breast cancer MCF-7 cells [333]. In contrast, it induces
autophagy to exert protective effect against apoptosis in
human epidermoid carcinoma A-431, glioblastoma A172
and SR, and breast cancer MCF-7 cells [334—-336], and
autophagy inhibition enhances silibinin-induced apop-
tosis in human prostate cancer PC-3 cells [337]. Silibinin
also induces autophagy to inhibit metastasis in human
renal carcinoma ACHN and 786-O cells, and salivary
gland adenoid cystic carcinoma cells [317]. Therefore,
autophagy plays a dual role in silibinin-induced anti-
cancer effects. In addition, silibinin inhibits angiogenesis
in human prostate cancer PCa, LNCaP and 22Rv1 cells
[327].

Silibinin exhibits anti-cancer activities mainly due to
the cell cycle arrest [330, 338-341]. It induces G1 phase
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arrest in human pancreatic cancer SW1990 and AsPC-
1, and breast cancer MCF-7 and MCF-10A cells [330,
339, 340], whilst it causes G2 phase arrest in human
cervical cancer HeLa, and gastric cancer MGC-803 and
SGC-7901 cells [338, 341]. It also decreases the expres-
sions of CDKs such as CDK1, CDK2, CDK4 and CDK6
that are involved in G1 and G2 progression [338, 339].
Besides, silibinin suppresses metastasis through ERK1/2
and MMP-9 down-regulation in human thyroid cancer
TPC-1, breast cancer MCF-7, renal carcinoma ACHN,
OS-RC-2 and SW-839, and epidermoid carcinoma A-431
cells [342-344]. In addition, silibinin induces apopto-
sis and inhibits proliferation through the suppression
of NF-kB activation [345-348]. On the other hand, sili-
binin is shown to induce apoptosis through the promo-
tion of mitochondrial dysfunction, including increased
cytochrome c and Bcl-2 levels, the loss of mitochondrial
membrane potential, and decreased adenosine triphos-
phate (ATP) levels [332, 333, 349, 350].

Silibinin has immunomodulatory effects in cancer and
immunity. The MDSCs are associated with immunosup-
pression in cancer, and silibinin increases the survival
rate in breast cancer 4T1 xenograft mice, and reduces
the population of MDSCs in their blood and tumor [351].
There was also a reduction in macrophage infiltration
and neutrophil population in silibinin-treated prostate
cancer TRAMPC1 xenograft mice [352]. These studies
suggest a role of immunity in its anti-tumor effects.

Silibinin has poor water solubility and bioavailabil-
ity, so it limits its efficacy in anti-cancer activities [353].
Advanced technologies such as nanoprecipitation tech-
nique are used to solve this issue [325, 353-356]. Sil-
binin is encapsulated in Eudragit® E nanoparticles in the
presence of polyvinyl alcohol, and these nanoparticles
enhance apoptosis and cytotoxicity in human oral cancer
KB cells [353]. The silibinin-loaded magnetic nanopar-
ticles further inhibit cell proliferation in human NSCLC
A549 cells [325], while silibinin-loaded chitosan nano-
particles enhances cytotoxicity compared to silibinin
alone in human prostate cancer DU-145 cells [356].

The combination of silibinin and other drugs are used
in cancer treatment to enhance the efficacy of anti-can-
cer effects [324, 357-359]. The combination of curcumin
and silibinin enhances the inhibition of cell growth and
reduction in telomerase gene expression compared to
silibinin alone in human breast cancer T47D cells [357].
The mixture of luteolin and silibinin also shows syner-
gistic effects on the attenuation of cell migration and
invasion, and induction of apoptosis in human glioblas-
toma LN18 and SNB19 cells [358]. Silibinin and pacli-
taxel combination enhances apoptosis and up-regulates
tumour suppressor genes, p53 and p21, in human ovarian
cancer SKOV3 cells [324].
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Silibinin has been widely used as anti-cancer drug
in vitro and in vivo, and its combination with other thera-
pies is a promising treatment for cancer, so clinical trials
are needed to confirm its safety and efficacy in humans,
and to develop as an anti-cancer drug.

Emodin

Emodin (Fig. 2) is an anthraquinone derivative isolated
from many plants including Rheum palmatum, Polygo-
num cuspidatum, Polygonum multiflorum, and Cassia
obtusifolia. It exhibits remarkable biological effects such
as anti-inflammation, anti-oxidant, prevention of intra-
hepatic fat accumulation and DNA damage [360—366].
Many studies have shown that emodin can attenuate
numerous cancers including nasopharyngeal, gall blad-
der, lung, liver, colorectal, oral, ovarian, bladder, pros-
tate, breast, stomach and pancreatic cancers, through the
inhibition of cell proliferation and growth, metastasis,
angiogenesis, and induction of apoptosis [367-379].

Emodin suppresses ATP-induced cell proliferation and
migration through inhibiting NF-«B activation in human
NSCLC A549 cells [380], and induces apoptosis through
cell cycle arrest and ROS production in human hepato-
cellular carcinoma HepaRG cells [381]. It also induces
autophagy to mediate apoptosis through ROS production
in human colorectal cancer HCT-116 cells [382]. Moreo-
ver, emodin can inhibit tumor growth and metastasis in
triple negative breast cancer cells, and human colorectal
cancer HCT-116 cells [383, 384], whilst it suppresses cell
migration and invasion through microRNA-1271 up-reg-
ulation in human pancreatic cancer SW1990 cells [385].
In addition, emodin can also inhibit angiogenesis in thy-
roid and pancreatic cancers [386—388].

Emodin exerts anti-cancer effects through various
mechanisms. It effectively suppresses cell proliferation
through inhibiting estrogen receptor o (ERa) genomic
and PI3K/Akt non-genomic pathways in human breast
cancer MCF-7 and MDA-MB-231 cells [389]. Besides,
mitochondria and ER stress also play an important role
in mediating emodin-induced anti-cancer effects [381,
390-392]. Emodin induces apoptosis through the loss of
mitochondrial membrane potential, modulation of Bcl-2
family proteins, and caspase activation in human colo-
rectal cancer CoCa cells and hepatocellular carcinoma
HepaRG cells [381, 390]. ER stress is activated in emodin-
treated human osteosarcoma U20S cells, and emodin-
induced apoptosis is suppressed by ER stress inhibition
with 4-phenylbutyrate (4-PBA) in human NSCLC A549
and H1299 cells [391, 393].

Emodin has immunomodulatory effects in cancer
and immunity. It inhibits cell growth and metastasis
through blocking the tumor-promoting feed forward
loop between macrophages and breast cancer cells [394].
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It also down-regulates CXCR4 to suppress C—X-C motif
chemokine 12 (CXCL-12)-induced cell migration and
invasion in hepatocellular carcinoma HepG2 and HepG3
cells [395]. In addition, emodin inhibits the differentia-
tion of maturation of DCs [396], and can modulate mac-
rophage polarization to restore macrophage homeostasis
[397].

Aloe-emodin is a derivate of emodin, which exhib-
its superior bioactivities in some cancers. It can inhibit
cell proliferation through caspase-3 and caspase-9 acti-
vation in human oral squamous cell carcinoma SCC-15
cells [398], and induce apoptosis in human cervical can-
cer HeLa and SiHa cells, which is associated with glucose
metabolism [399]. Another derivative of emodin, rhein,
can also induce apoptosis in human pancreatic cancer
Panc-1 cells, and inhibit tumor growth in pancreatic can-
cer xenograft mice [400]. It also inhibits cell migration
and invasion through regulating Rac1/ROS/MAPK/AP-1
signaling pathway in human ovarian cancer SKOV3-PM4
cells [401].

The combination of emodin and other chemotherapies
is widely used for cancer treatment. Emodin can pro-
mote the anti-tumor effects of gemcitabine in pancreatic
cancer [402—404]. It enhances apoptosis in human pan-
creatic cancer SW1990 cells, and further inhibits tumor
growth in SW1990 xenograft mice, through suppressing
NF-«xB pathway [402, 403]. The combination of emodin
and curcumin can also enhance the inhibition of cell pro-
liferation, survival, and invasion in human breast can-
cer MDA-MB-231, MDA-MB-435 and 184A1 cells [64].
Moreover, emodin enhances cisplatin-induced cytotoxic-
ity through ROS production and multi-drug resistance-
associated protein 1 (MRP1) down-regulation in human
bladder cancer T24 and J82 cells [405].

Emodin has been shown to have remarkable anti-can-
cer effects in vitro and in vivo, and its combination with
other therapies is very effective in treating cancer, there-
fore it is important to evaluate the safety and efficacy of
emodin as an anti-cancer drug as the next step.

Triptolide

Triptolide (Fig. 2) is a natural constituent derived from
the root of a traditional Chinese medicine, Tripterygium
wilfordii Hook. E., which possesses diverse effects includ-
ing anti-inflammatory, anti-oxidative, and anti-cancer
activities [60, 406, 407]. For cancer therapy, it has been
used to treat breast, lung, bladder, liver, colorectal, pan-
creatic, ovarian, stomach, prostate, cervical, and oral
cancers, melanoma, myeloma, leukemia, neuroblastoma,
osteosarcoma, lymphoma, renal, nasopharyngeal, and
endometrial carcinoma, through apoptosis, cell cycle
arrest, inhibition of cell proliferation, metastasis and
angiogenesis [406, 408—426].
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Various effects have been disclosed as key contribu-
tions to the anti-cancer effects of triptolide. Triptolide
is shown to exhibit pro-apoptosis effects in various
cancers [427-431]. It induces mitochondrial apoptotic
pathway to mediate apoptosis in Burkitt’s lumphoma
Raji, NAMALWA and Daudi cells, and inhibits tumor
growth in Daudi xenograft mice [432], and inhibits cell
proliferation through microRNA-181la up-regulation
in human neuroblastoma SH-SY5Y cells [433]. Moreo-
ver, triptolide induces autophagy to induce apoptosis
and inhibit angiogenesis in human osteosarcoma MG63
cells, and breast cancer MCF-7 cells [431, 434]. In con-
trast, triptolide induces protective autophagy through
calcium (Ca’")/calmodulin-dependent protein kinase
kinase B (CaMKKp)-AMPK pathway in human prostate
cancer PC-3, LNCaP and C4-2 cells, and through Akt/
mTOR down-regulation in human cervical SiHa cells
[420, 435]. Therefore, autophagy plays a dual role in
triptolide-induced anti-cancer effects. In addition, trip-
tolide is able to inhibit cell migration and invasion in
human prostate cancer PC-3 and DU-145 cells, and in
tongue squamous cell carcinoma SAS cells co-inoculated
with human monocytes U937 cells [417, 419]. Further-
more, triptolide also possesses anti-angiogenic effect by
inhibiting VEGFA expression in human breast cancer
MDA-MB-231 and Hs578T cells, and through COX-2
and VEGF down-regulation in human pancreatic cancer
Panc-1 cells [436, 437].

Triptolide is a natural substance, which exerts its anti-
cancer effects through multiple targets. Triptolide is
shown to induce mitochondrial-mediated apoptosis in
various cancer cells, through decreased mitochondrial
membrane potential, Bax and cytochrome ¢ accumula-
tion, PARP and caspase-3 activation, decreased ATP lev-
els, and Bcl-2 down-regulation [432, 438—441]. Moreover,
ERK is also shown to be important in mediating trip-
tolide-induced anti-cancer activities. Triptolide induces
apoptosis through ERK activation in human breast can-
cer MDA-MB-231 and MCEF-7 cells [434, 442], and ERK
activation leads to caspase activation, Bax up-regulation
and Bcl-xL down-regulation [442]. On the other hand,
it can also inhibit metastasis through ERK down-reg-
ulation in esophageal squamous cell cancer KYSE180
and KYSE150 cells, and murine melanoma B16F10 cells
[443, 444]. Interestingly, ERa is shown to be a potential
binding protein of triptolide and its analogues [445]. In
addition, triptolide-induced metastasis is shown to be
through MMP-2 and MMP-9 down-regulation in human
neuroblastoma SH-SY5Y cells, via decreased MMP-3 and
MMP-9 expressions in T-cell lymphoblastic lymphoma
cells, and through MMP-2, MMP-7 and MMP-9 down-
regulation in human prostate cancer PC-3 and DU-145
cells [417, 423, 433].
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Indeed, immunology has been frequently validated
to be associated with cancer. The combined use of trip-
tolide and cisplatin enhances the plasma levels of IL-2
and TNF-a in ovarian cancer SKOV3/DDP xenograft
mice, which can promote the differentiation of T cells
and inhibit tumorigenesis respectively, thus resulting in
an inflammatory microenvironment and leading to can-
cer cell death [446].

The derivatives of triptolide are always needed to
improve its ant-cancer therapy. Triptolide derivative,
MRx102, shows positive effects on anti-proliferation
and anti-metastasis through Wnt inhibition in human
NSCLC H460 and A549 cells, and H460 xenograft mice
[447]. Minnelide, a water-soluble pro-drug of triptolide,
can inhibit tumor growth in pancreatic cancer MIA
PaCa-2 xenograft mice. Meanwhile, the combination of
minnelide and oxaliplatin further inhibits tumor growth
[448]. Moreover, triptolide is poorly soluble in water
and exhibits hepatotoxicity and nephrotoxicity, selective
delivery is an effective strategy for further application in
cancer treatment. Triptolide loaded onto a peptide frag-
ment (TPS-PF-A,gg s5g5) is specifically targeted to the
kidney and with less toxicity [449]. Some modified trip-
tolide-loaded liposomes are reported to contribute a tar-
geted delivery with lower toxicity and better efficacy in
lung cancer treatment [450]. Similarly, triptolide-loaded
exosomes enhances apoptosis in human ovarian cancer
SKOV3 cells [451].

Triptolide has some side effects in various organs
because of excessive dosage, so researchers have been
looking for alternative triptolide therapies, and combina-
tion therapy has become a hot spot. Triptolide combined
with gemcitabine markedly enhances pro-apoptosis
through Akt/glycogen synthase kinase 3p (GSK3p) path-
way in human bladder cancer E]J and UMUCS3 cells
[452]. Triptolide plus ionizing radiation synergistically
enhances apoptosis and anti-angiogenic effects through
NF-«kB p65 down-regulation in human nasopharyngeal
carcinoma cells and xenograft mice, which provides a
new chemotherapy to advanced nasopharyngeal malig-
nancy [425]. The combined therapy of triptolide and
5-fluorouracil further promotes apoptosis and inhib-
its tumor growth through down-regulating vimentin
in human pancreatic cancer AsPC-1 cells and AsPC-1
xenograft mice [453]. Besides, low concentration of trip-
tolide potentiates cisplatin-induced apoptosis in human
lung cancer HTB-182, A549 and CRL-5810 and CRL-
5922 cells [454], and triptolide with cisplatin synergisti-
cally enhances apoptosis and induces cell cycle arrest in
human bladder cancer cisplatin-resistant cells [409].

Triptolide has wide-spectrum activities in pre-clinical
studies, but it has strong side effects and water insolu-
bility, so it is not used in clinical studies. However, some
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of its derivatives and analogs have been used in clini-
cal studies to test the safety and efficacy on anti-cancer
effects [432, 455—-457]. Omtriptolide, a derivative of trip-
tolide, is highly water soluble, and a phase I clinical trial
was conducted in Europe with patients who had refrac-
tory and relapsed acute leukemia [432]. Another phase
I clinical trial was completed in patients with refractory
gastrointestinal malignancies to study the dose escalation
and pharmacokinectics of minnelide, a pro-drug of trip-
tolide [457]. The doses used were 0.16 to 0.8 mg/m?* and
they were well tolerated except from the common hema-
tologic toxicity. LLDT-8, another triptolide derivative,
has anti-cancer and immunosuppressive effects, and is
going to proceed into phase II clinical trial to test its anti-
cancer effects in China [455, 456]. Moreover, minnelide is
currently under phase II clinical trial to test anti-cancer
effects in patients with advanced pancreatic cancer [458].

Cucurbitacins
Cucurbitacins (Fig. 2) is a cluster of tetracyclic triter-
penoids originated from various plants like Bryonia,
Cucumis, Cucurbita and Lepidium sativum. Cucurbi-
tacins A-T are twelve main curcurbitacins belonging
to this family. Cucurbitacins have multiple therapeutic
effects such as anti-inflammation, anti-proliferation, anti-
angiogenesis, and anti-cancer [452, 459-462]. Besides,
cucurbitacins have also been elucidated as a potential
candidate for various cancer therapies, including oral cell
carcinoma, breast, ovarian, prostate, lung, gastric, blad-
der, and thyroid cancers, neuroastoma, hepatoma, and
osteosarcoma [463-475]. Most of cucurbitacins have
been reported with various anti-cancer activities, such as
pro-apoptosis, anti-angiogenesis, autophagy induction,
and inhibition of metastasis [452, 460—462, 476].
Cucurbitacin B is the most abundant source of cucur-
bitacins which can explain why it receives more atten-
tion from researchers than other cucurbitacins do. It
suppresses cell proliferation and enhances apoptosis in
human NSCLC A549 cells, colorectal cancer SW-480 and
Caco-2 cells [462, 477], and induces G1 phase cell cycle
arrest in human colorectal cancer SW-480 and Caco-
2, and gastric cancer MKN45 cells [477, 478]. Cucurbi-
tacin D inhibits cell survival in human gastric cancer
AGS, SNU1 and Hs746T cells [479], while cucurbitacin E
induces cell cycle arrest at G2/M phase in triple negative
breast cancer cells [480]. Moreover, cucurbitacins B, E
and I are shown to induce autophagy, however inhibition
of autophagy can enhance cucurbitacin-induced apopto-
sis [481-483]. They also inhibit cell migration and inva-
sion in human breast cancer MDA-MB-231 and SKBR3,
NSCLC H2030-BrM3 and PC9-BrM3, and colorectal
cancer COLO-205 cells [484—487], as well as angiogen-
esis in HUVECs [461, 488].
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Various targets have been demonstrated to be respon-
sible for the anti-cancer effects of cucurbitacins. STAT3
signaling is a very common target for cancer treatment.
Cucurbitacins B and D are reported to inhibit prolifera-
tion and induce apoptosis through STAT3 suppression
in human NSCLC A549 cells and doxorubicin-resistant
breast cancer MCF-7/ADR cells, respectively [462, 489].
On the other hand, cucurbitacin E induces cell arrest and
apoptosis via STAT3 inhibition in human breast cancer
Bcap-37 and MDA-MB-231 cells [468], and cucurbi-
tacin I can inhibit STAT3 pathway to suppress cancer
stem cell properties in anaplastic thyroid cancer ATC—
CD133" cells [463]. Besides, cucurbitacin E induces cell
cycle arrest through cyclins B1 and D1 down-regulation
[480, 490], while cucurbitacin D inhibits cyclin B expres-
sion [491]. Moreover, mitochondria and ER stress also
play an important role in cucurbitacin-induced anti-
cancer effects. Cucurbitacins mediate apoptosis through
mitochondrial-related pathway, which is characterized
by the loss of the mitochondrial membrane potential,
Bcl-2 down-regulation, Bax up-regulation, cytochrome c
release, that eventually leads to caspase activation [470,
492]. Cucurbitacin I induces cell death through ER stress,
by up-regulating ER stress markers such as IREla and
PERK in human ovarian cancer SKOV3 cells and pancre-
atic cancer Panc-1 cells [493].

Cancer immunotherapy also plays a vital role in cucur-
bitacin treatment. Cucurbitacins may influence the
production of cytokines and transcription factors that
suppress the immune system, and these mechanisms
may help to prevent the development of cancer. Cucur-
bitacin B is able to promote DC differentiation and anti-
tumor immunity in patients with lung cancer [494]. The
combined therapy of cucurbitacin I and recombinant
IL-15 is also reported to exhibit immunologic anti-cancer
activities in lymphoma with increased CD4% and CD8"
T cell differentiation, and promote DC function through
TNF-a up-regulation [495].

Although cucurbitacin B has very effective anti-tumor
effects, it is shown to exhibit high toxicity, which restricts
its clinical application on cancer therapy. Therefore,
studies have been focused on tackling this side effect,
and some cucurbitacin B derivatives have been synthe-
sized to screen for effective cancer therapy with safety
and tolerability. Compound 10b, one of the derivatives
of cucurbitacin B, shows more potent anti-cancer activ-
ity than cucurbitacin B [496]. The in vivo acute toxicity
study also shows that compound 10b has better toler-
ability and safety than cucurbitacin B. In addition, some
other strategies have been applied to accelerate the clini-
cal use of cucurbitacin B. The collagen peptide-modified
nanomicelles with cucurbitacin B were synthesized to
enhance the oral availability of cucurbitacin B, and these
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nanomicelles show a higher bioavailability and better
tumor inhibition [497].

For a better cancer therapy, some combinations
between cucurbitacins and other drugs have been
employed. Low doses of cucurbitacin B or methotrexate
cannot inhibit tumor growth in osteosarcoma xenograft
mice, however when combined together, they synergisti-
cally inhibit tumor growth [498]. The combination ther-
apy of cucurbitacin B and curcumin enhances apoptosis
and reverses MDR in human hepatocellular carcinoma
Bel-7402/5-Fu cells [499]. Recently, cucurbitacin B is sug-
gested to be a potential candidate when it is applied with
withanone, this combination can enhance cytotoxicity in
human NSCLC A549 cells, and inhibit tumor growth and
metastasis in A549 xenograft mice [500]. Cucurbitacin
I is also shown to be a STAT3 inhibitor to mediate cell
survival and proliferation, and when it is combined with
irinotecan, and they further inhibit cell proliferation in
human colorectal cancer SW-620 and LS174T cells [501].

The derivatives of cucurbitacins, cucurbitacin
B-nanomicelles, and the combination therapies show
promising treatment for cancer in vitro and in vivo, so
clinical trials are needed to confirm their safety and effi-
cacy in cancer treatment.

Tanshinones

Tanshinone (Fig. 2) is a derivative of phenanthrenequi-
none isolated from the dried root or rhizomes of Salvia
miltiorrhiza Bunge. Tanshinone IIA is the primary bioac-
tive constituent of tanshinones [502], which has various
pharmacological effects, including anti-inflammatory,
anti-cancer and anti-atherosclerotic activities, and car-
diovascular protection [503-506]. Tanshinone exhibits
anti-cancer activities in stomach, prostate, lung, breast,
and colon cancers, through inducing cell cycle arrest,
apoptosis, autophagy, and inhibiting cell migration
[507-515].

Tanshinone ITA suppresses cell proliferation and apop-
tosis in numerous cancer cells, including human breast
cancer BT-20, MDA-MB-453, SKBR3, BT-474, MCE-7
and MD-MB-231 [508, 516, 517], and gastric cancer
MKN45 and SGC-7901 cells [518]. It also induces cell
cycle arrest at G1 phase in human breast cancer BT-20
cells [517], and inhibits cell migration in human gas-
tric cancer SGC-7901 cells [514], and cell migration
and invasion in cervix carcinoma stemness-likes cells
[519]. Tanshinone I and cryptotanshinone are two other
major bioactive compounds, which also induce cytotox-
icity against cancer cells. Tanshinone I induces apopto-
sis and pro-survival autophagy in human gastric cancer
BGC-823 and SGC-7901 cells [510], while cryptotanshi-
none suppresses cell proliferation and induces cell cycle
arrest at G1 phase in murine melanoma B16 cells, and
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G2/M phase in melanoma B16BL6 cells [520]. In addi-
tion, tanshinones I and IIA and cryptotanshinone also
inhibit tumor angiogenesis in endothelial and cancer
cells [521-525]. Furthermore, tanshinone ITA induces
autophagy to inhibit cell growth in human osteosarcoma
143B and MG63 cells and tumor growth in NOD/SCID
mice [526], while it induces autophagy to mediate anti-
cancer activities through activating beclin-1 pathway and
inhibiting PI3K/Akt/mTOR pathway in human oral squa-
mous cell carcinoma SCC-9, melanoma A375, and gli-
oma U251 cells [527-529]. Moreover, tanshinone IIA is
shown to exhibit anti-cancer activities through the inter-
play between autophagy and apoptosis in human prostate
cancer PC-3 cells, mesothelioma H28 and H2452 cells
[502, 530].

Tanshinone IIA induces apoptosis through mitochon-
drial- and caspase-dependent pathways, which includes
caspase-3, -9 and PARP activation, cytochrome c release,
and increased ratio of Bax/Bcl-2 in human gastric cancer
MKN45 and SGC-7901 cells, and tumor-bearing mice
[518]. It inhibits epithelial-mesenchymal transition by
modulating STAT3-chemokine (C-C motif) ligand 2
(CCL2) pathway in human bladder cancer 5637, BFTC
and T24 cells [531], and suppresses cell proliferation and
migration via forkhead box protein M1 (FoxM1) down-
regulation in human gastric cancer SGC-7901 cells [514].
On the other hand, tanshinone I induces apoptosis via
Bcl-2 down-regulation in human gastric cancer BGC-
823 and SGC-7901 cells [510], while cryptotanshinone
induces apoptosis through mitochondrial-, cyclin- and
caspase-dependent pathways in human NSCLC A549
and NCI-H460 cells [532], as well as via ER stress in
human hepatocellular carcinoma HepG2 and breast can-
cer MCF-7 cells [533].

Tanshinone IIA is also shown to exhibit immunomdu-
latory effects in cancer [534]. The combination of tanshi-
none ITA with cyclophosphamide increases CD4" T cell,
CD4%/CD8' T cell and NK cell populations compared
to single treatment in NSCLC Lewis-bearing mice, so it
can improve the immunological function in lung cancer
[534]. Furthermore, cryptotanshinone becomes a new
promising anti-tumor immunotherapeutic agent [535].
It induces mouse DC maturation and stimulates IL-1f,
TNF-a, IL-12p70 secretion in DCs, and enhances T cell
infiltration and Th1 polarization in Lewis-bearing tumor
tissues [535].

Tanshinone IIA has poor bioavailability, so a mixed
micelle system is developed to form a tanshinone-
encapsulated micelle [536]. This micelle has higher
cytotoxicity and pro-apoptotic effects in human hepa-
tocellular carcinoma HepG2 cells compared to tanshi-
none IIA alone. The tanshinone IIA-loaded nanoparticles
improve the bioavailability tanshinone IIA and enhance
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its leukemic activity in human leukemia NB4 cells [537],
while the nanoparticles containing tanshinone IIA and
a-mangostin show increased cytotoxicity in human pros-
tate cancer PC-3 and DU-145 cells [538].

Tanshinone IIA is shown to enhance chemosensitiv-
ity and its efficacy when combined with other therapeu-
tic agents. Tanshinone IIA can be an effective adjunctive
agent in cancer, and it enhances the chemosensitivity to
5-fluorouracil therapy in human colorectal cancer HCT-
1116 and COLO-205 cells through NF-kB inhibition
[539]. The combination of tanshinone ITA with doxo-
rubicin does not only enhance the chemosensitivity of
doxorubicin, but also reduces the toxic side effects of
doxorubicin in human breast cancer MCF-7 cells [540].
In addition, tanshinone IIA and cryptotanshinone syn-
ergistically enhance apoptosis in human leukemia K562
cells [541].

The anti-cancer effects of Tanshinone IIA have been
demonstrated in various cancers in vitro and in vivo, and
it can enhance chemosensitivity and its efficacy is very
effective when combined with other therapeutic agents.
Up to now, the clinical trials of Tanshinone IIA are com-
pleted only for the treatment of other diseases [542], so
well-designed clinical trials should be done to further
confirm its safety and efficacy in cancer treatment.

Oridonin

Oridonin (Fig. 2) is an ent-kaurane diterpenoid iso-
lated from Rabdosia rubescens (Hemsl.) Hara, which is
also the main active constituent of Rabdosia rubescens
(Hemsl.) Hara [543]. As an orally available drug, oridonin
is demonstrated to have anti-cancer activities in multi-
ple cancers over the past decades, including leukemia,
lymphoma, osteosarcoma, myeloma, uveal melanoma,
neuroblastoma, hepatocellular, laryngeal, esophageal,
and oral squamous cell carcinoma, lung, colorectal,
breast, gastric, pancreatic, and prostatic cancers [543—
558]. The anti-cancer effects of oridonin are shown in
many aspects, including the induction of cell apopto-
sis, autophagy, cell cycle arrest, and the suppression of
angiogenesis, cell migration, invasion and adhesion [554,
559-564].

Oridonin induces apoptosis in human hepatocellular
carcinoma HepG2 and Huh6, oral squamous cell carci-
noma WSU-HN4, WSU-HNG6 and CAL27, and laryngeal
cancer HEp-2 cells [550, 559, 561, 565]. It also induces
G2/M cell cycle arrest in human oral squamous cell car-
cinoma WSU-HN4, WSU-HN6 and CAL27, gastric can-
cer SGC-7901, prostate cancer PC-3 and DU-145, and
breast cancer MCEF-7 cells [555, 561, 566, 567]. Oridonin
is also shown to induce autophagy in many cancer cells,
which is associated positively or negatively with apopto-
sis. It induces autophagy to mediate apoptosis in human
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NSCLC A549 and neuroblastoma SHSY-5Y cells [558,
568]. On the other hand, autophagy provides a protective
role against oridonin-induced apoptosis, as autophagy
inhibitor enhances oridonin-induced apoptosis in human
cervical carcinoma HeLa, multiple myeloma RPMI 8266,
laryngeal cancer HEp-2 and Tu212, and epidermoid car-
cinoma A-431 cells [569-572]. The anti-cancer effects of
oridonin are also shown to be through suppressing angi-
ogenesis and metastasis, which are the primary causes of
tumor growth and metastasis. It can inhibit cell migra-
tion and invasion, and tube formation in human breast
cancer 4T1 and MDA-MB-231, human and murine mela-
noma A375 and B16F10, osteosarcoma MG63 and 143B,
and HUVEC:, as well as tumor metastasis in HepG2 xen-
ograft zebrafish and mice, 4T1 xenograft mice, and 143B
xenograft mice [554, 562-564, 573].

Proteomic and functional analyses reveal that ER
stress and poly(rC)-binding protein 1 (a-CP1) are poten-
tial pathways involved in the anti-proliferative and pro-
apoptotic activities of oridonin [546]. Oridonin inhibits
cell growth and induces apoptosis through ER stress and
ASK1/JNK signaling pathways in human hepatocellular
carcinoma Huh6 cells [559]. Besides, the mitochondrial
redox change is proved to be a potential mediator for the
pro-apoptosis effect of oridonin [565]. The anti-prolif-
erative effect of oridonin is also shown to be associated
with mitochondrial-mediated apoptosis, which is charac-
terized by mitochondrial membrane potential reduction,
subsequent cytochrome c release, PARP, caspase-3 and -9
activation, and decreased Bcl-2/Bax ratio [551, 565, 574,
575]. Oridonin also inhibits cell proliferation through
bone morphogenetic protein 7 (BMP7)/p38 MAPK/
p53 pathway in human colorectal cancer HCT-116 and
SW-620 cells [553, 576, 577], and induces apoptosis via
hydrogen peroxide (H,0O,) production and glutathione
depletion in human colorectal cancer SW-1116 cells
[578]. Furthermore, the down-regulation of AP-1 is
reported to be the initial response to oridonin treatment,
which decreases the expressions of NF-kB and MAPK to
inhibit cell proliferation [579].

Oridonin possesses an immunosuppressive effect
which modulates microglia activation, enhances T cell
proliferation, alters the balance of Th1-T helper type 2
cells (Th2), reduces inflammatory cytokine secretion
such as IL-2, IL-4, IL-6, IL-10 and TNF-a, and modulates
an anti-inflammatory target, B lymphocyte stimulator
[580]. It also decreases inflammatory cytokine secre-
tion in human pancreatic cancer BxPC-3 cells, including
IL-1pB, IL-6 and IL-33 [581].

The derivatives and analogs of oridonin usually exhibit
more potent anti-cancer activities than oridonin. Geri-
donin, a novel derivative of oridonin, inhibits cell growth
and induces G2/M phase arrest through ROS production
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in human gastric cancer MGC-803 cells and MGC-
803 xenograft mice [582]. Oridonin phosphate, another
derivative, is reported to induce autophagy, which
can enhance apoptosis in human breast cancer MDA-
MB-436 cells [583]. A novel analog of oridonin, CYD
6-17, inhibits tumor growth in bladder cancer UMUC3
xenograft mice and renal carcinoma 786-O xenograft
mice [584, 585]. In addition, drug delivery system is also
developed to improve the bioavailability of oridonin.
The inhalable oridonin-loaded microparticles exhibit
strong pro-apoptotic and anti-angiogenic effects through
mitochondrial-related pathways in NSCLC rats [586],
whilst the oridonin-loaded nanoparticles enhance cellu-
lar uptake and exert better anti-cancer effects in human
hepatocellular carcinoma HepG2 cells [587].

The combination of oridonin with other agents plays a
potential role in cancer therapy. AG1478, a specific epi-
dermal growth factor receptor (EGFR) inhibitor, aug-
ments oridonin-induced apoptosis through oxidative
stress and mitochondrial pathways in human epider-
moid carcinoma A-431 cells [588]. The combination of
y-tocotrienol and oridonin exerts synergistic anti-can-
cer effects in murine+SA mammary adenocarcinoma
epithelial cells, which are mainly through the induction
of autophagy [589]. Moreover, oridonin can enhance
the pro-apoptotic activity of NVP-BEZ235 in human
neuroblastoma SHSY-5Y and SK-N-MC cells through
autophagy [558], whilst the combination of oridonin and
cetuximab exhibits potent pro-apoptotic effect in human
laryngeal cancer HEp-2 and Tu212 cells [572].

Clinical trials are essential to test the safety and effi-
cacy of oridonin before drug approval. A derivative of
oridonin, HAO472, is currently under a phase I clinical
trial for the treatment of acute myelogenous leukemia in
China [590].

Shikonin

Shikonin (Fig. 2) is an active naphthoquinone, which is
derived from the dried root of Lithospermum erythrorhi-
zon, Arnebia euchroma and Arnebia guttata, and it pos-
sesses anti-oxidative, anti-inflammatory, and anti-cancer
activities [591-594]. It is effective in treating different
kinds of cancers, including breast, prostate, ovarian and
thyroid cancers, Ewing sarcoma, and myelomonocytic
lymphoma [595-600]. Shikonin exerts anti-cancer effects
mainly by inducing apoptosis, necroptosis, autophagy,
cell cycle arrest, and by inhibiting cell proliferation,
growth and metastasis [593, 601, 602].

Shikonin is reported to inhibit cell growth by induc-
ing cell cycle arrest and promoting apoptosis in human
NSCLC A549, gallbladder cancer NOZ and EHGB-1,
esophageal cancer EC109, and epidermoid carcinoma
A-431 cells [601, 603-605]. It can also induce necroptosis
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via autophagy inhibition in human NSCLC A549 cells
[593], and through ROS overproduction in human naso-
pharyngeal carcinoma 5-8F, and glioma SHG-44, U87
and U251 cells [606, 607]. Moreover, shikonin induces
autophagy in human melanoma A375, pancreatic can-
cer BxPC-3, and hepatocellular carcinoma Bel-7402 and
Huh7 cells [608-610]. However, autophagy provides a
protective role in shikonin-induced apoptosis in human
melanoma A375 cells [608]. In addition, shikonin can
suppress metastasis by the inhibition of tyrosine kinase
c-Met and integrin (ITG) B1 in human NSCLC A549 cells
[602, 611].

There are multiple mechanisms involved in the anti-
cancer effects of shikonin, including ER stress, ROS
generation, glutathione (GSH) depletion, mitochondrial
membrane potential disruption, p53, superoxide dis-
mutase (SOD) and Bax up-regulation, PARP cleavage,
catalase and Bcl-2 down-regulation [591, 612-614]. The
pro-apoptotic effect of shikonin is also caused by the dis-
ruption of intracellular Ca®* homeostasis and mitochon-
drial dysfunction, which involves enhanced Ca*" and
potassium (K*) efflux, caspase-3, -8 and -9 activation,
and Bcl-2 family protein modulation [615, 616]. ERK
pathway also plays a role in shikonin-induced anti-cancer
effects. Shikonin induces apoptosis and inhibits metasta-
sis through suppressing ERK pathway in human NSCLC
NCI-H460 and A549 cells, respectively [611, 617]. c-Myc
down-regulation along with inhibition of ERK/JNK/
MAPK and Akt pathways are also involved in shikonin-
induced apoptosis and anti-proliferation in acute and
chronic leukemia [618—620]. Moreover, the activation of
necroptosis initiators, receptor interacting serine-threo-
nine protein kinase (RIP) 1 and RIP3, by shikonin does
not only contribute to DNA double strand breaks via
ROS overproduction [621], but also facilitates glycolysis
suppression via intracellular H,O, production [622]. In
addition, shikonin induces cell cycle arrest through p21
and p27 up-regulation, cyclin and CDK down-regulation
[605]. Therefore, numerous pathways involved in shi-
konin-induced anti-cancer effects may explain the broad
range of its activities.

Shikonin is also shown to modulate the function of
the immune system. It can enhance the proliferation of
NK cells and its cytotoxicity to human colorectal cancer
Caco-2 cells by regulating ERK1/2 and Akt expressions
[623]. It can also bind directly to heterogeneous nuclear
ribonucleoprotein Al to induce immunogenic cell death
in human breast cancer MDA-MB-231 cells [624]. Shi-
konin is also reported to be used as an immunotherapy
modifier in cell-based cancer vaccine systems, suggesting
its potential application in cancer immunotherapy [625].

Derivatives are developed to enhance the anti-
cancer and tumor targeting effects of shikonin. The
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naphthazarin ring of shikonin is modified to produce
DMAKO-05, which can specifically target cancer cells
instead of normal cells [626]. DM AKO-05 can also sup-
press cell survival in human colorectal cancer HCT-116
cells, and inhibits tumor growth in colorectal cancer
CT-26 xenograft mice [627]. Besides, it inhibits cell pro-
liferation and migration, and induces cell cycle arrest
and apoptosis in murine melanoma B16F0 cells [626].
Another novel shikonin derivative, cyclopropylacetyl-
shikonin, exhibits strong anti-tumor and pro-apoptotic
effects in human melanoma WM164 and MUG-MEL?2
cells [628]. In addition, drug delivery system is also
developed to promote the intracellular delivery of shi-
konin. The shikonin-loaded nanogel enhances RIP1- and
RIP3-dependent necroptosis in human osteosarcoma
143B cells [629]. There is an increased accumulation of
shikonin-loaded nanogel in the tumor tissue, and this
nanogel can further inhibit tumor growth and metasta-
sis in 143B xenograft mice. Furthermore, the modified
shikonin-loaded liposomes have higher cytotoxicity, and
inhibit cell proliferation, metastasis in human breast can-
cer MDA-MB-231 cells [630].

The combination therapy is widely used to provide
synergistic effects of anti-cancer activities. Shikonin
can enhance the pro-apoptotic effect of taxol in human
breast cancer MBA-MD-231 cells, and this combination
improves mice survival and inhibits tumor growth in
MDA-MB-231 xenograft mice [631]. Besides, shikonin
can also potentiate the anti-cancer effects of gemcitabine
through NF-kB suppression and by regulating RIP1 and
RIP3 expressions in human pancreatic cancer [632, 633].
Shikonin is also reported to promote the efficacy of adri-
amycin in lung cancer and osteosarcoma [634, 635], and
enhance sensitization to cisplatin in colorectal cancer
[636]. Apart from the synergistic effect of shikonin, the
combination of shikonin and paclitaxel reverses MDR in
human ovarian cancer A2780 cells [10].

The single or combined therapies with shikonin show
promising anti-cancer effects in vitro and in vivo, so pre-
clinical data has confirmed its therapeutic use in cancer
treatment, as a result, clinical trials will be carried out to
further to confirm its safety and efficacy in humans.

Gambogic acid (GA)

GA (Fig. 2) is one of the major compounds derived
from gambogethe resin exuded from Garcinia spe-
cies including G. hanburyi and G. Morella [637]. It has
multiple biological activities such as anti-oxidative,
anti-inflammatory, and anti-cancer activities [638,
639]. Plenty of evidence shows that GA inhibits cell
proliferation, invasion, survival, metastasis and chemo-
resistance, and induces angiogenesis in many types of
cancers such as gastric and prostate cancers, leukemia,
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multiple myeloma, osteosarcoma, and renal carcinoma
through multiple signaling mechanisms [640-646].
Many studies have reported the anti-cancer effects
of GA in human breast cancer [647-650]. GA at low
concentrations (0.3-1.2 pM) can inhibit cell inva-
sion without affecting cell viability, while high con-
centrations of GA (3 and 6 pM) can induce apoptosis
via ROS accumulation and mitochondrial apoptotic
pathway in human breast cancer MDA-MB-231 cells
[651]. GA also induces apoptosis via ROS production
in human bladder T24 and UMUCS3 cells [652]. At ear-
lier time points, GA induces ROS-mediated autophagy,
which produces a strong cell survival response. How-
ever, at later time points, caspases are activated which
degrade autophagic proteins and cell survival proteins,
and this eventually induces apoptosis. Similarly, GA-
induced autophagy via ROS provides a cytoprotective
effect to human pancreatic cancer Panc-1 and BxPC-3
cells [653], and ROS scavenger, N-acetylcysteine, can
reverse GA-induced autophagy in human NSCLC NCI-
H441 cells [654]. Moreover, GA inhibits cell invasion
and migration through reversion-inducing-cysteine-
rich protein with kazal motifs (RECK) up-regulation
in human NSCLC A549 cells and A549 xenograft
mice [655], and prevents TNF-a-induced invasion in
human prostate cancer PC-3 cells [656]. It also inhibits
angiogenesis in HUVECs, and prevents tumor growth
through the inhibition of tumor angiogenesis [657].
ROS-related pathways play a vital role in GA-induced
cell death [642, 646, 647, 651-654, 658]. GA induces
apoptosis mainly through ROS accumulation in human
pancreatic cancer Panc-1 and BxPC-3, NSCLC NCI-
H441, castration-resistant prostate cancer PCAP-1,
melanoma A375, breast cancer MCF-7 cells [642, 646,
647, 653, 654]. It also induces oxidative stress-dependent
caspase activation to mediate apoptosis in human blad-
der cancer T24 and UMUCS3 cells [652]. Moreover, GA
increases the expressions of ER stress markers such as
GRP78, CHOP, activating transcription factor 6 (ATF-6)
and caspase-12, and co-treatment with chemical chaper-
one, 4-PBA, significantly reduces these expressions and
apoptosis in human NSCLC A549 cells, so it is suggested
that GA induces ER stress to mediate apoptosis [659].
Previous studies have shown some immunomodula-
tory activities of GA [660, 661]. The activation of TLRs
is important to initiate immune responses, and TLR4
forms a complex with myeloid differentiation factor 2
(MD2) to recognize its ligand, like LPS. GA is shown to
reduce pro-inflammatory cytokine production in LPS-
primed primary macrophages such as TNF-a, IL-1p,
IL-6 and IL-12, and also inhibit the activation of TLR4 by
disrupting the interaction of TLR4/MD2 complex with
LPS [660]. Similarly, it also reduces pro-inflammatory
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cytokine production including TNF-a, IL-1p and IL-6 by
suppressing p38 pathway in murine macrophage RAW
264.7 cells [661].

GA has low solubility, instability and poor pharma-
cokinetic properties [662]. In order to increase its water
solubility, GA is conjugated with a cell-penetrating pep-
tide, trans-activator of transcription, to form GA-TAT
[658]. This GA-TAT enhances apoptosis through ROS
accumulation in human bladder cancer EJ cells. Another
study uses a co-polymer to encapsulate GA to form GA
micelles [639]. These GA micelles have better cellular
uptake which can further enhance apoptosis in human
breast cancer MCEF-7 cells and the anti-tumor effects in
MCEF-7 xenograft mice. Moreover, GA is encapsulated
into the core of the nanoparticles to enhance the stability
of GA and its circulation time [662]. These nanoparticles
have tumor targeting properties, and enhance the anti-
tumor activities of GA without inducing higher toxicity.

The combination of GA and other chemotherapy agents
has been widely used to improve the therapeutic effects
against various cancers such as osteosarcoma, pancreatic
and lung cancers [639, 653, 663, 664]. Cisplatin resist-
ance is a main clinical problem for the treatment of lung
cancer, and the treatment of cisplatin with GA is shown
to enhance apoptosis and decrease the cisplatin resist-
ance index in human NSCLC cisplatin-resistance A549/
DDP cells [663]. Moreover, GA and retinoic acid chloro-
chalcone are loaded into glycol chitosan nanoparticles to
form RGNP [639]. The RGNP exhibits synergistic effects
to inhibit cell proliferation and induces apoptosis in oste-
osarcoma. The combination of GA with doxorubicin syn-
ergistically reduces cell viability in human ovarian cancer
platinum-resistance SKOV3 cells, and this combination
also suppresses tumor growth in SKOV3 xenograft mice
[665].

The safety and efficacy of GA at different dosages in
patients with advanced malignant tumors have been
compared in a phase Ila clinical trial [666]. GA had a
safety profile at a dosage of 45 mg/m?. The patients with
GA administration on days 1-5 in a 2-week cycle showed
a greater disease control rate and only Grades I and II
adverse reactions. To further investigate the safety and
efficacy of GA, a phase IIb clinical trial involving a larger
sample size of patients would be needed.

Artesunate

Artesunate (Fig. 2) is a semi-synthetic compound derived
from ART, which is widely used as an anti-malarial
agent [667]. As an analog of ART, artesunate exerts bet-
ter water solubility and higher oral bioavailability, due
to its special structure with an additional hemisuccinate
group that makes it a better candidate for cancer treat-
ment [668]. The anti-cancer effects of artesunate have
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been demonstrated in bladder, breast, cervical, colorec-
tal, esophageal, gastric, ovarian and prostate cancer, renal
carcinoma, leukemia, melanoma and multiple myeloma
[179, 669-679]. Its anti-cancer effects include induction
of cell cycle arrest and apoptosis, inhibition of cell pro-
liferation and growth, metastasis and angiogenesis [670,
678, 680].

Artesunate can induce apoptosis in various cancers
including human breast cancer MCF-7, MDA-MB-468
and SKBR3 cells, gastric cancer SGC-7901 and HGC-
27, colorectal cancer HCT-116, and esophageal cancer
Ecal09 and Ec9706 cells [670, 672, 673, 681-683]. It also
induces cell cycle arrest at ROS-dependent G2/M phase
and ROS-independent G1 phase in human breast can-
cer MDA-MB-468 and SKBR3, and ovarian cancer HEY1
and HEY?2 cells [670, 684], and induces G2/M cell cycle
arrest through autophagy in human breast cancer MCF-7
and MDA-MB-231 cells [685]. Artesunate is also shown
to induce autophagy to exert cytoprotective effects in
human colorectal cancer HCT-116 cells, and the inhibi-
tion of autophagy enhances artesunate-mediated apop-
tosis [179]. Similarly, artesunate-induced mitophagy
provides a protective effects against cell death in human
cervical cancer HeLa cells [686]. Moreover, it inhibits
cell invasion and migration in human prostate cancer
DU-145 and LNCaP, cervical cancer Caski and HeLa
cells, and uveal melanoma cells [675, 678, 687], and sup-
presses tumor angiogenesis in HUVECs and renal carci-
noma 786-O xenograft mice [676, 680].

In most cases, the inhibition effects of artesunate
against cancer cells are resulted from apoptosis. Artesu-
nate induces apoptosis through cyclooxygenase-2
(COX-2) down-regulation in human bladder cancer T24
and RT4, and gastric cancer HGC-27 cells [669, 683].
Mitochondrial pathways also play an important role in
artesunate-mediated anti-cancer effects [673, 681, 683].
Artesunate inhibits tumor growth through ROS- and
p38 MAPK-mediated apoptosis in human rhabdomyo-
sarcoma TE671 cells [688]. It also exerts anti-tumor
activities through the loss of mitochondrial membrane
potential, Bcl-2 down-regulation, Bax up-regulation,
and caspase-3 activation in human gastric cancer SGC-
7901 and HGC-27, esophageal cancer Ecal09 and Ec9706
cells, and breast cancer MCF-7 xenograft mice [673, 681,
683]. In addition, gene expression analysis identifies that
ER stress is the most relevant pathway for the anti-tumor
activity of artesunate in B-cell lymphoma [689]. Interest-
ingly, artesunate selectively inhibits cell growth through
iron-dependent and ROS-mediated ferroptosis in human
head and neck cancer HN9 cells [690].

Immunomodulation also plays a vital role in artesu-
nate-mediated anti-cancer effects [671, 674, 691, 692].
Artesunate induces Th1 differentiation into CD4™ T cells
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to mediate apoptosis in murine ovarian cancer ID8 cells
[674]. It also exerts anti-tumor effects through suppress-
ing NK killing activity and lymphocyte proliferation,
which results in decreased TGF-p1 and IL-10 levels in
colorectal cancer Colon-26 and RKO cells [691]. Besides,
artesunate also exerts immunosuppression through
forkhead box P3 (Foxp3) down-regulation in T cells and
decreases prostaglandin E, (PGE,) production in human
cervical cancer Caski and HeLa cells [671]. Moreover, it
enhances y8 T cell-mediated anti-cancer effect through
augmenting y8 T cell cytotoxicity and decreasing TGF-B1
levels to reverse immune escape in human hepatocellular
carcinoma HepG2 cells [692].

The treatment of artesunate with other therapies shows
promising anti-cancer effects in several studies [693—
697]. Artesunate and cisplatin synergistically induce
DNA double-strand breaks and inhibit clonogenic forma-
tion to mediate cytotoxic effects in human ovarian cancer
A2780 and HO8910 cells [693]. The combined treatment
of artesunate and erlotinib enhances the inhibition of cell
growth in human glioblastoma multiforme U87MG cells
[694].

Clinical studies are carried out to investigate the safety
and efficacy of artesunate in patients with colorectal and
breast cancers, and advanced solid tumor malignancies
[698—701]. A phase I study is performed to evaluate the
safety and the maximum tolerated dose of artesunate in
patients with metastatic breast cancer, the oral admin-
istration of artesunate is safe and 2.2-3.9 mg/kg per day
is well tolerated [701]. Another phase I study is assessed
in patients with advanced solid tumor malignancies, and
the maximum tolerated dose of intravenous artesunate
is 18 mg/kg [698]. The tolerability and anti-proliferative
properties of oral artesunate are also shown in patients
with colorectal cancer [699]. Moreover, a study of long
term treatment with oral artesunate is performed in
patients with metastatic breast cancer, 2.3—-4.1 mg/kg per
day treatment for up to 1115 cumulative days does not
show any major safety concerns [700]. An ongoing phase
II clinical trial is carried out to study the safety and effec-
tiveness of neoadjuvant artesunate in patients with stage
II or III colorectal cancer awaiting surgical treatment.

Wogonin

Wogonin (Fig. 2) is a plant flavonoid extracted from roots
of Scutellaria baicalensis, Scutellaria amoena and Scutel-
laria rivularis, and stem of Anodendron affine Druce, and
has many pharmacological effects including anti-viral,
anti-oxidative, anti-inflammatory, anti-cancer and neuro-
protective activities [702—705]. It has various anti-cancer
effects in many cancers, including lung, breast, head and
neck, gastric and colorectal cancers, glioma, leukemia,
lymphoma, and osteosarcoma, through the induction
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of apoptosis and cell cycle arrest, and inhibition of cell
growth, migration, invasion, and angiogenesis [706-716].

Wogonin can induce apoptosis and inhibit cell prolif-
eration in human neuroblastoma SK-N-BE2 and IMR-32,
NSCLC A549, glioma U251 and U87, and hepatocellu-
lar carcinoma HepG2 and Bel-7402 cells [704, 706, 711,
717]. It also induces cell cycle arrest in human colorectal
cancer HCT-116, NSCLC A549, chronic myelogenous
leukemia imatinib-resistant K562, and ovarian cancer
A2780 cells [716, 718-720]. Besides, wogonin induces
autophagy in human pancreatic cells Panc-1 and Colo-
357, and nasopharyngeal carcinoma NPC-TW076 and
NPC-TWO039 cells [721, 722]. However, inhibition of
autophagy promotes wogonin-induced apoptosis in
human nasopharyngeal carcinoma NPC-TWO076 and
NPC-TWO039 cells [722]. It also inhibits metastasis in
human hepatocellular carcinoma Bel-7402 and HepG2
cells, and NSCLC A549 cells [717, 723], and through
MMP-9 suppression in human hepatocellular carcinoma
MHCC97-L and PLC/PRE/5 cells [724]. In addition,
wogonin also represses multiple myeloma-stimulated
angiogenesis through c-Myc/von Hippel-Lindau tumor
suppressor (VHL)/HIF-1a signaling pathway [725], LPS-
and H,0,-induced angiogenesis through PI3K/Akt/
NEF-«B pathway [726, 727].

Mitochondrial dysfunction, oxidative stress and ER
stress play important roles in wogonin-induced anti-
cancer effects. Wogonin activates mitochondrial and
ER stress-related pathways including the modulation of
Bcl-2 family proteins, cytochrome c release, GRP78 and
94-kDa glucose-regulated protein (GRP94) accumula-
tion, and caspase activation in human neuroblastoma
SK-N-BE2 and IMR-32 cells, and induces mitochondrial
dysfunction through IRE1a-dependent pathway [704]. ER
stress markers and downstream pathways are also acti-
vated following wogonin treatment in human leukemia
HL-60 and osteosarcoma U20S cells, including IREla,
PERK-elF2a, ATF-6, CHOP, GRP94 and GRP78 [714,
728]. Wogonin also enhances ROS production in human
glioma U251 and U87, pancreatic cancer Panc-1 and
Colo-357, and NSCLC A549 cells [711, 721, 729]. Moreo-
ver, it inhibits cell growth and induces apoptosis through
NF-«xB suppression in Epstein—Barr virus-positive lym-
phoma cells [730], and suppresses cell proliferation and
invasion through NF-«kB/Bcl-2 and EGFR pathways in
human hepatocellular carcinoma HepG2 and Bel-7402
cells [717].

Wogonin has immunomodulatory effects in cancer
cells. It enhances the recruitment of DCs, T and NK cells
into the tumor tissues in gastric cancer MFC xenograft
mice, and also down-regulates the level of B7-H1, an
immunoglobulin-like immune suppressive molecule, to
promote anti-tumor immunity [731]. It also inhibits cell
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migration through modulating inflammatory microen-
vironment via IL-6/STAT3 pathway in human NSCLC
A549 cells [723]. Moreover, immunization with wogonin-
treated tumor cell vaccine effectively inhibits tumor
growth in MFC xenograft mice [732]. Targeting TNF
receptor with wogonin is also suggested to be a potential
strategy for the treatment of chronic lymphocytic leuke-
mia [712].

In order to enhance the accumulation and retention of
wogonin in cancer cells, wogonin-conjugated Pt(IV) pro-
drug is developed [733]. This pro-drug enhances the anti-
proliferative and pro-apoptotic effects through casein
kinase 2 (CK2)-mediated NF-«kB pathway in human gas-
tric cancer SGC-7901 and cisplatin-resistant SGC-7901/
cDDP cells, and reverses cisplatin resistance in cisplatin-
resistant SGC-7901/cDDP xenograft mice. It also fur-
ther induces cell cycle arrest, enhances ROS production
and apoptosis, and decreases mitochondrial membrane
potential compared to wogonin in SGC-7901 cells [734].
LW-213, a derivative of wogonin, inhibits cell prolifera-
tion and induces cell cycle arrest in human breast cancer
MCEF-7 and MDA-MB-231 cells, and suppresses tumor
growth in MCEF-7 xenograft mice [735]. A synthetic
wogonin derivative, GL-V9, inhibits metastasis in human
breast cancer MDA-MB-231 and MCF-7 cells [736], and
induces apoptosis and cell cycle arrest in human hepato-
cellular carcinoma HepG2 and gastric cancer cells MGC-
803 cells [737-739]. Moreover, targeting cancer cells
specifically is an important strategy in cancer therapy, so
wogonin-loaded liposomes are synthesized [740]. These
liposomes accumulate in the liver and prolong its reten-
tion time and exert better inhibitory effects than wogonin
in human hepatocellular carcinoma HepG2 cells.

The combination therapy has been widely used to
enhance the anti-cancer effects of wogonin. The com-
bined treatment of wogonin and oxaliplatin syn-
ergistically inhibits cell growth in human gastric
cancer BGC-823 cells and BGC-823 xenograft zebrafish,
through nitrosative stress and disruption of mitochon-
drial membrane potential [741]. Wogonin also suppresses
sorafenib-induced autophagy to exacerbate apoptosis in
human hepatocellular carcinoma Hep3B and Bel-7402
cells [742], and augments cisplatin-induced apoptosis
through H,0, accumulation in human NSCLC A549 and
cervical cancer HeLa cells [743].

As wogonin has various anti-cancer activities, it is cur-
rently under phase I clinical trial to test the safety and
efficacy as an anti-cancer drug in China [734].

B-Elemene

B-Elemene (Fig. 2) is a sesquiterpene mixture isolated
from various Chinese herbs such as Curcuma wenyujin
Y. H. Chen et C. Ling, Rhizoma zedoariae, and Curcuma
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Zedoary. It has various pharmacological effects includ-
ing anti-oxidative, anti-inflammatory and anti-cancer
activities [744—746]. It exerts anti-cancer effects in many
cancers, such as lung, gastric, cervical, breast and blad-
der cancers, osteosarcoma, through apoptosis, inhibition
of cell proliferation, migration and invasion, angiogenesis
[746-752].

B-Elemene is shown to induce apoptosis in human
cervical cancer SiHa, NSCLC A549 cells, primary blad-
der cancer cells, and Burkitt’s lumphoma, and inhibit
tumor growth in Lewis tumor-bearing mice [746, 747,
749, 753, 754]. It up-regulates insulin-like growth factor-
binding protein 1 (IGFBP1) to induce a reciprocal inter-
action between microRNA 155-5p and FoxO3a, which
leads to the inhibition of cell growth in human NSCLC
A549 and H1975 cells [755]. B-Elemene also induces S
phase arrest in human NSCLC A549 cells [754], while it
induces GO/G1 phase arrest in human glioblastoma U87
cells [756]. Moreover, it induces protective autophagy
in human gastric cells MGC-803 and SGC-7901, and
NSCLC A549 cells, as autophagy inhibition promotes
[B-elemene-induced anti-tumor effects [748, 757]. How-
ever, autophagy inhibition attenuates -elemene-induced
apoptosis in human NSCLC cisplatin-resistant SPC-A-1
cells [758]. B-Elemene can also inhibit cell migration and
invasion in human cervical cancer SiHa, murine breast
cancer 4T1 and melanoma B16F10 cells [749, 752, 759],
whilst it inhibits cell growth and metastasis through
angiogenesis suppression in murine melanoma B16F10
cells [752]. In addition, P-elemene can reverse drug
resistance in human NSCLC erlotinib-resistant A549/ER
cells by inhibiting P-gp expression and P-gp dependent
drug efflux [760].

B-Elemene exerts anti-tumor effects through phos-
phatase and tensin homolog (PTEN) up-regulation and
Akt suppression in human primary bladder cancer cells
[746]. It also inhibits cell proliferation and invasion,
and induces apoptosis via inhibition of Wnt/p-catenin
signaling pathway in human cervical cancer SiHa cells
[749]. B-elemene-induced apoptosis is also shown to be
through mitochondrial-related pathways, including p21
and Bax up-regulation, caspase-9 activation, Bcl-2 and
survivin down-regulation [754]. On the other hand, it
reverses drug resistance through mitochondrial-medi-
ated apoptosis in human NSCLC cisplatin-resistant
A549/DDP cells, via cytochrome c release, caspase-3
activation, Bcl-2 associated agonist of cell death (Bad)
up-regulation and Bcl-2 down-regulation [761]. ER
stress also plays a role in B-elemene-induced apoptosis.
B-Elemene up-regulates ER stress markers to induce
apoptosis in human NSCLC A549 cells, including
PERK, IREla, ATF-6, ATF-4 and CHOP [747]. Moreo-
ver, it also enhances ROS production in human NSCLC
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A549 cells [747], and up-regulates HIF-1a expression
via ROS to induce apoptosis in human osteosarcoma
MG63 and Saos-2 cells [751].

B-Elemene has immunomodulatory effects in cancer
and immune cells. It inhibits LPS-induced IL-6, TNEF-
a, IL-1P and IL-10 secretion, as well as inducible nitric
oxide synthase in murine RAW264.7 marcophages
[745]. M2 macrophages are regarded as tumor-associ-
ated macrophages, which can promote tumorigenesis
[762]. B-Elemene can induce the polarization of M2
to M1 macrophages, and can also suppress M2 mac-
rophage-treated conditioned medium-induced cell pro-
liferation, migration and invasion in mouse lung cancer
Lewis cells [762].

B-Elemene has poor water solubility, low oral bio-
availability and severe phlebitis, so different deliv-
ery systems have been developed to solve these issues
[763-765]. B-Elemene-loaded nanostructured lipid car-
riers are synthesized to enhance the intravenous deliv-
ery of B-elemene, and have higher bioavailiabity [763].
They inhibit tumor growth compared to [-elemene in
hepatocellular carcinoma H22 xenograft mice. ETME, a
novel B-elemene derivative, synergizes with arsenic tri-
oxide to induce cell cycle arrest and apoptosis in human
hepatocellular carcinoma SMMC-7721 cells, which is
dependent on p53 [766]. Another p-elemene derivative,
13,14-bis(cis-3,5-dimethyl-1-piperazinyl)-p-elemene
(IIi), is shown to inhibit cell proliferation in human gas-
tric cancer SGC-7901 and cervical cancer HeLa cells, and
inhibit tumor growth in sarcoma S-180 xenograft mice
[767]. It also induces autophagy in human breast cancer
MCE-7 cells, so it can be a potential anti-tumor agent.

The combination therapy is commonly used to
enhance the efficacy of -elemene for cancer treatment.
B-Elemene when combined with cisplatin synergisti-
cally enhances apoptosis and inhibits cell proliferation
in human gingival squamous cell carcinoma YD-38 cells
and YD-38 xenograft mice [768]. B-Elemene potenti-
ates the anti-proliferation effect of gefitinib as well as
the induction of apoptosis and autophagy in human glio-
blastoma multiforme U251 and U87MG cells, through
inhibiting EGFR signaling pathway [769]. It also reverses
drug resistance in chemo-resistant breast cancer cells by
reducing resistance transmission via exosomes [770], and
enhances the sensitivity to TNF-related apoptosis-induc-
ing ligand (TRAIL) partly through death-inducing signal-
ing complex formation in human gastric cancer BGC-823
and SGC-7901 cells [771].

The Elemene Emulsion mainly containing [-elemene
has been approved by China’s State Food and Drug
Administration, and now it is prescribed as an oral or
injected drug to improve anti-cancer efficacy and reduce
the side effects as adjuvant therapy.
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Cepharanthine (CEP)

CEP (Fig. 2), a natural product derived from Chinese
herbs such as Stephania cepharantha Hayata and Stepha-
nia japonica, is a cationic and amphipathic alkaloid that
has been reported to decrease the fluidity of biological
membranes [772]. With the presence of a 1-benzyliso-
quinoline moiety on alkyl chain, CEP belongs to a class
of compounds called biscoclaurine alkaloids that have
attracted significant attentions to pharmacologists and
clinicians due to their resemblance to polypeptides
[773]. CEP is widely used in Japan for the treatment of
many acute and chronic diseases [773]. It exhibits anti-
malarial, anti-viral, anti-inflammatory, anti-metastatic,
and anti-cancer activities in various cell lines and animal
models [772, 774-776]. Among its anti-cancer activities,
CEP exhibits multiple pharmacological actions, including
apoptosis and radiation sensitization, inhibition of angio-
genesis and metastasis, and reversing MDR [776-789].

CEP induces apoptosis and cell cycle arrest in many
types of cancer cells [783-786, 790]. It induces autophagy
to mediate apoptosis through suppressing Akt/mTOR
signaling pathway in human breast cancer MCF-7 and
MDA-MB-231 cells [785], and stimulates AMPK-mTOR-
dependent autophagy to induce cell death in apoptosis-
resistant cells [791]. In contrast, the inhibition of autophagy
is an effective treatment for NSCLC, and CEP is identified
as a novel autophagic inhibitor in human NSCLC NCI-
H1975 cells [782]. It inhibits autophagy by preventing
autophagosome-lysosome fusion and inhibiting lysosomal
cathepsin B and cathepsin D maturation. Therefore, this
suggests that autophagy plays a dual role in cancer via dif-
ferent signaling routes. Moreover, CEP is suggested to be
a potential anti-angiogenic agent, it blocks angiogenesis in
endothelial cells, zebrafish and xenograft mice by inhibiting
cholesterol trafficking [777]. It can also suppress metasta-
sis in a highly metastatic tumor, cholangiocarcinoma, and
markedly inhibit cell migration in human cholangiocarci-
noma KKU-M213 and KKU-M214 cells [776].

CEP has anti-tumor action mainly by inducing apop-
tosis and ROS production [783, 784, 786]. ROS is shown
to be an important factor to determine cell fate, and it
can be regulated by p21 [792]. CEP efficiently inhibits
the growth of p53-mutated colorectal cancer cells that
are often resistant to commonly used chemotherapeutic
agents [783]. It also effectively induces cell cycle arrest
and apoptosis through ROS production, p21 up-regula-
tion, cyclin A and Bcl-2 down-regulation [783]. Similarly,
CEP triggers apoptosis via ROS production and reduc-
ing mitochondrial membrane potential, thus inducing
caspase-3 and PARP activation in human NSCLC H1299
and A549 cells [786]. It also exerts anti-tumor activity
through ROS production and JNK activation in human
choroidal melanoma MEL15-1 cells and xenograft mice
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[784]. In addition, CEP is also a potential anti-cancer
drug for ovarian cancer by markedly increasing p21
expression and decreasing cyclins A and D levels in
human ovarian cancer CaOV-3 and OVCARS3 cells [787].

CEP also plays an important role in immunity. It is
shown to reduce IL-6 and TNF-a secretion in LPS-stim-
ulated DCs, and inhibits LPS-stimulated DC matura-
tion and antigen uptake by DCs [793]. CEP-treated DCs
becomes a poor stimulator of allogeneic T cell activation
and reduces IFN-y production [793]. Therefore, it is sug-
gested that CEP may have potential to be a cancer immu-
nomodulatory agent.

Targeting P-gp using P-gp inhibitors is one of the main
strategies to reverse MDR, and cepharanthine hydrochlo-
ride (CEH), a salt form of CED, is suggested to be a potent
P-gp inhibitor [779]. CEH exhibits MDR reversal potency
in various cancer cells [779-781, 788]. CEH can reverse
MDR-mediated cisplatin resistance in esophageal squa-
mous cell carcinoma [780]. It increases the sensitivity of
the cells and induces apoptosis via c-Jun activation, thus
down-regulating P-gp and enhancing p21 levels. Simi-
larly, CEH also reverses P-gp-mediated MDR through
suppressing PI3K/Akt pathway in human ovarian cancer
A2780/Taxol cells [788]. In addition, by reversing MDR,
CEH induces cell cycle arrest and apoptosis in human
nasopharyngeal carcinoma CNE-1 and CNE-2 cells [789].

In addition to chemotherapy, CEP may act as a radio-
sensitizer. Radiotherapy in the presence of CEP exhibits
significant enhancement of tumor responses in human
oral squamous cell carcinoma [778]. This pre-clinical data
indicates that CEP has the potential to be used in clini-
cal settings in combination with radiotherapy to treat oral
squamous cell carcinoma. Moreover, paclitaxel and CEP co-
loaded nano-particles also enhance the anti-cancer effects
in human gastric cancer MKN45 cells and xenograft mice,
suggesting that these nano-particles could be a potential for-
mulation for gastric cancer [794]. In addition, CEP enhances
the anti-cancer effects of dacomitinib in human NSCLC
NCI-H1975 cells and NCI-H1975 xenograft mice [782], and
cisplatin in lung and breast xenograft mice [777].

Although CEP has not yet been translated into clini-
cal use for the treatment of cancer, the pharmacological
activities and pre-clinical data support its significant clin-
ical potential for anti-cancer therapy.

Conclusions

Chinese herbal medicine has played, and still plays, an
important role in human health care in China and other
Asian countries. Natural products orignianted from
Chinese herbal medicine has also become a “hot topic”
in anti-cancer research. Chinese herbal medicine is also
recognized worldwide as a rich source for the discovery
of novel drugs in the past decades. Table 1 illustrates the
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experimental models and conditions, pharmacological
effects, as well as mechanistic actions of the natural com-
pounds derived from Chinese herbal medicine. Despite
the unique anti-cancer beneficial features of many com-
pounds derived from Chinese herbal medicine, their
clinical applications are disproportionally limited. As of
2019, only preliminary clinical studies have been per-
formed with artemisinins, emodin, cucurbitacins, tansh-
iones, shikonin, and CEP in various cancers, without any
approved clinical applications. The phase I safety studies
of UA-liposomes, oridonin derivative (HAO472), and
wogonin were evaluated in patients with advanced solid
tumors. Curcumin, pro-drug of triptolide (minnelide™),
triptolide derivative (LLDT-8), and GA have been inves-
tigated on cancer therapy in phase II clinical trials. The
phase II clinical trials of berberine hydrochloride, gin-
senoside Rg3, and artesunate are being conducted in
patients with cancer. EGCG was shown to have potential
anti-cancer effects in a phase III clinical trial. Elemene
Emulsion mainly containing -elemene was approved by
China’s State Food and Drug Administration as a Class 2
new drug in China. Based on our critical review of those
clinical studies, we conclude that Chinese herbal medi-
cine is a promising source and could be used as a comple-
mentary approach for cancer therapy.

We believe that as the evidence for safety and efficacy
continues to develop, this will improve the understand-
ing about the mechanistic actions and clinical potential
of these compounds. Chinese herbal medicine will also
serve as a huge community from which many promising
compounds will be developed for clinical use.

Abbreviations

4-PBA: 4-phenylbutyrate; 5-LO: 5-lipoxygenase; ABCG2: ATP-binding cassette
super-family G member 2; ACC: acetyl-CoA carboxylase; ACLY: ATP-citrate
lyase; AEG-1: astrocyte elevated gene-1; AlF: apoptosis inducing factor;
ALDOA: aldolase A; ALDH1: aldehyde dehydrogenase 1; AMPK: 5’AMP-acti-
vated protein kinase; AP-1: activator protein 1; Apaf-1: apoptotic protease
activating factor 1; AQP1: aquaporin 1; AR: androgen receptor; ARIE: acute
radiation-induced esophagitis; ART: artemisinin; ASK: apoptosis signal-regulat-
ing kinase; ATF-4: activating transcription factor 4; ATF-6: activating
transcription factor 6; ATG4B: autophagy related 4B cysteine peptidase; Atg-5:
autophagy related 5 protein; ATM: ataxia-telangiectasia mutated protein
kinase; ATP: adenosine triphosphate; ATR: ataxia telangiectasia and Rad3-
related protein; Axin2: axis inhibition protein 2; B7-H1: B7 homolog 1; B7-H3:
B7 homolog 3; Bad: Bcl-2 associated agonist of cell death; Bak: Bcl-2
homologous antagonist killer; Bax: Bcl-2-associated X protein; BCAR1: breast
cancer anti-estrogen resistance protein 1; Bcl-2: B cell lymphoma 2; Bcl-xL:
B-cell lymphoma-extra large; Bex: brain-expressed and X-linked; Bid: BH3
interacting-domain death agonist; Bim: Bcl-2-like protein 11; BIP: binding
immunoglobulin protein; BLT2: leukotriene B, receptor 2; BMP7: bone
morphogenetic protein 7; BRCAT: breast cancer type 1 susceptibility protein;
BTF: Bcl-2-associated transcription factor 1; Ca’*: calcium; CAMKKR: Ca’t/
calmodulin-dependent protein kinase kinase 3; Cav-1: caveolin-1; Cbl: casitas
B-lineage lymphoma; CD: cluster of differentiation; CDC25A: cell division cycle
25A; CDC25C: cell division cycle 25C; CDK: cyclin-dependent kinase; CEH:
cepharanthine hydrochloride; CEP: cepharanthine; CHK: checkpoint kinase 1;
CHOP: C/EBP homologous protein; CIP2A: cancerous inhibitor of protein
phosphatase 2A; CK1a: casein kinase 1a; CKS2: cyclin-dependent kinases
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regulatory subunit 2; COX-2: cyclooxygenase-2; COX IV: cytochrome ¢ oxidase
subunit 4; a-CP1: poly(rC)-binding protein 1; CSF: colony stimulating factor;
CTGF: connective tissue growth factor; CTR1: copper transporter 1; CTTN:
cortactin; CXCL-12: C=X-C motif chemokine 12; CXCR4: C-X-C chemokine
receptor type 4; CYP2E1: cytochrome P450 2E1; DC: dendritic cell; DHA:
dihydroartemisinin; DHCR24: 24-dehydrocholesterol reductase; DHFR:
dihydrofolate reductase; DLL: delta-like canonical Notch ligand; DKK1:
Dickkopf-related protein 1; DNA: deoxyribonucleic acid; DNMT: DNA
(cytosine-5)-methyltransferase; DR4: death receptor 4; DR5: death receptor 5;
Drp-1: dynamin-related protein 1; DUSP: dual-specificity phosphatase; DvI2:
dishevelled segment polarity protein 2; E2F1: E2F transcription factor 1;
EBNAT: Epstein—Barr nuclear antigen 1; EF-Tu: elongation factor thermo
unstable; EGCG: epigallocatechin gallate; EGFR: epidermal growth factor
receptor; EGFR-TKI: epidermal growth factor receptor-tyrosine kinase inhibitor;
EGR1: early growth response protein 1; ENY2: enhancer of yellow 2 transcrip-
tion factor homolog; elF2a: eukaryotic translation-initiation factor 2a; EphA2:
ephrin type-A receptor 2; ER: endoplasmic reticulum; ERa: estrogen receptor a;
ERK: extracellular signal-regulated kinase; Ets2: ETS proto-oncogene 2; EZH2:
enhancer of zeste homolog 2; FABP4: fatty acid binding protein 4; FADD:
Fas-associated protein with death domain; FAK: focal adhesion kinase; FasL: Fas
ligand; bFGF: basic fibroblast growth factor; c-FLIP: FLICE-like inhibitory
protein; FN: fibronectin; FoxM1: forkhead box protein M1; FoxO: forkhead box
O; Foxp3: forkhead box P3; FRZB: frizzled-related protein; FUT4: fucosyltrans-
ferase 4; GA: gambogic acid; GADD45AQ: growth arrest and DNA damage-
inducible 45; GLI1: glioma-associated oncogene homolog 1; GLUT-1: glucose
transporter 1; GRB2: growth factor receptor-bound protein 2; GRP78: 78-kDa
glucose-regulated protein; GRP94: 94-kDa glucose-regulated protein; GSH:
glutathione; GSK3: glycogen synthase kinase 3(3; y-H2AX: phosphorylated
H2A histone family member X; HBP17: human fibroblast growth factor binding
protein 1; HO-1: heme oxygenase 1; H,O,: hydrogen peroxide; HDAC: histone
deacetylases; HER2: human epidermal growth factor receptor 2; HERC5: HECT
domain and RCC-1-like domain-containing protein 5; HIF-1a: hypoxia-induci-
ble factor 1a; HK2: hexokinase 2; HMGB1: high mobility group box 1; HNF4a:
hepatocyte nuclear factor 4a; HRK: activator of apoptosis harakiri; HSF1: heat
shock factor 1; HSP: heat shock protein; HUVEC: human umbilical vein
endothelial cell; IAP: inhibitor of apoptosis protein; ICAD: apoptosis protease
activating factor-1; ICAM-1: intercellular adhesion molecule 1; ICBP90: inverted
CCAAT box-binding protein of 90 kDa; IDO: indoleamine 2,3-dioxygenase;
IFN-y: interferon-y; IGFBP1: insulin-like growth factor-binding protein 1; IGF-1R:
insulin-like growth factor 1 receptor; IkB: nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor; IKK: IkB kinase; IL: interleukin;
ILK: integrin-linked kinase; iNOS: inducible nitric oxide synthase; IRE1a:
inositol-requiring enzyme 1a; ITG: integrin; Jak1: Janus kinase 1; Jak2: Janus
kinase 2; JMJD3: Jumonji domain-containing protein D3; JMJD2B: Jumoniji
domain-containing protein 2B; JNK: c-Jun N-terminal kinase; KT potassium;
Keap1: Kelch-like ECH-associated protein 1; LEF1: lymphoid enhancer-binding
factor 1; LeY: Lewis Y; Lig4: DNA ligase 4; LLC: Lewis lung carcinoma; LMP:
Epstein—Barr virus latent membrane protein; LRP: low density lipoprotein
receptor-related protein; LPS: lipopolysaccharide; LSD1: lysine-specific histone
demethylase 1; MAPK: mitogen-activated protein kinase; Mcl-1: myeloid cell
leukemia 1; MCT1: monocarboxylate transporter 1; MCP-1: monocyte
chemoattractant protein 1; MD2: myeloid differentiation factor 2; MDM2:
mouse double minute 2 homolog; MDR: multi-drug resistance; MDSCs:
myeloid-derived suppressor cells; MEK: MAPK kinase; MGMT: O-6-methylgua-
nine-DNA methyltransferase; MHC: major histocompatibility complex; Mfn:
mitofusin; MKP-1: MAPK phosphatase 1; MMP: matrix metalloproteinase; MRP1:
multi-drug resistance-associated protein 1; MST1: macrophage-stimulating 1;
MTA3: metastasis-associated 1 family member 3; mTOR: mammalian target of
rapamycin; NADPH: nicotinamide adenine dinucleotide phosphate oxidase;
NAG-1: non-steroidal anti-inflammatory drug-activated gene 1; NF-kB: nuclear
factor kappa-light-chain-enhancer of activated B cells; NK: natural killing;
NKD2: naked cuticle 2; NQO1: NADPH quinone oxidoreductase 1; Nrf2: nuclear
factor erythroid 2-related factor 2; NSCLC: non-small-cell lung carcinoma;
Oct-4: octamer-binding transcription factor 4; Opa-1: optic atrophy protein 1;
p70S6K: p70S6 kinase; u-PA: urokinase-type plasminogen activator; u-PAR:
urokinase-type plasminogen activator receptor; PAI-1: plasminogen activator
inhibitor 1; PAK1: p21-activated protein kinase 1; PAK1IP1: p21-activated
protein kinase-interacting protein 1; PARP: poly (ADP-ribose) polymerase;
PAX7: paired box 7; PCNA: proliferating cell nuclear antigen; PERK: protein
kinase R-like endoplasmic reticulum kinase; PD-L1: programmed death-ligand
1; PDK1: pyruvate dehydrogenase kinase 1; PGE,: prostaglandin E,; P-gp:
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P-glycoprotein; PHLPP2: pH domain and leucine Rich repeat protein
phosphatase 2; PLA2: phospholipase A2; PI3K: phosphoinositide 3-kinase;
PKC-a: protein kinase Ca; PKD1: polycystin 1; PKM2: pyruvate kinase isozyme
M2; PP2A: pyrophosphatase (inorganic) 2; PPARy: peroxisome proliferator-
activated receptor y; PSA: prostate-specific antigen; PTEN: phosphatase and
tensin homolog; PTTG-1: pituitary tumor-transforming gene 1 protein; PU.1:
spleen focus forming virus proviral integration oncogene; PUMA: p53
upregulated modulator of apoptosis; PYK2: proline-rich tyrosine kinase 2; Rac1:
Ras-related C3 botulinum toxin substrate 1; Rac2: Ras-related C3 botulinum
toxin substrate 2; RAE-1e: ribonucleic acid export 1¢; Rb: retinoblastoma-
associated protein; RECK: reversion-inducing-cysteine-rich protein with kazal
motifs; RECQL4: ATP-dependent DNA helicase Q4; RhoA: Ras homolog family
member A; RIP: receptor-interacting serine/threonine protein; RIPK1:
receptor-interacting serine/threonine protein kinase 1; RRM2: ribonucleotide
reductase regulatory subunit M2; ROCK1: Rho-associated protein kinase 1;
ROS: reactive oxygen species; S6: ribosomal protein S6; S6K: ribosomal protein
S6 kinase; SERTAD1: SERTA domain-containing protein 1; SFRP1: secreted
frizzled related protein 1; SFN: stratifin; SGK1: serum and glucocorticoid-regu-
lated kinase 1; SHH: sonic hedgehog; SHP-1: Src homology region 2
domain-containing phosphatase 1; SIRT: sirtuin; Smac: second mitochondria-
derived activator of caspase; SMOX: spermine oxidase; SOS1: son of sevenless
homolog 1; SOD: superoxide dismutase; SOX2: sex determining region

Y-box 2; Sp1: specificity protein 1; SREBP1: sterol regulatory element-binding
protein 1; SSAT: spermidine/spermine N1-acetyltransferase; STAT: signal
transducer and activator of transcription; SUV39H1: suppressor of variegation
3-9 homolog 1; Suz12: suppressor of zeste 12 protein homolog; TACE:
TNF-a-converting enzyme; TAZ: tafazzin; TFAP2A: transcription factor
AP-2-alpha; TCF: T-cell factor; TGF-: transforming growth factor-@3; Th1: T
helper type 1 cell; Th2: T helper type 2 cell; Thy-1: THYmocyte differentiation
antigen 1; TIMP: TIMP metallopeptidase inhibitor; TLR: toll-like receptor; TNF:
tumor necrosis factor; TOPK: T-LAK cell-originated protein kinase; TOPlla: DNA
topoisomerase lla; TRAF6: TNF receptor-associated factor 6; TRAIL: TNF-related
apoptosis-inducing ligand; TROP2: tumor-associated calcium signal transducer
2;Toq: regulatory T cells; Trx: thioredoxin; TrxR: thioredoxin reductase; Tyro3:
tyrosine-protein kinase receptor; UA: ursolic acid; UAL: UA-lipsomes; UCAT:
urothelial cancer-associated 1; ULK-1: UNC-51-like autophagy activating kinase
1; UQCRCT: ubiguinol-cytochrome c reductase core protein 1; UTX:
ubiquitously transcribed tetratricopeptide repeat protein X-linked; VEGF:
vascular endothelial growth factor; VEGFR2: vascular endothelial growth factor
receptor 2; VHL: von Hippel-Lindau tumor suppressor; XBP-1: X-box binding
protein 1; xCT: solute carrier family 7 member 11; XIAP: X-linked inhibitor of
apoptosis protein; WT1: Wilms tumor 1; YAP: Yes-associated protein 1; ZEB1:
zinc finger E-box binding homeobox 1; ZEBRA: BamHI Z Epstein-Barr virus
replication activator.
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