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Abstract 

Background:  The population of plants is a crucial indicator in plant phenotyping and agricultural production, such 
as growth status monitoring, yield estimation, and grain depot management. To enhance the production efficiency 
and liberate labor force, many automated counting methods have been proposed, in which computer vision-based 
approaches show great potentials due to the feasibility of high-throughput processing and low cost. In particular, 
with the success of deep learning, more and more deeper learning-based approaches are introduced to deal with 
agriculture automation. Since different detection- and regression-based counting models have distinct character-
istics, how to choose an appropriate model given the target task at hand remains unexplored and is important for 
practitioners.

Results:  Targeting in-field maize tassels as a representative case study, the goal of this work is to present a com-
prehensive benchmark of state-of-the-art object detection and object counting methods, including Faster R-CNN, 
YOLOv3, FaceBoxes, RetinaNet, and the leading counting model of maize tassels—TasselNet. We create a Maize Tassel 
Detection Counting (MTDC) dataset by supplementing bounding box annotations to the Maize Tassels Counting 
(MTC) dataset to allow the training of detection models. We investigate key factors effecting the practical applica-
tions of the models, such as convergence behavior, scale robustness, speed-accuracy trade-off, as well as parameter 
sensitivity. Based on our benchmark, we summarise the advantages and limitations of each method and suggest 
several possible directions to improve current detection- and regression-based counting approaches to benefit next-
generation intelligent agriculture.

Conclusions:  Current state-of-the-art detection- and regression-based counting approaches can all achieve a rela-
tively high degree of accuracy when dealing with in-field maize tassels, with at least 0.85 R2 values and 28.2% rRMSE 
error. While detection-based methods are more robust than regression-based methods in scale variations and can 
infer extra information (e.g., object positions and sizes), the latter ones have significantly faster convergence behaviors 
and inference speed. To choose an appropriate in-filed plant counting method, accuracy, robustness, speed and some 
other algorithm-specific factors should be taken into account with the same priority. This work sheds light on different 
aspects of existing detection and counting approaches and provides guidance on how to tackle in-field plant count-
ing. The MTDC dataset is made available at https​://git.io/MTDC
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Background
Extracting key information from images and videos with 
computer vision techniques is of significant importance 
for plants phenotyping [1]. There are numerous applica-
tions using computer vision technologies in agricultural 
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automation, such as disease detection [2, 3], weeds iden-
tification [4, 5], yield estimation [6–8], characterization 
[9, 10], as well as continuous monitoring of crop growth 
status [11]. In these applications, plant counting plays a 
crucial role because it can not only reflect growth sta-
tus [12, 13] but also be a good indicator of crop yield. 
Growth status can help analyse the relationship between 
field management and agrometeorological conditions to 
provide effective agricultural guidance [14], and knowing 
crops growth status allows growers to appropriately time 
field operations, such as fertilization, irrigation, cultiva-
tion, etc., which significantly improves yields [15]. In this 
paper, we focus on this challenging task with state-of-
the-art computer vision techniques.

A typically common practice to address plant counting 
is manual counting with a large number of crews. This 
is laborious, error-prone, costly and inefficient. More 
importantly, the need of large-scale and high-throughput 
analyses in modern agriculture makes it impossible to 
deal with such tasks in a manual manner. To alleviate this 
situation, many image-based approaches have been pro-
posed in recent years. Li  et al. [16] proposed to detect, 
count and measure the geometric properties of spikes of 
a plant grown in controlled glasshouse with neural net-
works and Laws texture energy. Aich et al. [17] adopted 
a deep convolutional network to directly predict the 
number of rosette leaves in a data-driven way. Praveen 
[18] proposed a graph-based model by exploiting bright-
ness distribution, color feature and circular Hough 
transform [19]. Considering the gap between controlled 
environment and field conditions, Lu et al. [6] proposed 
to count maize tassels under unconstrained field-based 
environment and introduced a deep convolutional neu-
ral network (CNN)-based local count regression frame-
work as well as a Maize Tassel Counting (MTC) dataset. 
By contrast, Rahnemoonfar  et al. [20] attempted to 
directly regress the global count of fruits with a CNN 
model, Hasan  et al. [8] first employed R-CNN [21] for 
spike detection with wheat images taken in the field, and 
Madec  et al. [7] considered tackling ear detection from 
high-resolution RGB imagery with Faster R-CNN [22]. 
Since plant images with corresponding phenotypic labels 
are hard to collect and annotate, Ubbens et al. [23] intro-
duced a new method for augmenting plant phenotyping 
datasets using rendered images of syntheric plants and 
demonstrated that it can improve performance on the 
leaf counting task. Moreover, to facilitate image-based 
techniques for plants phenotyping, five sessions of Leaf 
Counting Challenge were held in conjunction with Com-
puter Vision Problems in Plant Phenotyping (CVPPP) 
workshops from 2014 to 2019 [24–28].

With methods mentioned above, impressive progress 
has been made in plant counting in recent years. Plant 

counting, however, remains a known challenging task 
in the field of plant science and agriculture. Compared 
to the rapid development of object counting and object 
detection in Computer Vision communities, efforts 
made for crop counting seem limited, and the progress 
is lagged. Existing methods in plant counting gener-
ally can be categorized into two paradigms. One is to 
directly regress the plant counts by resorting to a regres-
sion model. The other is to detect individual plants with 
object detection methodologies [21, 22]. Both paradigms 
have merits and drawbacks. Despite regression-based 
methods, e.g., TasselNet [6], can achieve state-of-the-art 
performance with light-weight computation costs, they 
can only estimate the count and approximate the distri-
bution of plants. Detection-based methods, by contrast, 
can infer counts, positions as well as sizes of plants, but 
the accuracy is not comparable to regression-based ones, 
especially when dealing with congested scenes, and the 
model capacity and computational costs are usually large 
and expensive. How to choose an appropriate paradigm 
given the target task at hand sometimes is hard for prac-
titioners specializing in plant science and agriculture.

Targeting in-field maize plants, a representative agri-
cultural crop, the goal of this work is to present a com-
prehensive evaluation of state-of-the-art object detection 
and object counting methods on the task of maize tas-
sels counting. Object detection is a typical dense predic-
tion problem [29, 30]. In recent years, there appear many 
advanced object detection approaches, such as R-CNN 
[21], Fast R-CNN [31], Faster R-CNN [22], SSD [32], 
YOLO9000 [33], RetinaNet [34], etc. Here we evaluate 
two one-stage detectors, i.e., RetinaNet [34] and YOLOv3 
[35], a widely-used two-stage detector Faster R-CNN [22] 
and a light-weight face detector FaceBoxes [36]. Different 
from the original VGG16-based [37] Faster R-CNN, we 
adopt the feature pyramid network (FPN) [38] to extract 
features (details about these methods are introduced in 
the "Methods" section). Furthermore, inspired by Tas-
selNet [6], we construct TasselNet∗ by updating the back-
bone of TasselNet with ResNet34 [39]. We then make a 
comprehensive evaluation of these methods in the hope 
that our evaluation can help agriculturist, plant scientists, 
biologists and breeders choose an appropriate counting 
paradigm according to their task requirements.

For a fair comparison, a Maize Tassel Detection and 
Counting (MTDC) dataset is constructed by adding 
bounding box annotations to the released MTC [6] data-
set. We compare counting performance, scale robust-
ness, speed and some other characteristics of considered 
methods via extensive experiments on the MTDC data-
set. According to the experimental results, we summarize 
our evaluations and suggest some possible solutions to 
deal with in-field counting tasks.
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Overall, the contributions of this paper are two-fold:

•	 A systematic evaluation of state-of-the-art object 
detection and regression-based counting approaches 
on the task of maize tassels counting;

•	 The MTDC dataset: a maize tassel detection dataset 
constructed by adding bounding box annotations to 
the challenging MTC dataset.

Methods
This section introduces the proposed maize tassel detec-
tion and counting dataset, as well as four state-of-the-
art detection algorithms and the leading tassel counting 
methods.

Maize tassels detection and counting dataset
To evaluate the state-of-the-art methods on maize tas-
sel detection, we re-annotate the MTC dataset [6] with 
bounding boxes instead of dotted annotations.

The MTC dataset includes 361 images which are ran-
domly chosen from 16 independent time series image 
sequences, covering from tasselling stage to flower-
ing stage. These sequences are collected from 4 dif-
ferent experimental fields across China between 2010 
and 2015 with high-resolution CCD digital camera 
(E450 Olympus). The row spacing is 25–30 cm, and 
line spacing is 50–60 cm. Six cultivars of maize plants 
are involved. Images are taken from a 5-meters-height 
(4 m for Gucheng sequences) camera whose pose is 60 
degree relative to the vertical direction. The original 

image resolutions for Zhengzhou, Gucheng, Jalaid 
sequences are 3648× 2736 , 4272× 2848 , 3456× 2304 , 
respectively. A focal length of 16 mm is fixed to pho-
tograph the fields, and the field of view is about 30 m2 . 
The MTC dataset is split into two parts: 186 images for 
training and validation, 175 images for testing. Among 
them, images from the training set and validation set 
come from identical sequences, and images from the 
test set come from different sequences (as summarised 
in Table 1). Moreover, the dotted annotations for each 
image are provided as well.

For maize tassel detection, the MTC dataset with 
only point annotations is insufficient to provide enough 
information to train a robust deep learning model. 
Therefore, we re-annotate each tassel with bound-
ing box. In particular, for each tassel, we maintain the 
center of the bounding box consistent with the dot 
annotation in MTC dataset. To make a difference, we 
term MTC dataset with bounding box annotation 
MTDC dataset. The total number of bounding boxes in 
the MTDC dataset is 13, 562, and the statistic informa-
tion of bounding boxes is shown in Fig.  1. Compared 
with MTC, MTDC can provide more information, such 
as tassel size, accurate position. Figure  2 shows four 
example images with bounding box annotations on the 
MTDC dataset.

To our knowledge, there is only one public dataset 
for maize tassel detection also released by our team [9]. 
Compared with the published one, our MTDC data-
set includes more genotypes and scenes, and it is more 
challenging.

Table 1  Training set (train), validation set (val) and test set (test) settings of the MTC dataset

Num refers to the number of images in each sequence

Sequence Num Location Cultivar train val test

Zhengzhou2010 37 China, 34.7◦ latitude North, 113.6◦ longitude East Jundan No.20 � �

Zhengzhou2011 24 China, 34.7◦ latitude North, 113.6◦ longitude East Jundan No.20 �

Zhengzhou2012 22 China, 34.7◦ latitude North, 113.6◦ longitude East Zhengdan No.958 � �

Taian2010_1 30 China, 36.1◦ latitude North, 117.1◦ longitude East Wuyue No.3 � �

Taian2010_2 32 China, 36.1◦ latitude North, 117.1◦ longitude East Wuyue No.3 �

Taian2011_1 21 China, 36.1◦ latitude North, 117.1◦ longitude East Nongda No.108 � �

Taian2011_2 19 China, 36.1◦ latitude North, 117.1◦ longitude East Nongda No.108 �

Taian2012_1 41 China, 36.1◦ latitude North, 117.1◦ longitude East Zhengdan No.958 � �

Taian2012_2 23 China, 36.1◦ latitude North, 117.1◦ longitude East Zhengdan No.958 �

Taian2013_1 8 China, 36.1◦ latitude North, 117.1◦ longitude East Zhengdan No.958 � �

Taian2013_2 8 China, 36.1◦ latitude North, 117.1◦ longitude East Zhengdan No.958 �

Gucheng2012 15 China, 39.1◦ latitude North, 115.7◦ longitude East Jidan No.32 � �

Gucheng2014 45 China, 39.1◦ latitude North, 115.7◦ longitude East Zhengdan No.958 �

Jalaid2015_1 12 China, 46.7◦ latitude North, 112.9◦ longitude East Tianlong No.9 � �

Jalaid2015_2 12 China, 46.7◦ latitude North, 112.9◦ longitude East Tianlong No.9 �

Jalaid2015_3 12 China, 46.7◦ latitude North, 112.9◦ longitude East Tianlong No.9 �
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Considered methods
In this section, we first introduce feature pyramid net-
work (FPN) [38] , the feature extractor of Faster R-CNN 
[22] and RetinaNet [34]. Following it, the details of con-
sidered methods are illustrated.

Feature pyramid network
Feature representation plays an important role for 
object detection. To deal with multiscale object rep-
resentation, feature pyramid is a basic component. 
However, due to its recent deep learning based object 

Fig. 1  Statistics of MTDC dataset: a bbox area; b bbox ratio (W/H); c bbox number of each image

Fig. 2  Example images in the MTDC dataset with bounding box annotations. Images are from the a Taian2011_2, b Taian2010_2, c Jalaid2015_2 
and d Gucheng2014 sequences, respectively
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detectors have ignored pyramid representations, in 
part because they are computation and memory inten-
sive. To make the best of feature pyramids in object 
detection, Lin et al. [38] proposed the Feature Pyramid 
Network (FPN) by exploiting the inherent multi-scale, 
pyramid hierarchy of convolutional network with mar-
ginal extra cost.

In brief, FPN is built upon a standard convolutional 
network by adding a top-down pathway and lateral 
connections. The bottom-up pathway is the feedfor-
ward computation of the backbone ConvNet, and it can 
compute a feature hierarchy. The top-down pathway 
upsamples spatially coarser but semantically stronger 
feature maps from higher pyramid levels to halluci-
nate higher resolution features. Then feature maps 
of the same spatial size from bottom-up pathway and 
top-down pathway are fused with lateral connections. 
In this way, a rich and multi-scale feature pyramid can 
be constructed from a single-scale image of arbitrary 
size(as shown in Fig. 3a). Each level of pyramid can be 
used for detecting objects at different scales. Following 
[38], we have built FPN based on ResNet34 architecture 
[39]. We construct a pyramid with levels P3 through 
P7 , where l denotes pyramid level ( Pl has resolution 2l 
lower than the input). The channel number of all pyr-
amid levels is set to 256 as in [38]. The construction 
of FPN in this paper generally follows [38] with a few 
modest differences, more details are shown in the refer-
ence [38].

Faster R‑CNN
As a typical two-stage object detection algorithm, Faster 
R-CNN [22] has been widely applied in many fields 
since it was proposed. As shown in Fig 3b, based on the 
extracted feature maps, a region proposal network (RPN) 
is constructed to generate confident proposal for multi-
classification and bounding box refinement.

More precisely, RPN first generates a dense grid of 
anchor regions (candidate bounding boxes) with speci-
fied sizes and aspect ratios over each spatial location of 
the feature maps. According to intersection over union 
(IOU) ratio with the ground truth object bounding boxes, 
an anchor will be assigned with a positive or negative 
label On top of the feature maps, a shallow CNN is built 
to judge whether an anchor contains an object and pre-
dict an offset for each anchor. Then anchors with high 
confidence are rectified by the offset predicted in RPN. 
Then the corresponding features of each anchor will go 
through a RoI pooling layer, a convolution layer and a 
fully connected layer to predict a specific class as well as 
refined bounding boxes. Following current state-of-the-
art object detectors [40], we adopt RoIAlign for the RoI 
pooling layer instead of RoIPool in [22].

In this paper, areas of anchors are from 322 to 5122 on 
levels P3 to P7 , respectively. Following [38], three ratios 
{1:2, 1:1, 2:1} are used to generate anchors. For denser 
scale coverage, we add anchors with sizes {20, 21/3, 22/3} 
of the original three aspect ratio anchors at each level 
additionally. There are A = 9 anchors in all per level 

Fig. 3  Detection Framework Overview. a The Feature Pyramid Network (FPN) [38] used as backbone in Faster R-CNN [22] and RetinaNet [34]. b, c 
are diagrams of Faster R-CNN [22] and RetinaNet [34] respectively. d, e are pipelines for FaceBoxes [36] and YOLOv3 [35] respectively
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which cover the scale range 32–813 pixels with respect to 
the input image. As for the configuration of RPN and the 
second stage, we follow [22].

RetinaNet
Different from Faster R-CNN, RetinaNet is a single, uni-
fied framework consisting of a CNN backbone and two 
task-specific subnetworks (as shown in Fig. 3c). Consist-
ent with Faster R-CNN, RetinaNet also adopts ResNet34 
based FPN as the backbone to extract feature maps. At 
each spatial location of extracted feature maps, anchors 
are with the same configuration as described in Faster 
R-CNN. As for the two task-specific sub-networks, both 
of them are constructed on top of feature maps with sim-
ple convolution operation, the former performing object 
classification and the latter regressing the position of 
bounding box.

Moreover, to deal with extreme foreground-back-
ground class imbalance during training, the Focal Loss 
was proposed (for two stage detectors, most of negative 
proposals are filter by the RPN, so this class imbalance 
almost does not exist). To address the class imbalance 
issue, the Focal Loss is modified from the standard cross 
entropy, which can down-weight the loss assigned to 
well-classified examples. Supervised by Focal Loss, Reti-
naNet can achieve significant improvement on generic 
object detection benchmarks. The definition of focal loss 
is:

where αt and γ are hyperparameters. More details of 
Focal Loss can be referred to [34].

FaceBoxes
Maize tassel detection only involves one target class, 
which is similar to face detection. So we take FaceBoxes 
[36] into account in our evaluation. FaceBoxes is a one-
stage object detector as figured in Fig.  3d. To maintain 
high performance in real-time, a lightweight yet powerful 
network structure was designed for FaceBoxes. Further-
more, a new anchor densification strategy was proposed 

(1)FL(pt) = −αt(1− pt)
γ log(pt)

to make different types of anchors have the same density 
on image.

In detail, the network structure consists of the Rapidly 
Digested Convolutional Layers (RDCL) and the Multiple 
Scale Convolutional Layers (MSCL) as shown in Fig. 3d. 
RDCL is composed of two convolution layers and two 
pooling layers, which can rapidly shrink the spatial size 
of input image. What’s more, C.ReLu activation func-
tion is used to reduce the number of output channels. 
On top of RDCL, MSCL was built to extract features at 
different spatial size. Moreover, convolutional layers are 
used to predict class confidence and the position offset 
for anchors sampled on these features. Considering the 
fact that anchors with small spatial size is sparse than big 
one, a new anchor densification strategy was proposed 
to eliminate this imbalance by increasing anchors with 
small sizes.

YOLOv3
Apart from RetinaNet, YOLOv3 [35] is another state-
of-the-art one-stage object detector. The pipeline of 
YOLOv3 is similar to RetinaNet, but the backbone of 
YOLOv3 is DarkNet-53 based FPN and the feature pyr-
amid only contains 3 level. Although 9 kinds of anchor 
are used in YOLOv3, there are only 3 for each level of 
the pyramid according to the spatial size of feature map. 
What’s more, different from RetinaNet which directly 
regresses the offsets of anchors, YOLOv3 predicts off-
sets of each anchor related to the grid that the center of 
this anchor belongs to. For each anchor, an object score is 
predicted except the class probability.

TasselNet
To compare detection and counting methods on maize 
tassels, we make use of the state-of-the-art tassel count-
ing model TasselNet [6] in this paper. For the sake of fair-
ness, we re-implement TasselNet based on ResNet34, 
which is named TasselNet∗ . The pipelines of TasselNet 
and TasselNet∗ are shown in Fig 4, respectively.

TasselNet is a local count regression network com-
posed of deep convolutional neural networks (CNNs). 
As per Fig  4a, the inputs of TasselNet are sub-images 

Fig. 4  Counting Framework Overview. a shows pipeline of the original TasselNet in [6]. b is our implementation of TasselNet based on ResNet34 
with an entire image as input, we call it TasselNet∗
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densely sampled from the raw image, and outputs are 
local counts regressed for each sub-image. At training 
stage, typical loss functions in regression problems can 
be used to supervise the network. During the predic-
tion, we can obtain the output density map of the input 
image by averaging predicted local counts into sub-
images. As described in [6], feature extractor has a sig-
nificant influence on the performence of TasselNet, but 
original TasselNet adopts VGG16 as its backbone. Here 
we reconstruct TasselNet with a backbone of ResNet34 
and term it TasselNet∗ (as shown in Fig. 4b). Noting that 
TasselNet∗ takes an entire image as input instead of sub-
images so that speed comparison with Faster R-CNN and 
RetinaNet is more compellent. TasselNet∗ is supervised 
by l1 Loss at the training stage, and during the prediction, 
we also feed an entire image to TasselNet∗ to obtain the 
final count directly.

Evaluation methodology
To thoroughly evaluate the aforementioned algorithms, 
we design our experiments as follows. Firstly, the imple-
mentation details and evaluation metrics are described. 
Secondly, the evaluated terms are illustrated with some 
analysis. Finally, summaries are made.

Implementation details and evaluation metrics
Implementation details
Apart from YOLOv3 (based on DarkNet [41]), imple-
mentations of all algorithms are based on publicly avail-
able PyTorch [42]. All experiments are conducted on the 
MTDC dataset on a platform of a single Nvidia GeForce 
GTX TITAN XP GPU (12G). Training set and validation 
set are mixed together for model learning. Aside from 
RetinaNet, the other three detectors all adopt Softmax 
Loss to supervise classification. Smooth− L1 is used in 
Faster R-CNN, RetinaNet and FaceBoxes for bounding 
box regression while square error loss is used in YOLOv3.

For a fair comparison, TasselNet∗ , Faster R-CNN and 
RetinaNet employ the same data augmentation and net-
work initialization. In particular, for each input image, we 
first resize it with a minimal side equalling to or greater 
than 608 and a maximal side equalling to or less than 
1024, and then padding it so that width and height can 
be divided by 32. To avoid overfitting, images are ran-
dom flipped with a probability of 0.5. As for initialization, 
ResNet34 backbone is pretrained on ImageNet [43] and 
other parameters are initialized with the Xavier method 
[44]. All three methods are optimized with Adam [45] 
and the BatchNorm layers are freezed. Hyperparameters 
of these methods are illustrated as follows:

•	 Faster R-CNN: The initial learning rate is 1e–4 and 
is divided by 10 at the 80th, 160th and 240th epoch, 

respectively. We set weight decay to 1e–5 and the 
maximal training epoch to 300 with batch size of 8. 
The other configurations follow [22].

•	 RetinaNet: We initialize learning rate with 1e–5 and 
reduce it by a factor of 0.1 when a metric has stopped 
improving. And we adopt a batch size of 8, a maxi-
mum epoch of 300 and a weight decay of 1e–5. For 
hyperparameters of Focal Loss, we set α to 0.25 and γ 
to 2.0.

•	 TasselNet∗ : We set the Gaussian kernel parameter 
σ = 6 during generating density map and local patch 
size to 32 which is equal to the downsampling stride 
of ResNet34 backbone. MSE loss is used to supervise 
TasselNet∗ . Initial learning rate is 1e–6 and drops 
at 40th and 70th epoch, and weight decay is 2e–5. 
Because TasselNet∗ has a quick convergence com-
pared to Faster R-CNN and RetinaNet, we only train 
it with 100 epochs. The batch size is set to 1 for train-
ing stability.

We adopt the same data augmentation and hard negative 
mining strategies as in [36] during training FaceBoxes. 
Stochastic gradient descent (SGD) is used to optimize the 
parameters of the network randomly initialized with the 
Xavier [44] method. The batch size, momentum, weight 
decay and maximal epoch are set to 32, 0.9, 5e–4, 300, 
respectively. The learning rate is initialized with 1e–3 and 
divided by 10 at the 200th and 250th epoch, respectively.

We train YOLOv3 on the MTDC dataset exactly fol-
lowing [35]. The DarkNet-53 backbone is initialized by an 
ImageNet pretrained model, and we turn random resiz-
ing on with the batch size of 4 as well as a maximal epoch 
of 300.

Evaluation metrics
The mean absolute error (MAE), the root mean squared 
error (MSE) and the relative RMSE (rRMSE) are used 
as the evaluation metrics to assess the counting perfor-
mance. They take the forms:

(2)MAE =
1

N

N
∑

1

|ti − ci| ,

(3)MSE =

√
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√

√

1
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N
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where N denotes the number of test images, ti is the 
ground truth count for the i-th image (computed by sum-
ming over the whole density map), and ci is the inferred 
count for the i-th image. As small ti may lead to large bias 
on rRMSE, here we only take images with ti ≤ 15 into 
account. MAE quantifies the accuracy of the estimates, 
MSE assesses the robustness of the estimates, and rRMSE 
can justify the high degree of accuracy. The lower these 
three measures are, the better the counting performance 
is. The mean average precision (mAP) metric is also used 
to evaluate performance of detection method. The higher 
mAP is, the better the detection performance is. We also 
take inference speed into account with the frame per sec-
ond (fps) metric.

Results and analysis
Confidence threshold
The choice of confidence threshold plays an impor-
tant role in object detection methods, as it determines 
whether a bounding box includes object or not. Here 
we first compare different confidence thresholds for 
maize tassel detection and counting on the MTDC data-
set between Faster R-CNN and RetinaNet. Quantitative 
results are shown in Fig.  5. Blue and red lines indicate 
Faster R-CNN and RetinaNet, respectively.

According to Fig. 5, we can see that RetinaNet is very 
sensitive to confidence threshold. With low thresholds, 
RetinaNet can get high mAP (higher better) but high 
MAE, MSE (lower better). With increased thresholds, 
MAE and MSE of RetinaNet firstly decrease rapidly and 
then increase slightly but mAP keeps decreasing. Differ-
ent from RetinaNet, Faster R-CNN shows robustness to 
the confidence threshold as mAP, MAE and MSE almost 
remain unchanged. The fundamental reason for this is 
that the first stage of Faster R-CNN can filter many false 
bounding box before the classification of second stage 
while RetinaNet has to classify all anchors.

In following experiments, confidence threshold of 
Faster R-CNN and RetinaNet are set to 0.2 and 0.4 for a 
fair comparison.

Convergence
Here we evaluate the convergence of Faster R-CNN, Reti-
naNet and TasselNet∗ versus the number of epochs. As 
suggested by Fig. 6, the convergence speed of TasselNet∗ 
is rapid than other two detection methods. Maybe there 
are many false positive bounding boxes during early 
period of the training stage of detection algorithms. As 
focal loss can deal with class imbalance, the learning 
curve of RetinaNet decreases more quickly and smoothly 
than Faster R-CNN.

Scales
Figure 7 gives the results with respect to scales relative to 
input image size during training. It can be observed that 

Fig. 5  Comparisons of different confidence thresholds for maize tassel detection and counting on the MTDC dataset between Faster R-CNN (blue 
lines) and RetinaNet (red lines)

Fig. 6  Test errors in terms of MAE versus the number of epochs for 
Faster R-CNN, RetinaNet and TasselNet∗
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TasselNet∗ is more sensitive to image size variances than 
detection methods, i.e., Faster R-CNN and RetinaNet. 
This is because TasselNet∗ has to predict a count for each 
patch, it may overestimate with larger input image size 
and underestimate with small input image size. Moreo-
ver, we can see that Faster R-CNN shows relative better 
results with smaller input image size and worse results 
with larger input image size than RetinaNet.

Speed
Here we take inference speed into account. Figure  8 
shows the error term of MAE versus speed (fps) on the 
MTDC test dataset. Faster R-CNN, RetinaNet, Face-
Boxes and TasselNet∗ are considered as they are all 

implemented with the same Pytorch framework. The 
input image size of Faster R-CNN, RetinaNet and 
TasselNet∗ are all 640× 832 , while the input image size 
of FaceBoxes is 1024 × 1024 (it is trained with this size). 
We measure speed of all methods on a PC of single 
Nvidia GeForce GTX TITAN XP GPU (12G). According 
to Fig.  8, TasselNet∗ outperforms other three methods 
both on speed (fps) and MAE (lower is better). RetinaNet 
is faster than Faster R-CNN as the second stage of Faster 
R-CNN is time-consuming, but Faster R-CNN achieves a 
lower MAE. FaceBoxes can achieve a comparable speed 
with TasselNet∗ , this is somewhat expected, i.e., the net-
work of FaceBoxes is specifically designed for real-time 
application. How to design a faster and better network 
for detection is still a hot research area.

Linear regression coefficients between considered algorithms 
and manual counts
The linear regressions between the manual count-
ing and considered algorithms counting calculated for 
the MTDC test set are shown in Fig 9. We can observe 
that, Faster R-CNN and RetinaNet work better than 
TasselNet∗ with small counts but worse with large 
counts. When there are too many tassels occur in a single 
image, occlusions between tassels are hard for detection 
methods, many predicted bounding boxes will be filter by 
non maximum suppression of detector and may lead to 
an underestimation. Comparing original TasselNet and 
our TasselNet∗ , we can find that a better backbone can 
achieve lower MAE and rRMSE error. Moreover, origi-
nal TasselNet tends to underestimate the tassel count 
while our TasselNet∗ does not, which may benefit from 
an entire image as input, i.e., TasselNet∗ can catch extra 
global information.

Fig. 7  Performance of Faster R-CNN, RetinaNet and tasselNet∗ versus scales relative to input image size during training. MAE, MSE and mAP are all 
taken into account

Fig. 8  The error in term of MAE versus Speed (fps) on MTDC test set. 
Faster R-CNN, RetinaNet, FaceBoxes and TasselNet∗ are considered
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Comparison with the state‑of‑the‑art
We also compare aforementioned methods with several 
well-established baseline approaches on the MTDC test 
set,and a brief introduction is illustrated as follow:

•	 JointSeg [46]: JointSeg is the state-of-the-art tassel 
segmentation method. Based on the segmentation 
results, we can easily get object counts. To reduce 
noise interference, some morphological operations 
are performed as post-correction. This approach can 
be viewed as a counting-by-segmentation baseline.

•	 mTASSEL [9]: mTASSEL is a specifically designed 
detection method for maize tassel. It makes use of 
multi-view representations to characterise the visual 
characteristics of tassels and achieved state-of-the-
art detection result. This is a counting-by-detection 
baseline.

•	 GlobalReg [47]: GlobalReg is a state-of-the-art 
crowd counting approach that directly regress the 

global count of a image. It adopted a pretrained 
model to extract holistic image representation and 
mapped these global feature into object count by 
ridge regression. This can be viewed as a global 
counting-by-regression baseline.

•	 DensityReg [48]: DensityReg proposed to predict 
idea of density map regression that predicts a count 
for every pixel by optimising the MESA distance. 
It is a global density-based counting-by-regression 
baseline.

•	 Counting-CNN (CCNN) [49]: CCNN is a state-of-
the-art object counting method that regresses the 
local density map with a AlexNet-like CNN archi-
tecture. This is a local density-based counting-by-
regression baseline.

Table  2 shows the quantitative results and Fig.  10 
shows the qualitative results. The following observa-
tions can be made from Table 2 and Fig. 10:

a b c

d e f
Fig. 9  Plots of Manual counting versus different Algorithms counting on MTDC test set. a FaceBoxes, b YOLOv3, c original TasselNet, d Faster 
R-CNN, e RetinaNet and f TasselNet∗
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•	 The state-of-the-art detection methods can achieve 
comparable results with the best regression based 
counting algorithms. In most test sequences, Faster 
R-CNN can achieve lower MAE and MSE than 
TasselNet∗.

•	 Compared with the best one stage detection meth-
ods, i.e. RetinaNet, the best two stage detection 
method Faster R-CNN can obtain lower errors and 
better bounding boxes.

•	 TasselNet∗ outperforms TasselNet in 7 out of 8 test-
ing sequences, and achieves the best overall counting 
performance—the lowest MAE and MSE errors. This 
is somewhat expected, i.e., advanced architecture can 
achieve better counting performance.

•	 Almost all methods can obtain a higher MAE (and 
MSE) in Jalaid2015_2 and Jalaid2015_3 sequence. 
And we find that the category of tassel in these two 
sequences are quite different other sequences, and 
the training set has a different distribution with test 
set. So one may consider to alleviate these issues by 
adding more extra training data or trying domain 
adaptation [50, 51].

•	 Qualitative results in Fig.  10a shows that Faster 
R-CNN, RetinaNet and TasselNet∗ all can estimate 
reasonable approximations to the ground truth 
counts. However, TasselNet∗ works poorly if the 

scales of tassels in an image vary a lot (as shown in 
Fig. 10b). This is consitent with the observation made 
in [7]. A main reason is that the gaussian kernel used 
to generate the density map is a constant which can 
not deal with scale variances. By contrast, Faster 
R-CNN and RetinaNet are more robust to scale vari-
ance because they are trained with the supervision 
of bounding boxes. But as shown in Fig. 10c, Faster 
R-CNN and RetinaNet tend to underestimate the 
count when tassels are occluded by each other or 
the size of tassels is too small. Because many object 
bounding boxes will be filtered by non-maximal sup-
pression operation even boxes have high confident 
scores. It should be noted that TasselNet∗ performs 
well in this crowded scene. As Faster R-CNN (or 
RetinaNet) and TasselNet∗ can complement each 
other, it may be possible to improve performance by 
combining them. We leave these explorations open at 
present.

Summaries
Here we evaluate some state-of-the-art object detection 
and object counting methods on our proposed MTDC 
dataset from different aspects, and our findings can be 
summarised as follows: 

Fig. 10  Qualitative results of ground truth bounding boxes and the predicted results of Faster R-CNN, RetinaNet and TasselNet∗ , respectively. The 
number shown below each sub-figure denotes the tassel count over the predicted results
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1.	 Faster R-CNN is more robust than RetinaNet for 
object counting, as the performance of the former 
one nearly remain unchanged with different confi-
dence thresholds while the latter varies a lot.

2.	 Regression based counting methods converge faster 
than object detection based methods. In detection, 
RetinaNet converges faster than Faster R-CNN.

3.	 Compared with detection based methods, regression 
based counting methods are more sensitive to object 
scales as the latter are trained in a way independent 
of scales.

4.	 On the aspect of speed, regression based counting 
methods are faster than detection-based ones,but it 
is possible to accelerate object detectors by designing 
a lightweight network.

5.	 With a stronger backbone, TasselNet can achieve 
better performance and extra information can ben-
efit regression based counting methods.

6.	 The state-of-the-art detection methods can actually 
achieve comparable results with the state-of-the-art 
counting methods based on regression.

7.	 Detection based methods tend to underestimate the 
number of tassels in crowded scene because of heavy 
occlusions.

8.	 Apart from the count, detection based methods can 
extract more information about tassels in an image, 
such as position and size.

According to our observations, we suggest some possi-
ble solutions to help deal with maize-tassel-like in-field 
counting problems: 

1.	 Design a lightweight network to accelerate current 
counting algorithm so that it can run on a CPU.

2.	 Try fusing local and global information to improve 
regression-based counting methods.

3.	 Joint detection and regression based algorithms that 
make full use of their advantages in different circum-
stances.

4.	 Try the idea of counting by regression in crowd scene 
and counting by detection when the scales of tassels 
change a lot.

5.	 Try the idea of data synthesis to augment training 
data.

6.	 Try to use domain adaptation [50, 51] to fill the dif-
ferences between sequences, e.g. domain adaptive 
Faster R-CNN [52].

Conclusions
In this paper, we evaluate some state-of-the-art object 
detection algorithms for in-field counting of maize tas-
sels. We create the MTDC dataset by supplementing 

bounding box annotations to the MTC dataset so that 
we can train detectors on it. We fairly compare these 
state-of-the-art object detection methods and regres-
sion-based counting approaches in robustness, speed, 
performance and other aspects. Summaries of the advan-
tages and limitations of each method are provided. 
Results show that different detection frameworks all pro-
vide acceptable accuracy in maize tassel detection. Our 
evaluations thus can be a useful reference for practition-
ers to save their time when choosing a plant counting 
model to deal with a similar plant detection problem. In 
addition, maize tassels are typical non-rigid objects. Our 
work provides a dataset and several strong baselines for 
researchers who are interested in improving the accuracy 
of non-rigid object detection. Furthermore, TasselNet 
reports comparable results. This delivers a message that 
regression-based methods may be a better choice than 
detection ones when only the population of instances 
is of interest, because regression-based methods only 
require less expensive dotted annotations and take less 
training and inference time.

We also point out some possible directions to 
improve tassel counting with object detection and 
regression based methods. We hope our work can facil-
itate the popularization of computer vision technolo-
gies in plant science.
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