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Abstract

Background: Multiplex immunohistochemistry (mIHC) permits the labeling of six or more distinct cell types within
a single histologic tissue section. The classification of each cell type requires detection of uniquely colored
chromogens localized to cells expressing biomarkers of interest. The most comprehensive and reproducible
method to evaluate such slides is to employ digital pathology and image analysis pipelines to whole-slide images
(WSIs). Our suite of deep learning tools quantitatively evaluates the expression of six biomarkers in mIHC WSIs.
These methods address the current lack of readily available methods to evaluate more than four biomarkers and
circumvent the need for specialized instrumentation to spectrally separate different colors. The use case application
for our methods is a study that investigates tumor immune interactions in pancreatic ductal adenocarcinoma
(PDAC) with a customized mIHC panel.

Methods: Six different colored chromogens were utilized to label T-cells (CD3, CD4, CD8), B-cells (CD20),
macrophages (CD16), and tumor cells (K17) in formalin-fixed paraffin-embedded (FFPE) PDAC tissue sections. We
leveraged pathologist annotations to develop complementary deep learning-based methods: (1) ColorAE is a deep
autoencoder which segments stained objects based on color; (2) U-Net is a convolutional neural network (CNN)
trained to segment cells based on color, texture and shape; and (3) ensemble methods that employ both ColorAE
and U-Net, collectively referred to as ColorAE:U-Net. We assessed the performance of our methods using: structural
similarity and DICE score to evaluate segmentation results of ColorAE against traditional color deconvolution; F1
score, sensitivity, positive predictive value, and DICE score to evaluate the predictions from ColorAE, U-Net, and
ColorAE:U-Net ensemble methods against pathologist-generated ground truth. We then used prediction results for
spatial analysis (nearest neighbor).
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Results: We observed that (1) the performance of ColorAE is comparable to traditional color deconvolution for
single-stain IHC images (note: traditional color deconvolution cannot be used for mIHC); (2) ColorAE and U-Net are
complementary methods that detect six different classes of cells with comparable performance; (3) combinations of
ColorAE and U-Net in ensemble methods outperform ColorAE and U-Net alone; and (4) ColorAE:U-Net ensemble
methods can be employed for detailed analysis of the tumor microenvironment (TME).

Summary: We developed a suite of scalable deep learning methods to analyze 6 distinctly labeled cell populations
in mIHC WSIs. We evaluated our methods and found that they reliably detected and classified cells in the PDAC
tumor microenvironment. We also utilized the ColorAE:U-Net ensemble method to analyze 3 mIHC WSIs with
nearest neighbor spatial analysis. We demonstrate a proof of concept that these methods can be employed to
quantitatively describe the spatial distribution of immune cells within the tumor microenvironment. These
complementary deep learning methods are readily deployable for use in clinical research studies.

Keywords: Multiplex immunohistochemistry, Digital pathology image analysis, Deep learning, Tumor immune
microenvironment

Background
Multiplex IHC (mIHC) and multiplex immunofluorescence
(mIF) are methods that are used to detect multiple targets
in a single histologic section with different colored
chromogens (e.g. DAB, AES, TMB, BCIP) or fluorophores
for mIHC and mIF, respectively. Traditional IHC employs a
single antibody for each tissue section, where multiple
markers are assessed in consecutive serial tissue sections.
Therefore, mIHC increases our ability to observe direct
interactions between cells within the appropriate histo-
logical context in a single tissue section and maximizes the
number of markers that can be assessed with limited tissue.
Fully automated mIHC and mIF platforms are being
deployed as high-throughput assays for future use in CLIA/
CAP certified laboratory settings.
We used a mIHC platform to visualize inflammatory

responses in the tumor microenvironment of pancreatic
ductal adenocarcinoma (PDAC). We chose this model
system since PDAC is one of the deadliest types of can-
cer, known to be poorly immunogenic and unresponsive
to currently available immunotherapeutic treatment op-
tions [1, 2]. Investigation of the relationship between
PDAC and the inflammatory microenvironment could
be further advanced by the development of methods that
quantify cell populations and their distribution within
the tumor microenvironment in an automated and re-
producible fashion. We utilized mIHC rather than mIF
due to the decay of fluorophores over time, challenges
associated with interpreting mIF from the lack of histo-
logic context, and need for specialized fluorescence or
spectral imaging instrumentation that is labor intensive,
expensive, and requires expertise [3–20].
The analysis of inflammatory responses in the tumor

microenvironment (TME) is increasingly significant as
the development and deployment of immunotherapeutic
protocols continues to increase for many types of cancer
[2, 16, 18, 21–30]. Investigations of tumor-immune

interactions in the TME using mIHC may help improve
clinical outcomes through the discovery of predictive
and prognostic biomarkers [14, 26, 27, 30–64]. Since
tumor-immune interactions are exquisitely complex and
diverse across different types and subtypes of cancer,
meaningful analysis of the TME requires the detection
and classification tumor cells and immune cell subtypes
to (1) characterize the functional immune status of the
TME, (2) identify potential intrinsic immune biomarkers,
and (3) provide insight into the expression of known im-
munotherapeutic drug targets. In order to clinically im-
plement mIHC, pathologists have to be able to
meaningful interpret multicolored tissue sections that
contain several types of labeled cells.
Thus, computational methods are being explored to

augment traditional histologic examination in an effort
to help reliably detect and classify multiple distinct cell
populations in digital whole slide images (WSIs) of
mIHC-stained tissue sections [4, 6, 7, 9, 11, 13–15, 19,
65–67]. We developed a suite of algorithms that leverage
deep learning to overcome the need to use specialized
multispectral imaging instrumentation for quantitative
analysis of mIHC WSIs containing six or more distinctly
colored chromogens. Our methods utilize computation-
ally inexpensive deep learning convolutional neural net-
works (CNNs) that are trained to separate colors and
classify cells in a time efficient and comprehensive man-
ner with limited training data. The success of each of
the methods demonstrates the value of using deep
learning-based image analysis methods for automated
analysis of mIHC WSIs. Therefore, we also present an
application of our methods to quantitatively describe the
spatial relationships between tumor and immune cells in
PDAC as an example of the types of insights that can be
gained from such analysis.
We report our efforts to develop and test complemen-

tary color deconvolution and immune cell classification
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methods by using deep learning CNNs. We developed a
suite of deep learning tools with two distinct algorithmic
approaches and combinations of these methods. Our suite
of deep learning tools includes (1) a deep autoencoder for
color decomposition, (2) a U-Net based approach for cell
segmentation, and (3) multiple ensemble approaches
intended to increase the positive predictive value (PPV) of
cell detection and classification. This manuscript reports
the development of these methods in a specific use case to
quantitatively analyze the expression of six biomarkers to
study tumor immune interactions in PDAC. Our goal was
to develop these methods to build robust and scalable
analytic pipelines that can be easily configured and
deployed to analyze mIHC WSIs for a wide array of
research and clinical applications.

Methods
The identification of different types of cells with
mIHC is based on the unique colors of chromogenic
agents that are localized to specific cells in formalin-
fixed and paraffin-embedded (FFPE) tissue sections.
However, available research and commercial software
used for color decomposition is typically limited to
three or four channels. Therefore, we developed mul-
tiple deep learning models with training data for six
different colored chromogens in a PDAC mIHC
panel. Our suite of deep learning tools included: (1)
ColorAE, (2) U-Net, and (3) ColorAE:U-Net ensemble
models to detect color-labeled immune cell types and
tumor cells in mIHC WSIs without the need for spec-
tral deconvolution during image acquisition by digital
slide scanners.

Tissue specimens
FFPE tissue sections (5 μm thickness) from ten cases
of PDAC, provided by the archival collections of the
Department of Pathology at Stony Brook University
Hospital, were obtained for this mIHC pilot study.
These cases represent a subset of cases from a previ-
ously published cohort [68]. Tumor sections were
reviewed from each case to identify the tissue block
with the greatest area of viable tumor and those with
< 1 cm2 of tumor were excluded. The tissue slides
were de-identified and multiple security measures, in-
cluding password protection and storage of the pass-
word key on a computer without network access were
used to ensure that no patient identifiers could be
accessed. All of the members of our research team
members have undergone CITI human subjects and
medical ethics training.

Multiplex IHC
mIHC of the tissue sections was performed at Roche
Diagnostics (Tuscon, AZ), using a Discovery Ultra

Autostainer (Roche/Ventana, Oro Valley, AZ). Tissue
slides were baked at 60 degrees Celsius for 20 min,
followed by 3 × 8-min deparaffinization cycles, antigen
retrieval in high pH buffer (CC1, Roche/Ventana), and
treatment to block endogenous peroxidase (Inhibitor
CM, Roche/Ventana). Antibodies for CD3, CD4, CD8,
CD16, and CD20 were provided by Roche/Ventana and
an antibody to K17, a biomarker of the most aggressive
subtype of PDAC [68] was provided by KDx Diagnostics
(Los Gatos, CA). mIHC staining was performed using
horseradish peroxidase (HRP)- and alkaline phosphatase
(AP)-based protocols with different colored chromogens
(e.g. Yellow:CD3 T-cells, Teal:CD4 helper T-cells, Pur-
ple:CD8 cytotoxic T-cells, Red:CD20 B-cells, Black:CD16
myeloid cells, and brown (DAB):cancer cells) [68–71].
Secondary monoclonal antibodies to rabbit primary anti-
bodies for CD16, K17, CD8, and CD4, and K17 were
conjugated to the HQ hapten; monoclonal antibodies to
primary rabbit primary antibodies to CD3 and CD20
were conjugated to the NP hapten (Fig. 1G). After each
round of staining, antibody complexes were removed
using CC2 (Roche/Ventana), a pH 6.0 citrate/acetate-
based buffer containing 0.3% SDS, and heating the slide
to 93 degrees for 8 min [72]. Details of the mIHC proto-
col are outlined in supplemental Table 1; a complete list
of required reagents including washes and buffers is in-
cluded in supplemental Table 2.

Optimization of IHC protocol
Before finalizing the mIHC protocol, we optimized con-
ditions and validated the staining patterns. Controls for
individual antibodies: Using two PDAC cases, we
stained 6 serial sections with individual antibodies that
followed the sections cut for mIHC (Fig. 1A-B). We con-
firmed that the quality of staining, color intensity, and
patterns of IHC staining in each single-stained slide
matched the pattern produced with the same antibody
in the mIHC slide. In addition, we ran negative controls
that substituted diluent for each of the primary anti-
bodies and secondary antibodies. Heat denaturation con-
trols: Sensitivity of the antigens to repeated denaturation
steps was evaluated in adjacent tissue sections prior to
application of the primary antibody. Antigens that were
sensitive to repeated denaturation were placed earlier in
the sequence.

Image capture and preparation
After mIHC tissue sections were completed, an Olympus
VS120 microscope (Olympus, Tokyo, Japan) was used to
scan glass slides and generate digital WSIs at 40x magni-
fication with a resolution of 0.175 μm per pixel. WSIs
were partitioned into patches in order to obtain training
data to develop two distinct deep learning models to de-
tect, classify, and segment distinct types of cells in the
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mIHC WSIs. We selected two cases with abundant tis-
sue and obtained six additional serial sections for indi-
vidually staining with each of the markers in the PDAC
mIHC panel for further validation studies.

Generation of ground truth data
A set of 80 patches (1920 × 1200 pixels) were selected
from representative high-density tumor regions from 10
mIHC WSIs. Six cases were used to generate the train-
ing dataset (10 patches per case); four separate cases
were selected for the test set (5 patches per case). Since
manually delineating the boundaries of individual cells
to provide per-pixel annotations is time and cost pro-
hibitive, we utilized seed labels and superpixels (Fig. 2A,
B,D) to create a relatively large training data set of per-
pixel annotations (superpixel labels, Fig. 2D). A patholo-
gist examined each patch and placed a seed annotation
at the center of each cell to indicate the identity of the
cell based on staining. This seed label corresponded to
the dominant stain across the cell.

Superpixel computation is a well-developed technique
in computer vision [73]. The superpixel method works
by partitioning an image into small regions called super-
pixels, where color is relatively homogeneous within
each superpixel (Fig. 2D). Each superpixel containing a
seed label is assigned the corresponding label; the
remaining superpixels are considered background pixels
(Fig. 2D). The resulting superpixel annotations are called
super-pixel labels (Fig. 2D). Even though the superpixel
label may not exactly match the boundaries of the cells,
we were able to improve the strength of the annotations
to train the models without increasing the labor needed
to generate the labels.

ColorAE
The color in any given pixel in mIHC WSIs is combin-
ation of primary colors. ColorAE predicts the proportion
of different colors corresponding to different stains and
referred to as color concentration for each pixel (Fig. 3A).
By the Beer Lambert Law [74], the summation of the
colors of different stains, weighted by their

Fig. 1 IHC markers in the PDAC mIHC panel to study tumor immune interactions. A. Traditional IHC was used to stain six adjacent serial tissue
sections with one biomarker per tissue section. Each biomarker is designated by a specific color. B. Representative images from single-marker IHC
in serial tissue sections showing expression in the same region of interest (except for examples of sparsely distributed B-cells from a different area
in the corresponding histologic section). Each inset shows the cellular expression of the corresponding marker at higher magnification. C.
Multiplex IHC (mIHC) in adjacent serial section. D. Hematoxylin and eosin (H&E) in adjacent serial sections with delineation of the tumor region
by a pathologist. E. mIHC with six IHC markers on a single tissue section with PDAC. F. At the highest magnification, each of the five immune cell
classes are labeled with a white arrowhead outlined in the color corresponding to chromophore color. T-cell subtypes include CD3+ (yellow),
CD4+ (teal), CD8+ (purple); B-cells denoted by CD20+ (red); and myeloid cells identified by CD16+ (silver-black). G. Indirect mIHC using hapten-
conjugated secondary antibodies. Primary antibody binds to target antigen; secondary anti-mouse or anti-rabbit IgG antibody conjugated to
synthetic haptens (HQ or NP) to bind primary antibody; and anti-hapten tertiary antibody conjugated to multiple enzyme molecules (e.g.
horseradish peroxidase (HRP) or alkaline phosphatase (AP)) to bind secondary antibody. Chromogen substrate reacts with enzymes to generate
insoluble unique color signal at the site of the targeted antigen
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concentrations, is equal to the observed color. This lin-
ear relationship is true only after the colors are mapped
into optical densities, i.e., the negative logs of the colors
after normalization. This provides a means to recover
the color concentrations for every pixel when three or
fewer colored stains are used by directly solving the lin-
ear equation system [75]. If there are more than three
stains, the linear equation system becomes underdeter-
mined. Even though one may use more advanced tech-
niques including sparsity regularization and deep neural
networks [76–80], these methods do not capture the rich
amount of information from colored stains between ad-
jacent pixels, especially for our mIHC images with up to
6 stains.
Our proposed method, ColorAE, is an autoencoder

that fully exploits the rich spatial information between
stains of adjacent pixels. We briefly introduce the
method and published the technical details in parallel
(Fig. 3A) [75]. An autoencoder is a deep neural network
that applies multiple layers of convolutions to the input

image so that it is converted to a low resolution, high di-
mensional latent space representation (Fig. 3A). A series
of deconvolutions are then applied to this latent repre-
sentation to recover an output of the same resolution of
the original image (Fig. 3A). In our case, the neural net-
work is trained to predict an 8-channel image of the
same size as the input image. The 8 channels correspond
to the concentration maps of six IHC stains,
hematoxylin (blue), and background (grey) values
(Fig. 3A). More details about the network architecture
can be found in [81].
To train the ColorAE model, we introduce two loss

functions. A reconstruction loss compares the recon-
structed image with the input image pixel-by-pixel by
using a mean squared error (MSE) (Fig. 3A). This loss
alone is insufficient; due to the excessive number of col-
ored stains, multiple different color decompositions can
provide the same reconstruction. In order to find the op-
timal decomposition solution, we leveraged weak-form
supervision from human annotators through a label

Fig. 2 Annotation of patches with seed labels and generation of per-pixel training data. A. Examples of CD3+, CD4+, CD8+ and CD20+ lymphocytes,
CD16+ myeloid cells and B. K17+ PDAC tumor cells with seed labels overlaid (+). C. Number of seed labels for each cell class, across all patches used
for training. D. Input image; input image with seed labels overlaid; superpixel map generated based on the input image with superpixels containing
different seed labels colored accordingly; and the superpixel labels used to train the models (based on seed labels and superpixel map)
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consistency loss function. We created another recon-
structed image by using only the superpixel label colored
stain and the color concentration value at each pixel
(Fig. 3A). By requiring the reconstructed image be as
close to the original image, the superpixel label for each
pixel is designated as the dominant colored stain.

U-net
The second method is a segmentation CNN based on
the U-Net architecture [81]. The U-Net architecture is
specifically characterized by the skip connections be-
tween the encoding and decoding path and has proven
efficient in various medical image segmentation tasks

Fig. 3 Algorithm training. A. ColorAE training. Input image is run through an autoencoder to yield concentration maps of each color (6 distinct
mIHC stain colors: yellow, teal, purple, red, black, brown; blue hematoxylin nuclear counterstain; and background.) Two loss functions are applied
to ensure that the reconstructed image has the highest fidelity to the original image and expert weak annotations. B. U-Net training. Input image
was run through a U-Net. Cross entropy loss function was applied to maximize fidelity to superpixel labels derived from manual annotation of
the input image. C. Ensemble method workflow. Input image is run through the autoencoder and U-Net to generate predictions as shown above
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(Fig. 3B). Similar to ColorAE, this model also uses the
superpixel labels. U-Net is trained by minimizing the
cross-entropy loss. In particular, the U-Net model is
trained with dropout and weighted cross entropy loss in
order to account for the class imbalance in the training
data and learns to segment the different cell classes. It is
different from ColorAE in that it does not try to recon-
struct the input image or generate stain concentration
maps. U-Net is trained to generate features that differen-
tiate the different cell classes according to the provided
labels. In that sense it is less constrained than ColorAE.
The resulting segmentation maps are not as fine detailed
as ColorAE but prove to provide complementary infor-
mation as seen visually in Fig. 4 and through evaluation
of the ensemble methods.

Ensemble methods
The ColorAE:U-Net ensemble methods combine the re-
spective strengths of the ColorAE and U-Net deep learn-
ing methods (Fig. 3C). Color deconvolution with
ColorAE was designed to recover the color composition
of an image by predicting the color composition for each
pixel, whereas U-Net [81] identifies different types of
cells without performing overt color deconvolution. We
describe the four ensemble methods below.
Union combines the predictions from both methods;

overlapping predictions are combined into a single mask
(Fig. 5A,B,D). Intersection only includes pixels identified
by both algorithms (Fig. 5E). Union anchor AE takes the
union of the masks and discards any U-Net predictions

that do not overlap with a ColorAE prediction (only
keeps the connected components that contain colored
pixels from the ColorAE mask) (Fig. 5F). Union anchor
U-Net takes the union of the masks and discards any
ColorAE predictions that do not overlap with a U-Net
prediction (only keeps the connected components that
contain colored pixels from the U-Net mask) (Fig. 5G).

Spatial analysis
We used the results from the best performing algorithm
(union anchor AE) for downstream spatial analysis as proof
of concept that our algorithm could be employed to survey
relationships between cells in the tumor microenvironment.
Nearest neighbor distance (NNDist) is determined by the
Euclidean length of the shortest vector connecting the edge
of one mask or cell (e.g. cytotoxic T-cell) and the edge of
the next closest mask or cell (e.g. tumor, as shown in
Fig. 6A). In this way, NNDist was calculated with Scipy
library to determine the average distance between different
types of cells with one and another. Median NNDist
distances between immune and tumor cells were found by
aggregating them from multiple WSIs and averaging across
all of the 2000 × 2000 pixels tiles within the pathologist
annotated tumor region (Fig. 1C-D). The pathologist-
annotated tumor region was manually annotated based on
visual inspection in an adjacent H&E tissue section.
Proximity analyses utilized NNDist data and counted the
number of immune cells within discrete distance intervals
from the nearest tumor mask.

Fig. 4 ColorAE and U-Net predictions. A. mIHC input image of tumor microenvironment, with a representative cell from each class of immune
cells (magnified below). B-C. ColorAE and U-Net prediction masks based on the original image
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Results
We evaluated the performance of the proposed methods
by using (1) structural similarity and DICE score to
compare results from ColorAE to traditional color de-
convolution used on a set of consecutive serial tissue
sections stained with single colors, (2) F1 score, sensitiv-
ity (recall), and positive predictive value (precision) com-
paring predictions of all algorithms to dilated seed
labels, and (3) DICE score to compare predictions of all
algorithms with hand-drawn annotations (referred to
here as per-pixel labels).

Evaluation of similarity between ColorAE and color
deconvolution approaches on single-stain images
The ColorAE method was explicitly designed to detect dif-
ferent colored stains through classical color decomposition
for the single-stained images since they consisted of only
three colors [80]. We should note that this method was de-
signed for H&E images and it is limited to the analysis of
no more than three colored stains. It cannot be applied to
mIHC images. By visual inspection, the results from Col-
orAE were comparable to those predicted by Vahadane’s

method with the notable exception of CD16. This appears
to be due to the similarity between black stain and the gray
background color and the inability of ColorAE to reliably
distinguish between the two in the context of single-stained
images (Fig. S1). We utilized the mean structural similarity
index (SSim) in 20 randomly selected patches (1440 × 1440
pixels) to quantitatively compare ColorAE and Vahadane’s
method. SSim [73] measures the similarity between two
predictions with respect to luminance, contrast, and struc-
ture over sliding windows. SSim is particularly more robust
than traditional methods to measure image prediction qual-
ity (e.g. peak signal to noise ratio (PSNR) and mean squared
error (MSE)). We also compared masks from the derived
segmentation of colored stains, which are computed from
automatic determination of color concentration, to the
masks from Vahadane’s method in [79] by using the DICE
score (Fig. S1, Table 1). The DICE score is computed as
twice the area of intersection of the two masks divided by
the sum of their individual areas, formally, DSC = 2|A∩B| /
(|A| + |B|), where A and B are the regions from the
predicted mask and the ground truth mask, respectively.

Evaluation of label prediction performance against
dilated seed labels
The next set of experiments evaluated the performances
of ColorAE, U-Net, and the ensemble methods by com-
paring the models’ predictions with the ground truth
seed labels (Fig. 5). We dilated the seed labels into disks
with a diameter of 10.5 um to correspond to the average
size of lymphocytes. The masks for each colored stain
were evaluated one at a time. Using the predictions and
dilated seed labels, we evaluated true positives (TP), false
positives (FP), and false negatives (FN). Specifically, TP
is the number of connected components in the mask
overlapping with the 10 μm disks; FP is the number of
connected components in the mask that do not overlap
with any disks; and FN is the number of disks that do
not overlap with the mask. Since some cell types might
be sparse in some patches, we aggregated values for TP,
FP, and FN from all of the 20 testing patches. These ag-
gregated values were used to compute standard perform-
ance metrics like the F1-score, recall, and precision
(Tables 2, 3 and 4).

Comparison of a U-net trained with dilated seed labels to
U-net trained with superpixel labels
We also compared standard U-Net to the superpixel
training labels. Generation of sufficient per-pixel annota-
tions for training is prohibitively expensive. As an alter-
native to superpixel labels, we dilated the seed labels
into disks with a small, conservative, diameter of 2 um
and use these masks as training data to train a U-Net.
We focused on immune cell markers (CD3, CD4, CD8,
CD20) as lymphocytes are relatively regular in size and

Fig. 5 ColorAE, U-Net, and ensemble predictions. All panels show
predictions from the same cell class from the same input image. Top
panel: A-C. ColorAE and U-Net predictions are shown for a single
cell class are shown individually and overlaid. Bottom panel,
ensemble methods: D. Union includes predictions from both ColorAE
(red) and U-NET (blue): any overlapping predictions (detected by
both algorithms) are merged into a single mask (purple). E.
Intersection includes the pixels detected by both algorithms, while
excluding any areas of the mask detected by only one algorithm. F.
UnionanchorAE includes all masks detected by ColorAE and U-Net
masks that intersect a ColorAE mask (union) while excluding U-Net
masks that do not intersect a ColorAE mask (only detected by
U-Net). G. UnionanchorUNet includes all masks detected by U-Net
and ColorAE masks that intersect a U-Net mask (union) while
excluding ColorAE masks that do not intersect a U-Net mask (only
detected by ColorAE)
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shape and we did not include CD16 and K17 in this
evaluation since the myeloid and tumor cells are irregu-
lar in size and shape. The results are reported in sup-
plemental material (Fig. S2, Table S3). We show that
U-Net trained with superpixel labels significantly out-
performs the baseline U-Net trained on dilated disks.

Evaluation of label predictions against hand-drawn per-
pixel annotations
In the final set of experiments, we generated fine-
grained hand-drawn per-pixel segmentation annotations
(Fig. S3I-J) in a small test set of 19 patches (470 × 470
pixels) and evaluated performance using the DICE score.

Fig. 6 Example of analyses describing immune-tumor spatial relationships in mIHC-stained PDAC tissue. A. Representative images of
segmentation boundaries of detected tumor nests and immune cells labelled with IHC biomarkers: K17 (blue segmentation boundary), CD3
(yellow boundary), CD4 (teal boundary), CD8 (purple boundary), CD20 (magenta boundary), and CD16 (black boundary). Red lines indicate nearest
neighbor distance vector connecting each immune cell to the nearest tumor nest. B. Average number of masks per case for each of the different
cell classes in three WSIs. C. Median nearest neighbor distances for each immune cell class across cases. D. Proximity analysis showing the
number of detected masks for each cell class at 10 um distance intervals from the tumor boundary. *Note: Nearest Neighbor analyses are
asymmetric and Nearest Neighbor analyses from each tumor nest to nearest immune cell are shown in supplemental Fig. 4
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The DICE score was used to compare the prediction
masks (Fig. S3A-H) with the ground truth mask for each
colored stain (Table 5).

Analysis of the PDAC tumor microenvironment
Union anchor U-Net was used to generate predictions
for tumor and immune cells throughout the tumor re-
gion of three mIHC WSIs (Fig. 6A). We calculated both
the number of masks per cell class and area of each
mask. Our analyses show that the immune microenvir-
onment is dominated by CD16+ myeloid cells (Fig. 6B,
S4A). Nearest neighbor distances were calculated be-
tween each immune cell and the nearest tumor mask,
minimizing vector length (Fig. 6A). The average myeloid
cell was also closer to tumor cells than any lymphoid cell
class was. We observed that on average, CD3 + CD4-
CD8- T-cells, CD4+ helper T-cells, and CD8+ cytotoxic
T-cells were about 11 um further from tumor cells than
myeloid cells were, whereas B-cells were 13 um further
away than T-cells were (Fig. 6C). The median nearest
neighbor distance from tumor to immune cells are 2.9
um for CD16+ myeloid, 23.2 um for CD3 + CD4-CD8-
T-cells, 44.5 um for CD4+ helper T-cells, 24.0 for CD8+
cytotoxic T-cells, and 56.9 μm for CD20+ B-cells, re-
spectively (Fig. S4). (Note: Nearest Neighbor analyses are
asymmetric and there is a difference between calculating
the distances from “immune cells to tumor” versus
“tumor to immune cells.” The proximity analysis shows
the number of masks (cells of each immune cell class) at
increasing distance intervals from tumor cells. Looking
at 10 μm intervals starting at the tumor mask boundary,
the number of myeloid masks drops significantly with
increasing distance from the tumor, in contrast to lym-
phocytes (Fig. 6D). When looking at 1 μm intervals from
0 to 5 μm from the tumor mask boundary, we see that
about 30,000 nearest neighbor myeloid cells were within

1 μm (touching) tumor cells, which dropped to
approximately 5000 cells and remained steady for the
next 4 intervals (Fig. S4). In comparison, 4400 CD3 +
CD4-CD8- T-cells, 165 CD4+ helper T-cells, and 1600
CD8+ cytotoxic T-cells were touching tumor (Fig. S4).

Discussion
The methods described for image analysis of mIHC-
stained slides were designed to be robust, reliable, and
easily customizable for future clinical research applica-
tions. We developed our suite of analytic methods in an
effort to make a clear and significant advancement in
the ability to survey the immune landscape of PDAC
using deep learning to help unravel the complexity of
tumor immune interactions in the TME. Our goals were
to develop a scalable suite of methods to analyze PDAC
mIHC WSIs in a uniform manner, where we can (1) reli-
ably detect, classify, and enumerate different cell types
labeled with different colored biomarkers, (2) calculate
the distances between the boundaries of tumor and im-
mune cells in mIHC WSIs, and (3) perform spatial ana-
lyses to quantitatively describe a large number of diverse
tumor immune interactions in multicolored mIHC WSIs
without needing expensive multispectral imaging
instrumentation.
Our models leverage CNNs trained with this ground

truth data to perform pattern recognition functions with
statistical multivariate algorithms to predict color and
classify all of the different types of labeled cells in the

Table 1 Evaluation of ColorAE

Evaluation metrics CD3 CD4 CD8 CD20 CD16 K17

SSim (color concentration. 0.9 0.87 0.9 0.87 0.54 0.94

DICE (segmentation masks. 0.87 0.81 0.86 0.34 0.59 0.73

Table 3 Sensitivity (Recall) evaluating predictions from UNet,
ColorAE, and ensemble methods against dilated eed labels

Model CD3 CD4 CD8 CD20 CD16 K17

ColorAE 0.974 0.798 0.868 0.212 0.914 0.871

UNet 0.931 0.675 0.881 0.232 0.991 0.756

Intersection 0.919 0.627 0.865 0.163 0.909 0.727

Union 0.981 0.848 0.887 0.275 0.993 0.909

Union anchor AE 0.974 0.795 0.872 0.212 0.936 0.887

Union anchor UNet 0.933 0.686 0.884 0.229 0.992 0.846

Table 2 F1 Scores evaluating predictions from UNet, ColorAE,
and ensemble methods against dilated seed labels

Model CD3 CD4 CD8 CD20 CD16 K17

ColorAE 0.652 0.728 0.72 0.347 0.796 0.637

UNet 0.628 0.661 0.628 0.353 0.687 0.739

Intersection 0.698 0.693 0.722 0.279 0.79 0.749

Union 0.593 0.705 0.628 0.403 0.691 0.638

Union anchor AE 0.662 0.732 0.731 0.346 0.836 0.657

Union anchor UNet 0.639 0.674 0.633 0.35 0.7 0.806

Table 4 Positive Predictive Value (Precision) evaluating predictions
from UNet, ColorAE, and ensemble methods against dilated seed
labels

Model CD3 CD4 CD8 CD20 CD16 K17

ColorAE 0.49 0.67 0.615 0.945 0.706 0.502

UNet 0.473 0.647 0.488 0.736 0.526 0.722

Intersection 0.562 0.773 0.619 0.957 0.699 0.771

Union 0.425 0.603 0.486 0.757 0.53 0.491

Union anchor AE 0.501 0.678 0.629 0.944 0.756 0.521

Union anchor UNet 0.486 0.663 0.493 0.738 0.541 0.77
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PDAC mIHC WSIs. The methods described leverage
relatively inexpensive seed labels (dots) that can be used
to generate training sets. Importantly, the ability to use
this form of annotation significantly decreases the effort
for pathologists to generate training data since placing
seed labels at the center of each cell is kuch quicker than
manually segmenting all of the different types of cells by
hand. Significantly reduced time, labor, and cost leads to
the ability to quickly customize analytic pipelines and
improves the scalability of our methods.
After training, our models, which are sophisticated

statistical algorithms, iteratively improve by learning
additional features in successive cycles. These deep
learning models perform non-linear regression in large
data sets to make predictions that can be used to quanti-
tatively analyze the features of the uniquely colored cell
types in mIHC WSIs. However, evaluating these algo-
rithms in terms of their ability to correctly identify and
classify six distinct cell populations with variable spatial
distributions simultaneously in mIHC WSIs requires
many considerations.
The variability of shapes and sizes of cells along with

the variable expression of each of the biomarkers in indi-
vidual cells within the different labeled cell population
leads to formidable challenges for any pathologist and
algorithm. Furthermore, subtle differences in staining
patterns coupled with overlapping color spectra of the
chromogens introduces difficulty in color decomposition
from the very beginning. For example, intense yellow
and light black can both appear brown. This is further
complicated in cases where a cell class may be labeled
with more than one biomarker, e.g., localization of yel-
low and purple within the same cell can appear red.
Thus, we need digital pathology and image analysis tools
that can accurately distinguish different cell classes based
on the variability of color that depends on how each types
of cell is labeled with a particular biomarker in WSIs of
mIHC tissue sections. Despite the technical challenges,
the proposed ColorAE method generates color decompos-
ition results that are generally consistent with Vahadane’s
method (as shown in supplemental Fig. 1).

However, ColorAE was designed to analyze mIHC
WSIs images with more than three colors. ColorAE per-
formed generally better than U-Net at correctly detect-
ing and classifying multicolored immune cells since
ColorAE was able to detect lighter colored immune cells
that U-Net failed to detect. We also observed that Col-
orAE captured fine geometric details that U-Net could
not, which is particularly evident when comparing CD8
purple masks. There were also very few B-cells in the tis-
sue sections, which resulted in sample bias, where CD20
red B-cells were often misclassified as CD8 purple T-
cells and reflected by the low F1-score. CD16 black
myeloid cells and K17 brown PDAC cells were also
sometimes difficult to distinguish. Both ColorAE and U-
Net sometimes misclassified CD16 black as K17 brown
and vice versa. Importantly, this seemed to be related in
part to the choice of chromogen, where the combination
of the black chromogen coupled with the diffuse staining
pattern in subsets of myeloid cells appeared brown to
the human eye, which can only be distinguished from
K17 brown PDAC cells with morphology.
U-Net outperformed ColorAE to detect and classify

K17 brown PDAC cells that were counterstained with
hematoxylin. Both U-Net and ColorAE can fail to in-
clude cell nuclei in the mask since the algorithms gener-
ally classify hematoxylin as part of the background. The
nuclei of PDAC cells are large and euchromatic with
cytoplasmic K17 staining, so it is likely that the algo-
rithms cannot distinguish the nuclei of tumor cells from
the background in this use case. Overall, U-Net generally
performs better than ColorAE to identify tumor cells. It
is important to note that while the tumor cells (and the
total tumor mask area) may be underestimated from the
exclusion of some nuclei, the boundaries of tumor nests
were preserved. Thus, there was still reliable data on
tumor nest locations that could be reliably used for
downstream spatial analyses.
Furthermore, we show that the methods are comple-

mentary, where U-Net had worse recall than ColorAE to
detect tumor, but demonstrated significantly better pre-
cision. We also observed that ColorAE predicted very
detailed masks but was too sensitive in terms of picking
up non-specific and background staining. This can be
addressed with post-processing by filtering out predic-
tions that contain objects with areas that are below the
threshold of being able to be considered as cells. In com-
parison, the U-Net model produced reasonably conser-
vative predictions, predicting areas of the cell with high
intensity staining. However, cells with irregular exten-
sions and low staining intensity were sometimes not de-
tected (Fig. 4). Overall, U-Net performance was limited
by the quantity of superpixel labels for training.
In order to address these issues and limitations, we de-

veloped the suite of four ColorAE:U-Net ensemble

Table 5 DICE Scores evaluating predictions from UNet, ColorAE,
and ensemble methods against per-pixel (hand-drawn) labels

Model CD3 CD4 CD8 CD20 CD16 K17

ColorAE 0.649 0.543 0.764 0.589 0.539 0.649

UNet 0.649 0.463 0.676 0.554 0.581 0.649

Intersection 0.457 0.457 0.769 0.539 0.530 0.457

Union 0.553 0.540 0.675 0.599 0.591 0.553

Union anchor AE 0.611 0.548 0.685 0.588 0.593 0.611

Union anchor UNet 0.526 0.509 0.676 0.558 0.592 0.526
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models to detect intersections, where a given pixel is pre-
dicted to contain a specific color if the pixel is within
both of the ColorAE and U-Net masks, and unions,
where a pixel is predicted to contain a specific color if
the pixel is within either the ColorAE or U-Net masks.
We recognize that if each cell class is considered inde-
pendently, the same pixel may be classified as one class
by ColorAE and a different class by U-Net (Fig. 4), so we
consider both labels in these scenarios. While sometimes
this may be a false positive, in other cases this may be
reflective of expression of multiple markers on a single
cell (e.g. CD3 + CD4+ cells) that results in compound
colors. By treating both of the prediction labels assigned
to a given pixel as valid, we can capture this phenomenon
to some extent.
Even though the qualitative results from all ColorAE,

U-Net, and the ensemble methods are generally accept-
able, the Union ensemble demonstrated the best sensi-
tivity (recall), as shown in Table 3. This is to be
expected as the Union ensemble considers pixels positive
for each color if the colored label is predicted by at least
one model. In terms of precision, the Intersection en-
semble demonstrated the best overall positive predictive
value (precision) as shown in Table 4, whereas the
Union anchor AE demonstrated the best overall F1 score
is considered as shown in Table 2, even though the F1
scores are not directly applicable as a performance
metric due to intrinsic variability in the intensity and
staining patterns of biomarkers in cells. Although we re-
port considerable progress in developing methods that
measure six or more different colored biomarkers in
mIHC WSIs, we have to note that these models were
trained with a limited dataset and were trained to
achieve reasonably good overall performance.
Our results indicate that (1) there is no single univer-

sal method that can be the best across all of the per-
formance metrics to target every one of the colored IHC
markers and (2) multiple complementary methods can
be utilized in analytic pipelines to improve the overall
reliability of using computational analysis for mIHC
WSIs. In our current use case, we used these novel
methods to evaluate the tumor microenvironment
PDAC mIHC WSIs. While our focus was to create and
evaluate methods for the accurate automated detection
of the immune cells in mIHC WSIs, we wanted to dem-
onstrate the types of downstream analyses that can be
done to investigate spatial relationships between cell
subsets. The nearest neighbor and proximity analyses
are based on the spatial positions of all masks across the
entirety of the tumor region from a representative PDAC
mIHC WSI. For the sake of providing a concrete ex-
ample, we demonstrate proof that our methods can be
used to comprehensively analyze collections of mIHC
WSIs.

We emphasize that these methods are still experimen-
tal, being refined, and require further comprehensive
testing and validation in additional mIHC studies. For
example, we observed that segmentation of the boundar-
ies of large PDAC tumor nuclei were occasionally sub-
optimal and sometimes not detected based on tumor
morphology, overlapping nuclei, and obscured nuclear
boundaries from intense staining. Even though this limi-
tation can potentially pose a problem with respect to ac-
curately counting every tumor cell, it may not be a
significant issue in terms of downstream analyses, in-
cluding nearest neighbor spatial analyses, since the over-
all edges of the tumor nests are accurate enough to
determine the center point and perimeters of the masks.
Nonetheless, the area of K17 brown staining or the
number of pixels belonging to K17 masks can still be
calculated in order to provide a reasonable estimate of
tumor area.
During the microscopic examination of multicolored

PDAC mIHC WSIs, what one commonly observes is a
fascinating distribution of classical DAB brown-stained
K17+ PDAC cells in close proximity to an abundance of
black-silver colored CD16+ myeloid cells (e.g. macro-
phages) with variably interspersed purple colored CD3 +
CD8+ T-cells, teal colored CD3 + CD4+ T-cells, and yel-
low CD3 + CD4-CD8- T-cells. We also have observed
that red colored CD20+ B-cells are usually rare in the
immune infiltrate associated with PDAC tumor cells, but
present in lymphoid aggregates much further away. After
histologic review, we utilized our suite of methods to
perform spatial analyses in an effort to evaluate the feasi-
bility of quantitatively describing the immune landscape
in our PDAC mIHC study. The spatial analyses show
how the TME of these PDACs is rich in myeloid cells
with a relative dearth of T-cells and B-cells. We also
gained insight into patterns of distribution of the three
different populations of T-cells. Interestingly, we ob-
served that a significant proportion of the yellow CD3 +
CD4-CD8- T-cells may actually represent NK/T-cells,
gamma-delta T-cells, or immature T-cells, which can be
used to guide other studies.
We are eager to explore whether increasing the size

of the cohort will allow us to determine if these pat-
terns are conserved across different cases of PDAC.
Furthermore, we are examining the relationship of the
spatial patterns of distributions of their different im-
mune cell types with survival data to identify poten-
tial prognostic biomarkers. We are also engaged in
ongoing studies that are applying these deep learning
analytic methods across a much larger cohort of
PDAC mIHC WSIs. Future work will also evaluate
the relationships between different types of immune
cells beyond tumor immune interactions in an effort
to better understand cancer immunology.
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Conclusions
We developed a suite of deep learning tools that can
be used to create customizable analytic pipelines to
analyze mIHC WSIs with good overall performance
in a scalable manner. This suite of tools can be reli-
ably implemented to perform cell detection and clas-
sification to explore near limitless combinations of
multiple IHC biomarkers in one tissue section. To
provide a proof of concept, we presented a novel
technique to utilize these computational deep learn-
ing analyses to enumerate and characterize the
spatial distributions of different types of cells in the
TME of selected PDAC mIHC WSIs. Since advances
in immunotherapy will likely coincide with increased
clinical interest in the functional immune status of
TME, we believe that these novel deep learning
methods complement the adoption of digital path-
ology and the potential to deploy mIHC for diagnos-
tic testing of cancer tissue specimens. Thus, we hope
that these methods facilitate more widespread adop-
tion of mIHC to support precision medicine and ac-
celerate the discovery of biomarkers that can help
predict prognosis and guide treatment.
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