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Clinical validation of kinematic assessments 
of post‑stroke upper limb movements 
with a multi‑joint arm exoskeleton
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Abstract 

Background:  The clinical evaluation of the upper limb of severely impaired stroke patient is challenging. Sensor-
based assessments may allow for an objective evaluation of this patient population. This study investigated the valid-
ity of a device-assisted approach in comparison to the clinical outcome that it is supposed to reflect.

Methods:  In nineteen severely impaired chronic stroke patients, we applied a gravity-compensating, multi-joint arm 
exoskeleton (Armeo Spring) and compared this sensor-based assessment with the clinical outcome measure Upper 
Extremity Fugl-Meyer Assessment (UE-FMA) scale. Specifically, we assessed separately and subsequently the range of 
motion in joint space for four single joints (i.e., wrist, elbow and shoulder flexion/extension (FE), and shoulder internal/
external rotation (IER)), and the closing and opening of the hand with a pressure sensor placed in the handle.

Results:  Within the kinematic parameters, a strong correlation was observed between wrist and elbow FE (r > 0.7, 
p < 0.003; Bonferroni corrected). The UE-FMA was significantly predicted by a multiple regression model (F (5, 
13) = 12.22, p < 0.0005, adj. R2 = 0.83). Both shoulder IER and grip pressure added significantly (p < 0.05) to the predic-
tion with the standardized coefficients β of 0.55 and 0.38, respectively.

Conclusions:  By applying an exoskeleton-based self-contained evaluation of single-joint movements, a clinically 
valid assessment of the upper limb range of motion in severely impaired stroke patients is feasible. Shoulder IER 
contributed most relevantly to the prediction of the clinical status. These findings need to be confirmed in a large, 
independent patient cohort.

Keywords:  Human–machine interface, Exoskeleton, Sensorimotor interaction, Virtual reality, Hand-arm model, 
Movement analysis, Rehabilitation robotics, Neurorehabilitation, Stroke
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Background
Currently, the majority of stroke patients will not regain 
full function of the affected upper limb [1, 2]. This 
impairment is a decisive factor for their diminished qual-
ity of life [3]. Early and high-dose movement therapies 

are relevant for clinically meaningful improvements [4]. 
Furthermore, the assessment of upper limb movements 
is crucial in monitoring and understanding sensorimo-
tor recovery [5]. An increase in the assessment frequency 
by means of kinematic parameters could, therefore, opti-
mize clinical assessment procedures and enhance the 
effectiveness of rehabilitation treatments [6]. Particularly 
in severely impaired stroke patients, objective assess-
ments are necessary to identify even small improvements 
in the course of a therapeutic intervention.

Such movement data may be acquired by various 
mechanical or optical systems, e.g., CyberGlove [7], 
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orthotic exoskeletons [8–14], gaming systems [15–17], or 
in combination with robotic systems for haptic feedback 
such as Rutgers Master II-ND haptic glove, MIT-Manus 
[18] or ARMIN [19]. Devices such as the Armeo Spring 
[8–14], Armeo Power [20], ARMIN [19], Pneu-Wrex [21], 
ULEXO7 [22], ANYexo [23] and Harmony [24] have the 
advantage of providing at least partial kinematic registra-
tion of the upper limb movement for different joints. By 
contrast, systems such as the MIT-Manus [18], ReaPLAN 
[25, 26], ReoGo [27], Planar robot [27], and PUPArm [28] 
allow for endpoint-based alignment. With these latter 
devices, the movement of the shoulder and upper arm is 
estimated as a surrogate parameter, and not directly via 
sensors. However, such indirect measurements may miss 
small improvements in severely impaired patients.

There is a large variety of kinematic parameters that 
have been applied for upper limb evaluations such 
as movement accuracy, efficacy, planning, precision, 
smoothness, speed, spatial and temporal posture; some 
of them have also been correlated to clinical outcome 
measures following stroke [6, 29, 30], while the Upper-
Extremity Fugl–Meyer Assessment (UE-FMA) scale [31] 
was most frequently being applied for the estimation of 
the clinical impairment level [32]. A number of kinematic 
parameters showed a significant association with the 
clinical evaluation (correlation coefficient of more than 
0.7); however, the majority of the kinematic parameters 
showed either weak (less than 0.3) or moderate (0.3–0.7) 
associations [6]. This limited association may be related 
to the fact that kinematic measurements of the proximal 
component of the upper limb are often missing [3].

Most of the applied kinematic parameters resulted 
from rather complex training exercises and were not 
acquired for each upper limb segment separately. Spe-
cifically, either 2D pointing, 2D shape drawing, 3D point-
ing or 3D reach-to-grasp tasks were performed first, and 
then a posthoc segmental evaluation was conducted, e.g., 
of angle data for shoulder movement [33], range of arm 
elevation [15], elbow flexion/extension (FE) [33], and 
wrist FE [15–17]. These previous approaches are, how-
ever, at odds with the most recent systematic review on 
kinematic assessments of upper limb movements after 
stroke [29]. It suggested that the measures should be 
acquired with the help of a self-contained task and not 
during the exercises that the patient is doing for reha-
bilitation training, since the latter would confound the 
results for upper limb evaluation by including exercise-
specific learning effects [34].

In this context, the first study that quantified the active 
range of motion for each segment separately found over-
all promising correlations to motor function [17], but 
did not use the clinical gold standard measure UE-FMA 
scale for this purpose. For the evaluation of severely 

impaired stroke patients, who are often not able to move 
the upper limb against gravity, the assessment device 
would, furthermore, need to balance gravity and capture 
even small movements of single joints. Therefore, multi-
joint exoskeletons such as the passive Armeo Spring [8, 9, 
11, 12] or the active (i.e., robotic) Armeo Power [20] are 
suitable for this purpose. These exoskeletons show high 
interaction forces between the measurement system and 
patient due to friction, inertia and arm weight support. 
More recent devices reduce friction by actuator choice, 
and lower inertia by lightweight design and the use of 
interaction force sensors [23, 24, 35, 36]. However, exo-
skeleton-based assessment tools necessitate a systematic 
evaluation to estimate their clinical validity. Specifically, 
there is currently no study that assessed the upper limb 
of severely impaired stroke patients with a multi-joint 
exoskeleton in comparison to the UE-FMA scale. The 
present study intended to close this gap.

Methods
We recruited 19 stroke patients (8 females, mean age: 
56 ± 11 [from 34 to 71] years) in the chronic phase after 
stroke (78 ± 55 [from 8 to 244] months) who presented 
with severe and persistent hemiparesis (13 right-sided, 6 
left-sided; 11 ischemic, 8 hemorrhagic) and who provided 
written informed consent (for demographic informa-
tion see Table 1). Patient inclusion criteria were: age ≥ 18 
years, time since stroke: ≥6 months, UE-FMA: ≤30 out 
of 66 points. Participants were excluded from the study 
if they had uncontrolled epilepsy, drug abuse, psychiat-
ric diseases, a bilateral motor deficit, a severe and uncon-
trolled clinical disease, cognitive impairment, pregnancy, 
metal implants or a cardiac pacemaker.

The UE-FMA captures the motor function and con-
tains the subscores A (upper extremity), B (wrist), C 
(hand) and D (coordination/speed), resulting in a total of 
max. 66 points. This clinical evaluation was performed by 
two examiners at the same time to minimize assessment 
variability. Clinical and kinematic assessments were done 
subsequently. The average UE-FMA score of the whole 
patient group was 16.1 ± 5.2 points; the individual patient 
scores had a range from 7 to 29 points; thus, the study 
included only severely impaired patients.  This study was 
approved by the ethical review committee of the local 
medical faculty.

Exoskeleton and visualization
The basic methodology of our exoskeleton-based train-
ing and assessment setup has already been described in 
detail in previous studies and is cited here accordingly 
[8, 9, 37]. We used a commercially available (Armeo 
Spring, Hocoma, Volketswil, Switzerland) rehabilita-
tion exoskeleton with separate sensors for shoulder 
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(arm rotation, arm elevation), elbow (FE) and wrist 
joints (FE, pronation/supination) to provide gravity-
balancing support for the paretic arm and simultaneous 
registration of movement kinematics and grip force.

This device enabled us to make individual adjustments 
of gravity compensation, thereby supporting patients 
with severe impairment in performing task-oriented 
practice within a motivating virtual environment. To 
align posture and to minimize the exoskeleton-patient 
interaction, the same position (neutral zero) with a dis-
tance of 90 degrees between forearm and upper arm, 
with the shoulder being adducted to the trunk and with 
the thumb pointing upwards, was applied as the start-
ing position for all assessments. In accordance with the 
manufacturer’s instructions, the length of the different 
components of the exoskeleton with regard to the wrist, 
forearm and upper arm was adjusted to suit the indi-
vidual anatomical proportions of each patient. Gravity 
compensation was set according to the manufacturer’s 
instruction, thereby, allowing for a complete gravity 
compensation of the upper limb in the neutral zero 
position. In this context, a better understanding of the 
weight compensation provided by this device may help 
to fully utilize it in clinical and research settings [10]. A 
file mapping communication protocol was used to read 
the real-time movement data, as originally represented 
in the angles of all arm joints, and the grip force meas-
ured by the device from a shared memory block.

Using the real-time sensor data of the exoskeleton to 
display a three-dimensional multi-joint visualization of 
the user’s arm in virtual reality (VR), we extended these 
features in-house to provide both visual and auditory 
instructions and feedback for the patient. Since our exo-
skeleton-based rehabilitation interventions were already 
using this VR set-up, we applied the same technology 
also for the assessment protocol to avoid a methodologi-
cal disruption of the integrated training and assessment 
sessions. The aim of this VR approach was, furthermore, 
to standardize the evaluation independent of the inter-
action of an examiner to reduce assessment variability. 
The system’s features allow for further optimization (e.g., 
multimodal feedback, personalized content, gamifica-
tion) in the future. The real-time sensor data enabled us 
to display a natural virtual representation of the patient’s 
arm on a computer screen. This provides the patient with 
additional visual feedback on how the movement was 
performed. The virtual arm engine was programmed in 
a Microsoft XNA framework. The arm model utilized by 
the engine was constructed as a meshed bone-skin com-
bination with 56 bones which were modelled as inter-
connected bodies in the simulation (3Ds Max 2010TM, 
Autodesk). This model included 14 finger bones, 11 hand 
route bones and one bone for each shoulder, forearm and 
upper arm for each side of the body [9]. The real-time 
sensor data modulated the 3D model displayed on a 2D 
screen. Specifically, the joint angles and grip forces of the 

Table 1  Demographic information for all participants

Patient no. Age Type of stroke Gender Side of stroke Month post-stroke UE-FMA

1 56 Hemorrhagic Male Right 56 29

2 52 Ischemic Male Right 156 22

3 68 Hemorrhagic Male Right 34 16

4 55 Hemorrhagic Male Right 88 10

5 67 Hemorrhagic Male Right 75 7

6 69 Ischemic Female Right 130 16

7 69 Ischemic Male Right 81 14

8 34 Hemorrhagic Male Right 45 13

9 63 Ischemic Female Right 58 16

10 59 Ischemic Female Left 20 19

11 63 Ischemic Female Left 133 13

12 51 Ischemic Female Right 21 22

13 56 Ischemic Female Right 87 22

14 49 Hemorrhagic Male Left 69 21

15 71 Hemorrhagic Male Right 244 14

16 41 Hemorrhagic Male Right 62 9

17 48 Ischemic Male Left 8 13

18 36 Ischemic Female Left 32 16

19 49 Ischemic Female Left 81 14



Page 4 of 11Grimm et al. J NeuroEngineering Rehabil           (2021) 18:92 

device measured with the exoskeleton were used to mod-
ify the pose of the bones (i.e., position of the bone objects 
in CAD space) of the meshed model in accordance with 
the movements of the user, thereby providing online 
closed-loop feedback. The joint angles of the exoskeleton 
were directly represented in virtual reality, while the grip 
forces were amplified to feedback natural hand function.

Movement assessment design
The positioning of the patient in the exoskeleton 
(~ 5  min), including the complete movement assess-
ment (~ 6 min) and the clinical evaluation with the UE-
FMA score (~ 30 min) were performed on the same day. 
Prior to the examination, the patients were instructed 
by the examiner on how to perform the movements for 
the assessment. To facilitate an efficient evaluation of the 
motor abilities of severely affected stroke patients, the 
kinematic registration of the active range of motion of 
the impaired arm was conducted in one self-contained 
session, i.e., the task was different and separated from the 
tasks in the training sessions.

A software design instructed the patients by arrows, 
text that indicated the respective instructions (e.g., flex/
extend the wrist) and tone messages to repeat single-
joint movements while providing feedback related to 
the performed movements and the range of motion 
(Fig. 1). The simple instructions and single-joint move-
ments ensured that the self-contained movements 
could be performed by patients of all cognitive levels. 
Since these tasks were designed to measure the maxi-
mum range of motion of single-joints in joint space, 

reference points did not require tracking and so no 
overshoots occurred, which otherwise may be observed 
during 3D motion tracking when 3D rendering is dis-
played on a 2D screen [38]. In this study, we designed 
simple, self-contained tasks that minimize patient-exo-
skeleton interactions and do not rely on learning [29], 
thus preventing potential confounds that are related to 
human-device interactions but not to motor recovery 
[34].

In order to develop a fast and practical assessment for 
severely impaired stroke patients that could be applied 
in the context of daily rehabilitation sessions, the over-
all number of evaluated parameters was restricted. 
The single-joint movements of this task were, moreo-
ver, carefully selected to be independent of the exoskel-
eton environment, i.e., they could also be translated to 
the environment outside the exoskeleton if the patients’ 
training progress eventually enabled them to perform 
them without gravity-compensation. The following joints 
were measured subsequently and selectively: grip pres-
sure (difference between closing and opening the hand), 
wrist FE, elbow FE, shoulder FE and shoulder internal/
external rotation (IER); shoulder ab- and adduction was 
limited due to the physical constraints of the exoskeleton 
and was not evaluated. Also, pronation/supination was 
not assessed in this study. During each joint movement, 
the other joints were blocked to measure improvements 
without compensatory movements. Each task was per-
formed 5 times, allowing the movement to be performed 
for 5 s in each direction followed by a 5 s rest period.All 
joint movement data for the wrist, elbow, upper arm, and 

Grip pressure

Wrist FE

Elbow FE

Shoulder FE

Shoulder IER

Fig. 1  Subject with exoskeleton (in the center); visualization of the instructed movements of the five assessment tasks. The required direction of 
movement is indicated by a text (e.g., flex/exted the wrist) and by arrows. The actual movement of the patient is displayed as real-time feedback 
with a 2D projection of a 3D avatar
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shoulder were recorded during the exercises in °. The grip 
pressure was estimated in kilopascal (kPa).

Statistics and data evaluation
Statistical analysis was performed on a Matlab 2010b 
Engine and SPSS (IBM SPSS Statistics for Windows, Ver-
sion 22.0. Armonk, NY: IBM Corp.). The extent of the 
kinematic parameters was calculated as a mean over the 
trials.

A multiple regression was performed to predict the 
UE-FMA score from grip pressure, wrist FE, elbow FE, 
shoulder FE, and shoulder IER. The linearity was assessed 
by partial regression plots and a plot of studentized resid-
uals against the predicted values. The independence of 
residuals was assessed by a Durbin–Watson statistic. The 
assumption of normality was assessed by a Q–Q Plot. 
The significance level was set at p = 0.05 for all tests.

A Pearson’s product–moment correlation was esti-
mated to assess the relationship within and between the 
subscores A–D of the UE-FMA and the kinematic param-
eters. The analyses showed a linear relationship with the 

variables being normally distributed as assessed by the 
Shapiro–Wilk test (p > 0.05); there were no outliers.

Results
Patients became easily accustomed to the assessment 
setup without adverse effects. The system and the train-
ing-software ran smoothly throughout the evaluation. 
Due to the gravity compensation of the exoskeleton, 
all severely impaired patients were able to perform the 
movement assessment task.

Kinematic parameters
On average, 6  min and 15  s were required to register 
the patients’ movement abilities. One operator (who 
positioned the patients in the exoskeleton) was pre-
sent during the assessment but did not need to inter-
vene in the evaluation procedure since the instructions, 
feedback and exercises ran smoothly. The ensuing kin-
ematic performance parameters are presented in Fig. 2, 
and their correlations with the UE-FMA score in Fig. 3. 
Exemplary real-time kinematic data of three patients is 
illustrated in Fig.  4.Within the kinematic parameters, 

Fig. 2  Boxplots of kinematic assessment results of all patients (FE: flexion/extension, IER: internal/external rotation). Displayed is the mean relative 
range of motion in joint space for wrist FE, elbow FE, shoulder FE and shoulder IER, and grip pressure, for all patients. According to literature, the 
physiological grip strength [39] and active range of motion [40] of healthy subjects are as follows: Medial grip strength: 53 kPa, wrist FE: 144°, elbow 
FE: 146°, shoulder FE: 158°, shoulder IRE: 160°. The device maxima are: grip: 93 kPa, wrist FE: 180°, elbow FE: 90°, shoulder FE: 90°, shoulder IER: 180°+
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there was a strong correlation between wrist and elbow 
FEs (r > 0.7, p < 0.003; Bonferroni corrected, Table  2). 
Between the kinematic and clinical parameters, 
there was a moderate to high correlation between all 

instrumental measures and the UE-FMA subscores A 
(upper extremity) and D (coordination/speed)

A multiple regression analysis was performed to pre-
dict the UE-FMA score from grip pressure, wrist FE, 

Fig. 3  Scatter plots with Pearson correlation between clinical (UE-FMA total score) and kinematic parameters (grip force, wrist FE, elbow FE, 
shoulder FE and IER). The regression line with r and p-value is displayed with the 95 % confidence intervals
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elbow FE, shoulder FE, and shoulder IER. Linearity was 
assessed by partial regression plots and a plot of stu-
dentized residuals against the predicted values. Inde-
pendence of residuals was assessed by a Durbin-Watson 
statistic of 1.97. Homoscedasticity was assessed by 
visual inspection of a plot of studentized residuals ver-
sus unstandardized predicted values. Since none of the 
tolerance values exceeded 0.1, there was no evidence 
of multicollinearity. No studentized deleted residuals 
were found to be greater than ± 3 standard deviations, 
no leverage values were greater than 0.2, and the values 
for Cook’s distance were above 1. As assessed by a Q-Q 
Plot, the assumption of normality was confirmed. A 
multiple regression model predicted the UE-FMA sig-
nificantly (F (5, 13) = 12.22, p < 0.0005, adj. R² = 0.83). 
Shoulder IER and grip pressure, with standardized 
coefficients β of 0.55 and 0.38, respectively, both added 
significantly (p < 0.05) to the prediction (Table 3). In the 
post hoc power analysis [41], the predicted multiple 

regression model (p < 0.001, df = 5 and n = 19) had a 
statistical power between 0.83 and 0.89.

Discussion
In this study, we used an exoskeleton-based assessment 
protocol to investigate the convergent validity of the 
acquired sensor-based data in comparison with the UE-
FMA clinical outcome measure in severely impaired 
stroke patients. The UE-FMA was significantly predicted 
by the separately measured single-joint angles (with 
shoulder IER contributing most) and grip pressure.

This approach differed from most previous work in this 
field by applying a self-contained evaluation task that 
was separated from the rehabilitation exercises of the 
same device to avoid exercise-specific learning effects 
[34]. Thereby, the implemented evaluation task will pro-
vide a modular extension of the custom-made soft- and 
hardware applications and functionalities that have been 

Fig. 4  Kinematic data. Real-time data of individual movements for the angle data and pressure values are displayed for three exemplary patients 
(1, 5 and 15) for the five tasks. Marked are the movement conditions 1 (blue) and 2 (green) and the resting condition (white). The plots indicate 
amplitude differences between the different patients for the movement conditions (1/2): grip/release, wrist FE, elbow FE, shoulder FE, shoulder 
outside/inside rotation
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already developed for the same exoskeleton framework: 
e.g., online feedback of extent of movement and quality 
for the assisted ADL-like exercises [9, 37], closed-loop 
task difficulty adaptation of these virtual reach-to-grasp 
tasks [8], and hybrid exoskeletons including adaptive 
neuromuscular stimulation [11], additional brain control 
[12] and robotic support with active actuation [20].

We assessed the single-joint angles in a standardized 
fashion that is often applied in the clinical context of 
neurological and orthopedic evaluations (i.e., beginning 
from the normal zero position with 90-degree distance 

between forearm and upper arm). This distinguishes our 
approach from previous methods for kinematic move-
ment assessment that were acquired during specific exer-
cises with more complex movements [42]. Therefore, the 
algorithm proposed in this study can be transferred to 
those measurement systems that allow the registration 
of different joints. This approach would, therefore, pro-
vide a standardized assessment that could be performed 
on different devices and enable better comparisons of the 
studies. However, it should be noted that different meas-
urement systems (mechanical vs. optical, exoskeleton vs. 
endpoint -based) will differently influence, e.g., friction, 
inertia and arm weight support, and would need direct 
comparisons before further conclusions may be drawn.

The patients in this study were so severely impaired 
that the range of motion of the exoskeleton was not 
exceeded; therefore, no saturation occurred. Previous 
studies, where healthy subjects performed activities of 
daily living with this exoskeleton, also showed no limi-
tation of the range of motion [8, 9]. However, when 
comparing the physiological grip strength [39] and 
active range of motion [40] of healthy subjects with the 
device maxima (all indicated in the caption of Fig.  1), 
elbow FE (146° vs. 90°) and shoulder FE (158° vs. 90°) 
may exceed the range of motion of the exoskeleton. This 

Table 2  Cross-correlation of kinematic parameters and correlations with the UE-FMA sub scores A-D (r, upper section) and 
corresponding p-values (p, lower section)

*Indicates significant correlations at the p < 0.01 level. Displayed is the cross-correlation of the UE-FMA score, the UE-FMA subscores A (upper extremity, max. 36 
points), B (wrist function, max. 16 points), C (hand function, max. 14 points) and D (coordination/speed, max. 4 points). FE flexion/extension, IER internal/external 
rotation

Grip Wrist FE Elbow FE Shoulder FE Shoulder IER

r Grip in kPa 1.000 0.394 0.348 0.463 0.254

Wrist FE in ° 0.394 1.000 0.735* 0.422 0.475

Elbow FE in ° 0.348 0.735* 1.000 0.547* 0.614*

Shoulder FE in ° 0.463 0.422 0.547* 1.000 0.543

Shoulder IER in ° 0.267 0.475 0.614 0.543 1.000

UE-FMA total 0.621* 0.543* 0.658* 0.662* 0.788*
UE-FMA subscore A 0.624* 0.618* 0.790* 0.725* 0.794*
UE-FMA subscore B 0.434 0.187 0.17 0.334 0.427

UE-FMA subscore C 0.120 0.043 0.120 0.119 0.415

UE-FMA subscore D 0.593* 0.605* 0.718* 0.585* 0.684*
p Grip in kPa 0.0 0.048 0.072 0.023 0.295

Wrist FE in ° 0.048 0.0 0.000 0.036 0.040

Elbow FE in ° 0.072 0.000 0.0 0.008 0.005
Shoulder FE in ° 0.023 0.036 0.008 0.0 0.016

Shoulder IER in ° 0.134 0.020 0.003 0.008 0.0

UE-FMA total 0.002 0.008 0.001 0.001 0.000
UE-FMA subscore A 0.004 0.005 0.000 0.000 0.000
UE-FMA subscore B 0.063 0.443 0.663 0.162 0.068

UE-FMA subscore C 0.625 0.860 0.626 0.627 0.077

UE-FMA subscore D 0.007 0.006 0.001 0.008 0.001

Table 3   Summary of multiple regression analysis

B: unstandardized regression coefficient; SEB: standard error of the coefficient; 
β:  standardized coefficient; FE:  flexion/extension; IER: internal/external rotation. 
*p < 0.05

Variable B SEB β

Intercept 4.341 1.670

Grip pressure 0.253 0.90 0.380*
Wrist FE − 0.009 0.056 − 0.027

Elbow FE 0.049 0.064 0.152

Shoulder FE 0.039 0.054 0.111

Shoulder IER 0.462 0.130 0.552*
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may become relevant when investigating less severely 
impaired patients with this approach. Furthermore, the 
glenohumeral joint of the shoulder has three degrees 
of freedom with largely coupled range of motions [43], 
while our assessment system could sufficiently assess 
only two of them.

To increase the assessment frequency in the clini-
cal environment [6], the assessment time is critical. The 
positioning of the patient in the exoskeleton (~ 5  min) 
and the movement assessment (~ 6 min) were relevantly 
quicker than the clinical evaluation with the UE-FMA 
score (~ 30  min). Since this kinematic evaluation will 
be done in centers that use the exoskeleton for train-
ing purposes anyway, we would recommend doing the 
assessment either before or after the respective training 
sessions to track improvements in the course of a reha-
bilitation period; thereby, an addition positioning of the 
patient in the exoskeleton will be avoided and the time 
savings in comparison to the clinical evaluation even fur-
ther improved. However, future studies need to investi-
gate the inter- and intraoperator reliability of different 
therapists applying this protocol.

This has already been done for the clinical UE-FMA 
score [31], thereby, demonstrating excellent inter- and 
intrarater reliability and responsiveness to changes of 
motor impairment [44]. However, fine distal motor func-
tions may be underrepresented in the UE-FMA scale, and 
a ceiling effect of the motor function has been reported 
[45]. In this context, the convergent validity with the 
UE-FMA suggests the use of exoskeleton-based meas-
urements for a finer and more specific registration of 
movements [30].

Furthermore, the UE-FMA is relatively time-consum-
ing and cannot be performed in the context of an exercise 
session, e.g., to track the improvement during a training 
period. With the assessment task presented here, detailed 
information on progress at the impairment level can be 
provided before and/or after each training session with 
minimal additional time. It is important that this infor-
mation is not influenced by training exercise-specific 
effects of the actual therapy. The task should be self-con-
tained and only aim at motor assessment [29, 34].

The implemented setup contained an integrated vir-
tual reality module to provide immediate and continu-
ous feedback of the movement extent [37, 46–48]. Such 
approaches are important to motor learning in rehabilita-
tion [8, 9, 49] and have been expanded here to the area 
of instrumental assessment. However, the basic con-
cept of exoskeleton-based single-joint assessment does 
not depend on this virtual reality feature or the com-
plexity of the applied upper limb model. Future studies 
need to investigate the added benefit of these additional 
components.

Range of motion evaluations in comparison to clini-
cal outcome measures after stroke have previously been 
performed. However, these studies were not conducted 
in severely impaired patients who were unable to per-
form these movements without gravity-balancing and/
or did not apply self-contained single-joint assessments 
[15–17, 33, 50, 51]. In these previous studies, often opti-
cal motion tracking systems or inertial sensors were 
used during reach-to-grasp exercises (which the patients 
could perform without external support), and the angle 
data was extracted subsequently from the movement tra-
jectories. The respective findings in these less impaired 
patients should, therefore, only cautiously be compared 
with the present work:

Cristea et al. [33] found the level of motor function to 
be significantly correlated with three kinematic measures: 
elbow extension (r = 0.81), shoulder flexion (r = 0.89) 
and trunk displacement (r = − 0.86). Michaelsen et  al. 
[16] reported correlations with wrist extension (r = 0.46) 
and hand function (r = 0.54), but not with grip strength. 
Meulen et  al. [15] identified correlations with the range 
of vertical hand elevation (r = 0.66), a movement param-
eter composed of elbow and shoulder flexion. Beebe et al. 
[17] consecutively evaluating the active range of motion 
of shoulder, elbow, forearm, wrist and fingers, and per-
formed a comparison with different clinical tests that 
were integrated into one score for upper limb function 
using a principal component analysis. Thereby, the high-
est correlation was found for shoulder IER (r = 0.81). 
However, no UE-FMA score was used in this study.

In this context, the choice of task, measurement system 
and metrics in the present study addressed first and fore-
most the impairment level of severely affected patients who 
were unable to perform movements without gravity-bal-
ancing. We demonstrated that shoulder IER, a frequently 
neglected proximal component of kinematic assessments 
of the upper limb [30], was the measure with the most rel-
evant contribution to the prediction of the UE-FMA scale. 
This may in part be related to the over-representation of 
the shoulder in the different UE-FMA evaluation tasks [45]. 
Notably, there was only a weak correlation of the meas-
ured wrist angle and grip pressure with the UE-FMA sub-
scores for wrist and hand. The more complex functional 
tasks required to perform the UE-FMA subscores seem 
not to be adequately represented in the simpler instru-
mental measures used here. However, the grip force, which 
tends to be under-represented in the UE-FMA, predicted 
the clinical status better than the joint movements (apart 
from the shoulder IER). This finding may suggest that this 
fairly straightforward instrumental measure—which can 
be easily acquired even without an exoskeleton—may be 
best suited for a clinically relevant and practical quantifi-
cation in a potentially wide variety of patients after stroke. 
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Importantly, future work needs to study larger, more heter-
ogenous and independent sample sizes to confirm the pre-
dictive properties of the investigated kinematic parameters.

Conclusions
In conclusion, an exoskeleton-based assessment of single-
joint angles facilitated the rapid evaluation of the upper 
limb range of motion in severely impaired stroke patients 
with high convergent validity. Shoulder internal/external 
rotation contributed most relevantly to the prediction of 
the clinical status.

Acknowledgements
This work was supported by the German Federal Ministry of Education and 
Research [BMBF, INERLINC 16SV8174]. AG was supported by grants from 
the Baden-Wuerttemberg Foundation and the German Federal Ministry of 
Education and Research. We also acknowledge support by the Open Access 
Publishing Fund of the University of Tübingen. The authors report no conflict 
of interest.

Authors’ contributions
Conceptualization: FG, AG; Methodology: FG; Programming of 3D applica-
tions: FG; Realization of the clinical study and patient care: FG, JK, GN; Statisti-
cal evaluation: FG, AG; Writing – Original Draft Preparation: FG, AG; Writing 
– Review & Editing: FG, JK, GN, AG; Visualization: FG, Supervision: FG, AG; 
Project Administration: FG, AG; Funding Acquisition: AG. All authors read and 
approved the final manuscript.

Funding
This work was supported by the German Federal Ministry of Education and 
Research [BMBF, INERLINC 16SV8174]. AG was supported by grants from 
the Baden-Wuerttemberg Foundation and the German Federal Ministry of 
Education and Research. We also acknowledge support by the Open Access 
Publishing Fund of the University of Tuebingen. The authors report no conflict 
of interest. The funding body had no role in the design of the study and col-
lection, analysis, interpretation of data and writing the manuscript.

Availability of data and materials
The datasets are available from the corresponding author on reasonable 
request.

Declarations

Ethics approval and consent to participate
This study was approved by the ethics committee of the medical faculty of 
the University of Tuebingen.  Written, informed consent was obtained before 
participation.

Consent for publication
Not applicable.

Competing interests
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
conflict of interest.

Received: 5 August 2020   Accepted: 30 April 2021

References
	1.	 Kwakkel G, et al. Probability of regaining dexterity in the flaccid upper 

limb: impact of severity of paresis and time since onset in acute stroke. 
Stroke. 2003;34(9):2181–6.

	2.	 Jorgensen HS, et al. Stroke. Neurologic and functional recov-
ery the Copenhagen Stroke Study. Phys Med Rehabil Clin N Am. 
1999;10(4):887–906.

	3.	 Huang YH, et al. Predictors of change in quality of life after distributed 
constraint-induced therapy in patients with chronic stroke. Neuroreha-
bil Neural Repair. 2010;24(6):559–66.

	4.	 Pollock A, et al. Physical rehabilitation approaches for the recovery of 
function and mobility following stroke. Cochrane Database Syst Rev. 
2014;4:CD001920. https://​doi.​org/​10.​1002/​14651​858.​CD001​920.​pub3

	5.	 Rudhe C, et al. Reliability of movement workspace measurements in 
a passive arm orthosis used in spinal cord injury rehabilitation. J Neuro-
eng Rehabil. 2012;9:37.

	6.	 Tran VD, Dario P, Mazzoleni S. Kinematic measures for upper limb 
robot-assisted therapy following stroke and correlations with clinical 
outcome measures: a review. Med Eng Phys. 2018;53:13–31.

	7.	 Boian R, et al. Virtual reality-based post-stroke hand rehabilitation. Stud 
Health Technol Inform. 2002;85:64–70.

	8.	 Grimm F, Naros G, Gharabaghi A. Closed-loop task difficulty adaptation 
during virtual reality reach-to-grasp training assisted with an exoskel-
eton for stroke rehabilitation. Front Neurosci. 2016;10:518.

	9.	 Grimm F, Naros G, Gharabaghi A. Compensation or restoration: closed-
loop feedback of movement quality for assisted reach-to-grasp exer-
cises with a multi-joint arm exoskeleton. Front Neurosci. 2016;10:280.

	10.	 Perry BE, Evans EK, Stokic DS. Weight compensation characteristics 
of Armeo(R)Spring exoskeleton: implications for clinical practice and 
research. J Neuroeng Rehabil. 2017;14(1):14.

	11.	 Grimm F, Gharabaghi A. Closed-loop neuroprosthesis for reach-to-
grasp assistance: combining adaptive multi-channel neuromuscular 
stimulation with a multi-joint arm exoskeleton. Front Neurosci. 
2016;10:284.

	12.	 Grimm F, et al. Hybrid neuroprosthesis for the upper limb: combining 
brain-controlled neuromuscular stimulation with a multi-joint arm 
exoskeleton. Front Neurosci. 2016;10:367.

	13.	 Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled 
trial of gravity-supported, computer-enhanced arm exercise for 
individuals with severe hemiparesis. Neurorehabil Neural Repair. 
2009;23(5):505–14.

	14.	 Zollo L, et al. Quantitative evaluation of upper-limb motor control in 
robot-aided rehabilitation. Med Biol Eng Comput. 2011;49(10):1131–44.

	15.	 van Meulen FB, et al. Assessment of daily-life reaching performance after 
stroke. Ann Biomed Eng. 2015;43(2):478–86.

	16.	 Michaelsen SM, et al. Compensation for distal impairments of grasping in 
adults with hemiparesis. Exp Brain Res. 2004;157(2):162–73.

	17.	 Beebe JA, Lang CE. Active range of motion predicts upper extremity 
function 3 months after stroke. Stroke. 2009;40(5):1772–9.

	18.	 Krebs HI, et al. Robot-aided neurorehabilitation: from evidence-based to 
science-based rehabilitation. Top Stroke Rehabil. 2002;8(4):54–70.

	19.	 Staubli P, et al. Effects of intensive arm training with the rehabilitation 
robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng 
Rehabil. 2009;6:46.

	20.	 Brauchle D, et al. Brain state-dependent robotic reaching movement with 
a multi-joint arm exoskeleton: combining brain-machine interfacing and 
robotic rehabilitation. Front Hum Neurosci. 2015;9:564.

	21.	 Reinkensmeyer DJ, et al. Do robotic and non-robotic arm movement 
training drive motor recovery after stroke by a common neural mecha-
nism? Experimental evidence and a computational model. Conf Proc IEEE 
Eng Med Biol Soc. 2009; 2009:  2439–41.

	22.	 Kim H, et al. Kinematic data analysis for post-stroke patients following 
bilateral versus unilateral rehabilitation with an upper limb wearable 
robotic system. IEEE Trans Neural Syst Rehabil Eng. 2013;21(2):153–64.

	23.	 Zimmermann Y, et al. ANYexo: a versatile and dynamic upper-limb reha-
bilitation robot. IEEE Robot Autom Lett. 2019;4(4):3649–56.

	24.	 Kim B, Deshpande AD. An upper-body rehabilitation exoskeleton 
Harmony with an anatomical shoulder mechanism: design, modeling, 
control, and performance evaluation. Int J Robot Res. 2017;36(4):414–35.

	25.	 Gilliaux M, et al. A robotic device as a sensitive quantitative tool to assess 
upper limb impairments in stroke patients: a preliminary prospective 
cohort study. J Rehabil Med. 2012;44(3):210–7.

	26.	 Gilliaux M, et al. Using the robotic device REAplan as a valid, reliable, and 
sensitive tool to quantify upper limb impairments in stroke patients. J 
Rehabil Med. 2014;46(2):117–25.

https://doi.org/10.1002/14651858.CD001920.pub3


Page 11 of 11Grimm et al. J NeuroEngineering Rehabil           (2021) 18:92 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	27.	 Kitago T, et al. Robotic therapy for chronic stroke: general recov-
ery of impairment or improved task-specific skill? J Neurophysiol. 
2015;114(3):1885–94.

	28.	 Lledo LD, et al. A comparative analysis of 2D and 3D tasks for virtual real-
ity therapies based on robotic-assisted neurorehabilitation for post-stroke 
patients. Front Aging Neurosci. 2016;8:205.

	29.	 Schwarz A, et al. Systematic review on kinematic assessments of upper 
limb movements after stroke. Stroke. 2019;50(3):718–27.

	30.	 Nordin N, Xie SQ, Wunsche B. Assessment of movement quality in robot- 
assisted upper limb rehabilitation after stroke: a review. J Neuroeng 
Rehabil. 2014;11:137.

	31.	 Fugl-Meyer AR, et al. The post-stroke hemiplegic patient. 1. a method 
for evaluation of physical performance. Scand J Rehabil Med. 
1975;7(1):13–31.

	32.	 World Health Organization. International Classification of Functioning, 
Disability and Health (ICF). 2002. https://​www.​who.​int/​stand​ards/​class​
ifica​tions/​inter​natio​nal-​class​ifica​tion-​of-​funct​ioning-​disab​ility-​and-​health. 
Accessed 5 Apr 2021.

	33.	 Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. 
Brain. 2000;123(pt 5):940–53.

	34.	 Schweighofer N, et al. Dissociating motor learning from recovery in 
exoskeleton training post-stroke. J Neuroeng Rehabil. 2018;15(1):89.

	35.	 Zimmermann Y, et al. towards dynamic transparency: robust interac-
tion force tracking using multi-sensory control on an arm exoskeleton. 
In: 2020 IEEE/RSJ international conference on intelligent robots and 
systems (IROS). 2020. IEEE.

	36.	 Just F, et al. Exoskeleton transparency: feed-forward compensation vs. 
disturbance observer. at-Automatisierungstechnik. 2018;66(12):1014–26.

	37.	 Lewis GN, Rosie JA. Virtual reality games for movement rehabilitation in 
neurological conditions: how do we meet the needs and expectations of 
the users? Disabil Rehabil. 2012;34(22):1880–6.

	38.	 Gerig N, et al. Missing depth cues in virtual reality limit performance 
and quality of three dimensional reaching movements. PLoS One. 
2018;13(1):e0189275.

	39.	 Fernando M, Robertson J. Grip ‘strength’in the healthy. Rheumatology. 
1982;21(3):179–81.

	40.	 Boone DC, Azen SP. Normal range of motion of joints in male subjects. J 
Bone Jt Surg Am. 1979;61(5):756–9.

	41.	 Lenth RV. Statistical power calculations. J Anim Sci. 2007;85(13 
Suppl):E24-9.

	42.	 Veerbeek JM, et al. Effects of robot-assisted therapy for the upper limb 
after stroke. Neurorehabil Neural Repair. 2017;31(2):107–21.

	43.	 Stienen AH, Keemink AQ. Visualization of shoulder range of motion for 
clinical diagnostics and device development. In: 2015 IEEE international 
conference on rehabilitation robotics (ICORR). 2015. IEEE.

	44.	 Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-
extremity Fugl–Meyer Scale in people with minimal to moderate impair-
ment due to chronic stroke. Phys Ther. 2012;92(6):791–8.

	45.	 Gladstone DJ, Danells CJ, Black SE. The Fugl–Meyer assessment of motor 
recovery after stroke: a critical review of its measurement properties. 
Neurorehabil Neural Repair. 2002;16(3):232–40.

	46.	 Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 
2004;1(1):10.

	47.	 Laver KE, et al. Virtual reality for stroke rehabilitation. Cochrane Database 
Syst Rev. 2017;11:CD008349.

	48.	 Cameirao MS, et al. Neurorehabilitation using the virtual reality based 
Rehabilitation Gaming System: methodology, design, psychometrics, 
usability and validation. J Neuroeng Rehabil. 2010;7:48.

	49.	 van Vliet PM, Wulf G. Extrinsic feedback for motor learning after stroke: 
what is the evidence? Disabil Rehabil. 2006;28(13–14):831–40.

	50.	 Iwamuro BT, et al. Effect of a gravity-compensating orthosis on reaching 
after stroke: evaluation of the Therapy Assistant WREX. Arch Phys Med 
Rehabil. 2008;89(11):2121–8.

	51.	 Kahn LE, et al. Robot-assisted reaching exercise promotes arm movement 
recovery in chronic hemiparetic stroke: a randomized controlled pilot 
study. J Neuroeng Rehabil. 2006;3:12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health
https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health

	Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Exoskeleton and visualization
	Movement assessment design
	Statistics and data evaluation

	Results
	Kinematic parameters

	Discussion
	Conclusions
	Acknowledgements
	References


