
RESEARCH Open Access

Spatial distribution of HD-EMG improves
identification of task and force in patients
with incomplete spinal cord injury
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Abstract

Background: Recent studies show that spatial distribution of High Density surface EMG maps (HD-EMG) improves
the identification of tasks and their corresponding contraction levels. However, in patients with incomplete spinal
cord injury (iSCI), some nerves that control muscles are damaged, leaving some muscle parts without an innervation.
Therefore, HD-EMG maps in patients with iSCI are affected by the injury and they can be different for every patient.
The objective of this study is to investigate the spatial distribution of intensity in HD-EMG recordings to distinguish
co-activation patterns for different tasks and effort levels in patients with iSCI. These patterns are evaluated to be used
for extraction of motion intention.

Method: HD-EMG was recorded in patients during four isometric tasks of the forearm at three different effort levels.
A linear discriminant classifier based on intensity and spatial features of HD-EMG maps of five upper-limb muscles was
used to identify the attempted tasks. Task and force identification were evaluated for each patient individually,
and the reliability of the identification was tested with respect to muscle fatigue and time interval between
training and identification.

Results: Three feature sets were analyzed in the identification: 1) intensity of the HD-EMG map, 2) intensity and
center of gravity of HD-EMG maps and 3) intensity of a single differential EMG channel (gold standard). Results
show that the combination of intensity and spatial features in classification identifies tasks and effort levels properly
(Acc = 98.8 %; S = 92.5 %; P = 93.2 %; SP = 99.4 %) and outperforms significantly the other two feature sets (p < 0.05).

Conclusion: In spite of the limited motor functionality, a specific co-activation pattern for each patient exists for both
intensity, and spatial distribution of myoelectric activity. The spatial distribution is less sensitive than intensity to
myoelectric changes that occur due to fatigue, and other time-dependent influences.
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Background
Surface electromyography (sEMG) is commonly used in
noninvasive extraction of motor control information and
identification of motion intention. Therefore, it has a
wide practical application in rehabilitation engineering,
e.g., prosthetics [1–3], exoskeletons [4] and rehabilita-
tion robots [5, 6].

Conventional myocontrol is based on non-pattern rec-
ognition strategies. In a classical example of a single
joint prosthesis (one degree of freedom), sEMG signals
are recorded on two independent muscles. EMG of one
muscle controls the intensity in one movement direc-
tion, and the EMG of another muscle in the opposite
direction. The output force is proportional to EMG
power of the controlling muscle. This strategy is simple,
computationally efficient, robust, and does not need
training, which makes it suitable for unsupervised,
everyday use. However, it allows control only in one de-
gree of freedom (DoF) at a time. Although this approach
can provide intuitive interface with fewer commands [7],
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in case of a prosthetic device with multiple degrees of
freedom (e.g. hand prostheses), switching between DoFs
is impractical and requires a long time to complete a
complex task [8].
On the other hand, pattern recognition-based control

strategy enables usage of multiple DoFs without switch-
ing, which significantly improves task completion time
[7]. Although a variety of classifiers (e.g. hidden Markov
model, support vector machine, artificial neural network,
fuzzy logic) have been evaluated for task identification
[9], multiple authors agree that the identification does
not significantly depend on the classifier type [7, 10, 11].
Therefore, simple and easy to train classifiers, e.g. linear
discriminant analysis (LDA), are preferred [12–15]. Con-
versely, finding an appropriate set of features is challen-
ging [16–19]. Time-domain features are commonly used
because they can achieve high identification results and
are computationally efficient [7].
The technological advancement of EMG acquisition

systems [20, 21] enables the use of high-density electro-
myography (HD-EMG). By using an array of closely
spaced electrodes organized in a quadrature grid, a wide
muscle area is recorded. This technology allows insights
into the spatial distribution of the myoelectric intensity
of a muscle. The spatial distribution allows monitoring
the activation of different muscle regions, which depends
on joint position [22], contraction level [23], and dur-
ation of movement [24]. In addition, it has already been
reported that spatial features can be used in task identifi-
cation in normal subjects [3, 25].
In patients with neurological disorders (e.g., stroke,

spinal cord injury) motor control is impaired and some
muscle parts can be left without innervation. As a result,
patients often have problems with uncoordinated move-
ments, lack of force, and spasticity. Rehabilitation and
therapy can partially regenerate motor control, and ei-
ther the affected muscles can recover partial functional-
ity or other muscle groups can replace the functionality
of a dysfunctional part. Therefore, the spatial distribu-
tion of motor unit action potentials is different from
subject to subject and depends on the injury. But is it
task-specific? And a more interesting question: is it
force-specific? Liu & Zhou [17] already proved that an
intensity-related muscle co-activation pattern exists and
that different hand tasks can be successfully identified
in patients with incomplete spinal cord injury (iSCI).
But can spatial distribution of myoelectric intensity
help in identification of task and level of effort in pa-
tients with iSCI?
In this work, a method for the identification of differ-

ent tasks and effort levels in patients with iSCI is pro-
posed. High density EMG was measured on muscles
participating in the analyzed contractions. By using dif-
ferent feature sets and an LDA classifier, we demonstrate

that a specific co-activation pattern exists in patients
with iSCI not only for a certain task, but also for a con-
traction intensity. Furthermore, the influence of time-
dependent changes in EMG signal (due to muscle fa-
tigue and drying of conductive gel) on the reliability of
identification was evaluated. It was demonstrated that
features related to spatial distribution not only improve
the identification, but they are also more robust to time
changes. What is more, they are helpful when identifying
both the task and the desired force, indicating that
spatial activation of motor units depends on type of ex-
ercise and contraction level in patients with iSCI.

Method
Measurements
Instrumentation
For the recording of HD-EMG signals, 2-D electrode ar-
rays were fabricated in our laboratory (see Fig. 1c). They
were designed as silver-plated eyelets (5 mm external
diameter), embedded in a hydrophobic fabric in a quad-
rature grid with 10 mm inter-electrode distance. When
positioned and fixed with elastic straps, fabric follows
the contour of the muscle enabling a constant electrical
contact between subject’s skin and eyelets.
In total, 240 monopolar EMG channels were recorded

for each patient using three electrode arrays. A “driven
right leg” circuit [26] was used to reduce the common
mode interference by feeding the common mode voltage
with opposite phase to the patient.
Monopolar EMG signals were digitized using two ampli-

fiers with synchronized sampling (EMG-USB- 128 chan-
nels, sampling frequency 2048 Hz, 3 dB bandwidth 10–
750 Hz, programmable gains of 100, 200, 500, 1000, 2000,
5000, 10000, manufactured by LISiN-OT Bioelettronica).
In order to perform isometric contractions at the de-

sired force, a mechanical brace was used and torque
transducers (OT Bioelettronica, range 150 Nm, reso-
lution 2.5 mV/V) were placed on each joint to record
the exerted torque (Fig. 1). During the measurements,
patients were sitting upright in front of the brace with
their dominant arm immobilized at the wrist to avoid
hand grip. The forearm was in the sagittal plane, halfway
between pronation and supination. The elbow was flexed
at 45° and the shoulder was adducted at 90° in the hori-
zontal plane and flexed at 45° in the sagittal plane. The
exerted force level was displayed online to patients dur-
ing the exercise for visual feedback.

Experimental setup
Nine patients (four male, five female; age: 47 ± 18 years;
body mass index: 28.2 ± 4.2) diagnosed with iSCI at C4-
C6 levels participated in the study. Patients were rated C
or D according to the ASIA scale and were injured at
least 1 month before the experimental session. The
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study was conducted in accordance with the Declar-
ation of Helsinki and subsequent amendments concern-
ing research in humans and was approved by the
Hospital Ethics Committee and the Local Government.
All volunteers gave their written informed consent to
participate.
HD-EMG was recorded during four isometric upper-

limb tasks, i.e. flexion/extension of the elbow and supin-
ation/pronation of the forearm, on five superficial mus-
cles involved by these tasks: Biceps Brachii, Triceps
Brachii, Anconeus, Brachioradialis, and Pronator Teres.
Prior to positioning of the electrode arrays, skin was
cleaned, shaved, and treated with abrasive gel.
Three electrode arrays were used during the experi-

ment: array A1 was placed over the forearm covering
Anconeus, Brachioradialis and Pronator Teres muscles,
and arrays A2 and A3 were placed over the upper arm
covering Biceps Brachii and Triceps Brachii muscles.
Reference electrodes were placed on the clavicle, wrist
and shoulder of the active arm. After placing the arrays,
each eyelet was filled with 20 μl of conductive gel using
a gel dispenser (Multipette Plus, Eppendorf, Germany).
The experimental setup can be seen in Fig. 1.

HD-EMG recordings
Before signal recording, the maximal voluntary contrac-
tion (MVC) was measured for each task as a maximum
of three consecutive trials. To prevent fatigue, each trial
was followed by a three minute rest [27, 28]. Patients
were trained to keep their fingers and wrist relaxed in

order to minimize the activity of forearm muscles that
do not participate in the intended tasks.
The measurement protocol was composed of two

parts. In the first part, contractions at three levels of ef-
fort (10 %, 30 % and 50 % MVC) were measured for
each task in randomized order. Visual feedback of the
level of effort was provided in real time and subjects
were asked to maintain the target level as precise as pos-
sible. Patients were instructed to remain at rest for three
seconds followed by a contraction at a predefined force
level for 10 s. There were three-minute breaks between
consecutive recordings to prevent cumulative fatigue.
The second part of the measurement protocol began

approximately half an hour (27.0 ± 9.8 min) after the end
of the first part of the protocol. Each measurement
started with a three-second rest period after which pa-
tients performed contraction at 50 % MVC until failure.
The procedure was repeated for each task and between
recordings there were three-minute breaks.
The recorded signals were divided into three sets for

the subsequent analysis: the first set (submaximal set)
was composed of the signals recorded in the first part of
the protocol. The second set (time-effect set), used to
test the time effect on the identification, was extracted
from the beginning (up to 20 % of the total duration of
the contraction, TDC) of the signals recorded in the sec-
ond part of the protocol. Finally, the third set (endur-
ance set) was used to test the effect of myoelectric
fatigue on the identification, and was composed of the
totality of the signals recorded in the second part of the

Fig. 1 Experimental setup. a Positioning of the electrode arrays A1-A3 during the recording. b Anatomical landmarks and paths used for the
positioning of the arrays: A1 (6 rows, 16 columns) was placed over the forearm covering Anconeus, Brachioradialis and Pronator Teres muscles,
where the most proximal row of electrodes was placed ~2 cm bellow the elbow crest (EC) covering all three muscles, according to [46]; A2 (6
rows, 12 columns) was placed in the distal part of the upper arm with respect to the center of the line connecting fossa cubit (FC) and acromion
(AC), and covering Biceps Brachii muscle; A3 (6 rows, 12 columns) was placed in the proximal part with respect to the center of the line
connecting EC and AC, over Triceps Brachii. Both A2 and A3 arrays were located in accordance with SENIAM recommendations [33]. Reference
electrodes (R) were placed on the clavicle, wrist and shoulder of the active arm. c Detail of the electrode arrays used in the experiment
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protocol. The flow chart of the recording protocol can
be seen in Fig. 2.

HD-EMG maps and feature extraction
HD-EMG maps calculation
Low quality channels, a common issue in HD-EMG
measurements, were identified by an expert system pro-
posed by Rojas-Martínez et al. [29]. The system is based
on thresholds associated with the following three fea-
tures: 1) relative power of low frequency components
(from 0 to 12 Hz); 2) relative power of power-line com-
ponents (50 Hz and first four harmonics); and 3) power
calculated from RMS value of the signal. EMG channels
without measurement artifacts were zero-phase filtered
between 15 Hz and 350 Hz (Butterworth bandpass filter,
4th order), and the first 6 harmonics of power line coup-
ling were suppressed by using the adaptive transversal
filter described in [30], whose weights were estimated by
a least mean squares algorithm.
HD-EMG maps represent the spatial distribution of

intensities of active motor units over the surface of the
muscle:

HMi;j ¼ RMS sEMGi;j
� � ð1Þ

where HM is an activation map and each pixel in a map
(HMi,j) corresponds to an RMS value of a channel in an
electrode array (position i,j). Maps were calculated on
non-overlapping time windows of 250 ms to ensure an
acceptable response time in applications directed to
myoelectric control [9], and channels previously

identified as artifacts were replaced by triangle-based
cubic interpolation [29].

Feature extraction
Two types of features related to HD-EMG maps were
extracted: intensity and center of gravity. They were
used in classification individually or combined in order
to compare their performance. Additionally, the intensity
of a single differential channel, i.e. traditional bipolar re-
cordings usually employed in pattern recognition as a
“gold standard”, was compared to other features. In any
case, the feature set was composed of features extracted
from all 5 monitored muscles.
Multiple studies suggest that the relationship between

EMG amplitude and generated force is not linear [31,
32]. Accordingly, the intensity features were calculated
as a common logarithm of the mean intensity of the
HD-EMG maps, which proved to achieve higher classifi-
cation results than a linear measure [25]:

I ¼ log10
1
N

X
i;j

HMi;j ð2Þ

where I is an intensity feature calculated from the HD-
EMG intensity map HM with a total number of N chan-
nels, and HMij is the intensity of a channel located at
position i,j.
The center of gravity of an HD-EMG (CG) map was

calculated as:

Fig. 2 HD-EMG recording flow chart: Flow chart describes recording protocol of each task. Note that the recordings order was randomly selected
in each part of the protocol
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CG ¼ 1X
i;j
HMi;j

X
i;j

HMi;j
i
j

� �
ð3Þ

where (i,j) represents a channel position in the HD-
EMG map HM.
The intensity of a single differential channel (Diff ) was

calculated as a common logarithm of an RMS value of
difference of two consecutive channels in the direction
of muscle fibers:

Diff ¼ log10 RMS sEMGi;j−sEMGiþ1;j
� �� � ð4Þ

where the locations of channels (i,j) and (i + 1,j) are se-
lected following SENIAM recommendations [33]. Diff
was calculated on the same 250 ms time epoch as the
HD-EMG map.

Identification of motion intention
Classification
Three LDA classifiers based on different feature sets ex-
tracted from all five monitored muscles were evaluated
in the study:

1. Classifier based on the intensity of the HD-EMG
map (I)

2. Classifier based on the intensity and center of gravity
of the HD-EMG map (I + CG)

3. Classifier based on the intensity of a single differential
channel (gold standard) (Diff )

These classifiers were evaluated in the identification of
task and level of contraction in patients with iSCI. Fur-
thermore, the reliability of the classifiers was tested with
respect to the slow time-dependent changes occurring in
myoelectric signals, like those associated with gel drying
or those related to changes at the physiological level
(myoelectric fatigue).
Available observations were divided into a training

group, which was used to train the classifier, and a valid-
ation group, which was used to evaluate classifier’s per-
formance. Both groups were balanced, i.e. there was an
equal number of observations of each class in the train-
ing group, as well as in the validation group, and data
were split into training and validation sets using a 50 % /
50 % ratio [34]. To confirm the model was not over-
fitted, the results of classification of both sets were com-
pared and were found similar. To achieve the statistical
stability of results, each classifier was trained and evalu-
ated in one thousand iterations, which are enough to
avoid the potential error due to bad data partitioning
[35], and then classification results were averaged. In
every iteration, observations in the training and valid-
ation groups were assigned randomly.

The performances of the classifiers were expressed in
terms of accuracy (Acc), sensitivity (S), precision (P) and
specificity (SP) [36], as described in the following
equations:

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

ð5Þ

S ¼ TP
TP þ FN

ð6Þ

P ¼ TP
TP þ FP

ð7Þ

SP ¼ TN
TN þ FP

ð8Þ

where true positives (TP) is the number of samples cor-
rectly appended to a certain class; true negatives (TN) is
the number of samples that do not belong to a certain
class and were not classified to that class; false positives
(FP) is the number of samples not belonging to a certain
class, but wrongly classified into that class; and false
negatives (FN) is the number of samples belonging to a
certain class, but wrongly classified into another class.

Short-term identification
Classifiers with different sets of features (I, I + CG, and
Diff ) were tested on the submaximal set. Signals belong-
ing to this set were recorded in a short time interval
and, consequently, in the same conditions.
Two types of identification were considered: 1) Identi-

fication of tasks and 2) Identification of tasks and effort
levels. Identification of tasks had 4 classes correspond-
ing to the type of the task (flexion, extension, supination,
and pronation) and an additional fifth class that corre-
sponds to the rest period – no activity class (NoAct).
Observations of no activity were extracted from the first
three seconds of each recording, where subjects were
asked to maintain at rest. Activity classes consisted of a
mixture of all effort levels. On the other hand, identifi-
cation of tasks and effort levels had 13 classes: 4 tasks
with 3 levels of effort for each task (10 % MVC, 30 %
MVC and 50 % MVC) and NoAct class.
Considering that patients were not always able to

maintain the target level of contraction given their con-
dition, the torque signal was used to select only time
segments where the measured force remained within a
threshold of ±5 %, ±10 % and ±10 % MVC for target
contractions at 10 %, 30 % and 50 % MVC. From every
submaximal contraction 20 non-overlapping, 250 ms
time epochs, closest to the target force were selected.
This procedure ensured 20 observations for each task
with differentiation on the level of effort, or 60 samples
for each task, without differentiation on the effort level.
Consequently, 60 observations without muscle activity
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were selected for NoAct class from the beginnings of ex-
ercises (rest period).

Influence of time- progress on identification
Wet electrodes with conductive electrolytic gel are com-
monly used for sEMG recording. However, these elec-
trodes are not good for long-term monitoring [37]. Gel
drying increases skin-electrode impedance, affecting
amplitude and spectral content of the recorded signal.
Moreover, skin perspiration is enhanced under the elec-
trode array, which also affects the skin-electrode imped-
ance and, consequently, the characteristics of the
recorded signal. To compare the performances of the
different features, task identification was tested in these
conditions.
Classifiers were trained on the submaximal set and

validated on the time-effect contractions recorded in the
second part of the protocol. As in the previous section,
20 time epochs for each task and level of effort were
identified from the submaximal set based on the torque
signal. Half the extracted observations of all levels of ef-
fort were used for training, following the recommenda-
tions of Scheme and Englehart [12], where it was
noticed that a mixture of effort levels in the training
group yields a more robust classifier. NoAct observa-
tions for the training group were extracted from record-
ings in the first part of the measurement protocol,
whereas observations for the validation group were
extracted from recordings in the second part of the
protocol.
For comparison, the same classifier was used to valid-

ate contractions recorded at the first part of the proto-
col, i.e. using samples of the submaximal set. Since the
classifier was trained on just half of the available obser-
vations from the submaximal set, the remaining observa-
tions were used for validation. But considering that
time-effect set was composed of contractions recorded
at 50 % MVC effort level, the validation group was also
composed only of 50 % MVC contractions from the sub-
maximal set.
The classifier was trained and evaluated over 1000 it-

erations with observations selected randomly both in the
training and validation sets to avoid bias in the
performance.

Influence of muscle fatigue on identification
Muscle fatigue is a slow change that occurs in contract-
ing muscles. It alters the characteristics of recorded
sEMG signal (i.e. amplitude and frequency content) [38]
and, inherently, alters the extracted classification fea-
tures [39]. To test the effect of fatigue on identification,
each recording in the endurance set was divided into five
equal time segments, i.e. 0–20 % TDC, 20–40 % TDC,
40–60 % TDC, 60–80 % TDC, and 80–100 % TDC. The

first segments (0–20 % TDC) were used as a training
group and the identification was carried out on all seg-
ments. The classification indices (accuracy, sensitivity,
precision and specificity) were calculated for each seg-
ment in order to monitor performance during fatigue.
The number of observations of each class was the same
in the training group, as well as in the validation group.

Statistical methods
A repeated measures analysis of variance (ANOVA) was
applied to the different performance indices using each
type of task and effort level as measures and features
used in the classification as factors. Both, within-subject
and between-subject effects were considered in the ana-
lysis. In the case of endurance analysis, the repeated
measures test was applied to account for differences at-
tributed to the factor time, that is, duration of the con-
traction. In addition, differences between means were
assessed through Student’s t-test for paired samples.
Effects and differences were considered significant at
p = 0.05.

Results
Short-term identification
The different combinations of feature sets extracted
from the five recorded muscles (l, I + CG, Diff ) were
evaluated in non-changing conditions, i.e. training and
validation groups were extracted from the same contrac-
tions (submaximal set). Features were evaluated in 2
types of identification: 1) identification of tasks and 2)
identification of tasks and effort levels.
The results of task identification are shown in Fig. 3.

Adding spatial features to the classification improves the
results and decreases the standard deviation. This is es-
pecially pronounced in sensitivity of flexion (88,8 % ±

Fig. 3 Identification of tasks: Average classification indices (Acc, S, P,
SP) are shown for classifiers based on different sets of features (I +
CG, I, and Diff). Symbol ”*” indicates statistical significance (p < 0.05)
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12,6 % and 96,7 % ± 5,5 % in mean and standard devi-
ation for I and I + CG features, respectively) and exten-
sion (89,6 % ± 12,1 % and 98,7 % ± 2,0 % for I and I + CG
features, respectively) as well as in precision of prona-
tion (89,9 % ± 12,5 % and 96,6 % ± 6,3 % for I and I + CG
features, respectively), and NoAct (85,6 % ± 15,3 % and
94,8 % ± 6,5 % for I and I + CG features, respectively).
When evaluating differences in the performance of fea-
tures through the repeated measures ANOVA, the
within-subject effect was not significant when comparing
indices obtained with the feature I or with the combin-
ation of features I + CG (either for accuracy, sensitivity,
precision or specificity). However, the between subject
effect was significant (p < 0.05 in all cases), showing that
performance obtained for the combination of features I
+ CG was higher than that obtained when using the fea-
tures I in the classification, independently of the evalu-
ated task. Similar results were obtained when comparing
performance of features Diff and I + CG: the within-
subject effect showed no significant differences, that is,
similar indices were obtained for all tasks (flexion, exten-
sion, supination, pronation and no activity), while the
between-subjects effect was significant for all indices
(p < 0.05) except for precision (p = 0.07), showing a
higher performance for the features I + CG. No sig-
nificant effects were observed when comparing the
performance indices obtained with the features I with
those obtained with the features Diff (p.n.s.).
Figure 4 shows the results of identification of tasks

and effort levels. It can be noticed from the results that
the identification based on intensity and spatial features
displayed, in average, higher performance and lower
standard deviation than the other two classifiers. Like in
the previous case, the within-subject effect when

comparing either between performance indices of I and
I + CG or between performances of Diff and I + CG was
not significant, showing similar results for all 13 classes
(tasks and effort levels and no activity). However, the
between-subjects effect was significant in both analyses
(p < 0.001 when comparing I and I + CG; p < 0.02 when
comparing Diff and I + CG), showing a higher perform-
ance for the case of the combination I + CG. Finally,
when comparing performances between features I and
Diff, no significant effects were observed (p.n.s.).
Figure 5 shows the performance of identification of

tasks performed at a specific effort level. In this case, the
classifier was trained using a mixture of all effort levels.
The training group and the validation group were both
extracted from the submaximal set. It can be noticed
that all feature sets performed well when identifying
tasks corresponding to high levels of contraction, but
only the identification with spatial distribution main-
tained high performance and low standard deviation
even at low contraction levels, i.e. 10 % MVC, where
paired t-tests showed that the identification based on in-
tensity and spatial features significantly outperforms the
other two types of features (p < 0.04).

Influence of time on identification
For the purpose of evaluation of the effect of time on
identification, a classifier based on I + CG was trained
using the submaximal set, and the identification was
tested both on the submaximal set, and the time-effect
set. Results are shown in Fig. 6, where it is possible to
observe that the average performance significantly de-
creased with time (paired samples t-test showed p <
0.05) whereas the standard deviation increased.

Fig. 4 Joint identification of tasks and effort levels: Average
classification indices (Acc, S, P, SP) are shown for classifiers based on
different sets of features (I + CG, I, and Diff). Symbols ”*” and “**”
indicate statistical significance p < 0.05 and p < 0.01, respectively

Fig. 5 Identification of tasks at specific levels of effort: Sensitivity and
precision are shown for classifiers based on different sets of features
(I + CG, I, Diff). Each classifier was trained using contractions of all
effort levels, and evaluated on contractions of specific effort levels.
Symbol ”*” indicates statistical significance (p < 0.05.)
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Figure 7 shows performances of the different feature
sets when the validation group was recorded after the
training group, i.e. the classifier was trained on the sub-
maximal set and recorded on the time-effect set. It can
be noticed that the identification based on Diff features
exhibited a significantly lower performance than the iden-
tifications based on I or I + CG features (paired samples t-
test showed p < 0.05), while the identification based on I
features performed similarly to the identification based on

I + CG features (p.n.s.). This last can be understood in
light of the results presented in the previous section,
where the identification performances using these feature
sets were similar at high-middle levels of effort, but I + CG
outperformed I features at low effort levels (see Fig. 5).

Influence of muscle fatigue on identification
Figure 8 shows the influence of muscle fatigue on the
identification based on intensity and center of gravity of
the HD-EMG maps. It can be observed that average
classification indices gradually decrease with fatigue.
When evaluating differences in the performance of these
indices, the within-subject effect given by the repeated
measures analysis was significant (p < 0,001 in all indi-
ces). This result relies on the assumption of sphericity,
that is, variances of the differences between all pairs of
the repeated measurements should be equal; otherwise,
result is positively biased. The conservative Greenhouse-
Geisser correction method for the lack of sphericity [40]
was applied to adjust the degrees of freedom [41, 42]
when the assumption of sphericity was violated. As sug-
gested by Landa and Everitt [41], Mauchly’s test was
used to test the sphericity.
Figures 9 and 10 display the influence of muscle fa-

tigue on sensitivity and precision of the identification
based on different feature sets. It can be noticed that all
classifiers achieved high sensitivity and precision at the
beginning of the endurance contractions, however, as
the manifestations of myoelectric fatigue became more
evident, the classifier based on intensity and spatial fea-
tures outperformed the other two, both in average per-
formance and variability.

Fig. 6 Time influence on the identification of tasks: Average
classification indices (Acc, S, P, SP) are shown for the classifier based on
the I + CG features. In blue bars ”A”, training and validation sets were
recorded during the first part of the protocol, whereas in red bars ”B”
training and validation sets were recorded during first and
second part of the protocol, respectively. Symbol ”*” indicates
statistical significance (p < 0.05)

Fig. 7 Influence of time effect on the identification: Figure shows
average classification indices (Acc, S, P, SP) for classifiers based on
different feature sets (I + CG, I, Diff). Training set was recorded during
the first part of the protocol, and the validation set was recorded
during the second part of the protocol. Symbols ”*” and “**” indicate
statistical significance p < 0.05 and p < 0.01, respectively

Fig. 8 Fatigue influence on identification based on I + CG feature
set: Average classification indices (Acc, S, P, SP) are shown along the
endurance contraction for the classifier based on the I + CG feature set
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Discussion
Nine subjects with iSCI performed four isometric fore-
arm tasks (flexion, extension, supination, and pronation)
at three levels of effort (10 % MVC, 30 % MVC, and
50 % MVC). High density EMG was measured on five
muscles of forearm and upper arm in monopolar config-
uration. Intensity maps were calculated for each muscle
and three different feature sets were extracted: the aver-
age intensity of an HD-EMG map (I), the intensity and
center of gravity of an HD-EMG maps (I + CG), and the
intensity of a single differential channel (Diff ) (gold
standard). Using the extracted feature sets and LDA-

based classification, both task and effort level were iden-
tified, and the influence of fatigue and other time-
dependent changes (e.g. drying of conductive gel) on
identification was evaluated. Since the goal of this study
was to analyze different feature sets rather than classifi-
cation methods, LDA was utilized given that this
method is the most commonly used, and is generally
recommended for myoelectric interfaces [7]. Although it
assumes normal distribution of patterns in each class, it
has proven to have good performance even when the
normality assumption does not hold [43].
When identification using the different features was

tested on signals recorded in short time intervals, the
combination of I + CG outperformed the other feature
sets. The results show that a muscular co-activation pat-
tern exists not only for the task intention (Acc = 98.7 %;
S = 96.8 %; P = 97.0 %; SP = 99.2 %), but also for the force
intention (Acc = 98.8 %; S = 92.5 %; P = 93.2 %; SP =
99.4 %).
Although the identification based on the features Diff

has slightly better performance in average than the iden-
tification based on the features I, a repeated measures
ANOVA showed that there is no significant difference in
their distributions. Moreover, a small displacement in
the position of bipolar electrodes can have a great effect
on signal intensity, as well as on spectral content. Con-
sequently, if using Diff as features in classification, a
small displacement can have a high influence on the
identification performance. This effect does not exist in
feature I, making it more robust to small changes in the
position of the electrodes. On the other hand, the identi-
fication based on the combination of intensity and
spatial features significantly outperforms both of them.
This result was obtained both for identification of tasks
and identification of tasks and effort levels. Furthermore,
it has been shown that the classifier based on I + CG dis-
criminates between types of tasks at low levels of effort
(10 % MVC) significantly better than the classifiers
based on the other feature sets (Fig. 5).
The impedance between electrodes and skin changes

during time on account of several causes, e.g., drying of
conductive gel and sweating. Consequently, the identifi-
cation performance deteriorates as the time between the
training of the classifier and the identification increases.
When the identification is performed long after the
training of classifier, the results show that the identifica-
tion based on I + CG performs just slightly better than
the identification based on I features, while the identifi-
cation based on Diff features is much worse (SI+CG =
94 %, PI+CG = 95 %; SI = 93 %, PI = 94 %; SDiff = 83 %,
PDiff = 83 %). Although it may seem that, in average,
spatial features do not improve the classification with re-
spect to using only the intensity of an HD-EMG map, it
is important to outline that these results were obtained

Fig. 9 Fatigue influence on sensitivity using different sets of features:
Average sensitivity along the endurance contraction is shown for
classifiers based on different sets of features (I + CG, I, Diff). Symbol ”*”
indicates statistical significance p < 0.05

Fig. 10 Fatigue influence on precision using different sets of features:
Average precision along the endurance contraction is shown for
classifiers based on different sets of features (I + CG, I, Diff). Symbol ”*”
indicates statistical significance p < 0.05.”
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on contractions of high levels of effort (50 % MVC),
where performances were similar even when contrac-
tions were recorded at the same time (see Fig. 5).
Muscle fatigue also affects the recorded EMG signal

both in the time and spectral domains and therefore the
identification performance deteriorates with fatigue. The
results of this work show that the classifier based on in-
tensity and spatial features is less sensitive to fatigue
than classifiers based on the other feature sets. The pro-
posed classifier shows a very good performance in task
identification even at the final stage of fatigue (Acc =
91.3 %, S = 84.3 %, P = 87.0 %, SP = 93.5 %).
The proposed method could significantly improve the

human-machine interface technology and can be used in
numerous applications: computer games, exoskeletons,
automatic wheelchairs, rehabilitation robots, prostheses,
etc. As suggested by Müller-Putz et al. [44], non-invasive
hybrid brain-computer interfaces (BCI) can be designed
as EEG-based BCI supplemented with other biological
and mechanical signals. For example, they reported signifi-
cantly higher identification results for motion intention
when using a hybrid BCI system composed of EEG and
EMG sensory systems than when using only one of them.
EMG usually has higher SNR ratio than EEG and it is
widely used in the identification of the motion intention,
however, it is prone to malfunction due to fatigue. When
fatigue occurs, the supplemented EEG input keeps the
identification stable, and increases the robustness of the
system. Thus, advances in obtaining methods more robust
to fatigue or time effect are very interesting.
Some patients with neuromuscular impairment can

weakly activate their muscles, but insufficiently to gener-
ate a movement. In these patients, as well as in patients
that can generate only weak movements, HD-EMG
maps can be generated and used in identification of mo-
tion intention, as demonstrated in this study. This ap-
proach could supplement the existing BCI or inertial
sensors based prostheses and result in a device with a
better performance. For example, Rohm et al. [45] per-
formed a very interesting study with a single SCI patient.
Their neuroprosthesis consisted of a functional electrical
stimulation of the forearm and upper arm muscles, and
a semiactive elbow orthosis. Using BCI and a shoulder
joystick, the patient was able to perform complex hand
and elbow tasks from everyday life (e.g. eating an ice
cream cone). The reported performance of that study was
70 %, which was remarkable considering the fact that the
patient did not have any control over involved muscles.
However, performance of similar patients could be in-
creased using hybrid BCI if myoelectric activation exists.
Furthermore, compared to inertial signals, which are

also used as input to control devices, EMG has a major
advantage because myoelectric activation precedes the ac-
tual movement, which can save valuable response time.

However, it should be noted that although this study
represents an improvement in the identification of mo-
tion intention, additional experiments should be consid-
ered in the future. Firstly, HD-EMG recordings were
carried out during controlled isometric submaximal con-
tractions, i.e. patient’s arm was fixed and supported by a
mechanical brace. Since the methodology was capable to
successfully and automatically differentiate between
none, very low, low and medium effort levels, we might
hypothesized that the method can be useful in predic-
tion without the support of the brace. However, more
experiments without the brace and the analysis of the re-
corded HD-EMG signals would be necessary to confirm
and quantify this hypothesis.

Conclusion
In this study, the spatial distribution of EMG intensity
was evaluated for identification of tasks and different
levels of effort in patients with iSCI. Results show that
the spatial activation of motor units is dependent on the
type of exercise and contraction intensity, and that re-
lated features can improve identification performance.
Although results show that spatial features also enhance

the robustness of the identification to time effect and fa-
tigue, additional experiments need to be performed to test
robustness to temporal dependent changes more thor-
oughly and to determine when the classifier fails by fur-
ther tests done on fatigue.
The center of gravity was used as a figure of merit to

describe the spatial distribution. Although it shows a sig-
nificant improvement in classification, by definition it is
insensitive to fine changes in the distribution of muscle
units. Therefore, in future works, more appropriate mea-
sures of spatial distribution should be analyzed in order
to better describe the spatial distribution of muscle in-
tensity. Also, additional features as those related to the
frequency content could be considered to improve even
more the classification performance.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MRM and MAM implemented the experimental protocol and conducted the
experiments. MJ, MRM, and MAM designed the study and interpreted the
results. MJ was in charge of the implementation of signal processing and
machine learning methods and the analysis of the data. JFA aided in the
analysis of the data and in the interpretation of results. All authors read and
approved the final manuscript.

Acknowledgements
We are grateful to Ursula Costa and Josep Medina as assistant and Head of
the Functional Rehabilitation Service, respectively, of the Neurorehabilitation
Hospital Institut Guttmann for their collaboration in the recruitment of patients
and clinical support during the experiments carried out at the same Hospital.
This work has been partially supported by the Spanish Ministry of Economy
and Competitiveness- Spain (project DPI2014-59049-R). MJ is supported by
the grant for the recruitment of early-stage research staff (FI 2014) from the
AGAUR, Generalitat de Catalunya, Spain.

Jordanic et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:41 Page 10 of 11



Received: 21 November 2015 Accepted: 22 April 2016

References
1. Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition- based

myoelectric control of multifunctional transradial prostheses. IEEE Trans
Neural Syst Rehabil Eng. 2010;18(2):185–92.

2. Young AJ, Smith LH, Rouse EJ, Hargrove LJ. Classification of simultaneous
movements using surface EMG pattern recognition. IEEE Trans Biomed Eng.
2013;60(5):1250–8.

3. Stango A, Negro F, Farina D. Spatial Correlation of High Density EMG Signals
Provides Features Robust to Electrode Number and Shift in Pattern Recognition
for Myocontrol. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):189–98.

4. Vaca Benitez LM, Tabie M, Will N, Schmidt S, Jordan M, Kirchner EA.
Exoskeleton technology in rehabilitation: Towards an EMG-based orthosis
system for upper limb neuromotor rehabilitation. J Robot. 2013;2013:13.

5. Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N. Customized
interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans
Neural Syst Rehabil Eng. 2005;13(3):325–34.

6. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for
robotic movement training after neurologic injury. J Neuroeng Rehabil.
2009;6:20.

7. Hakonen M, Piitulainen H, Visala A. Current state of digital signal processing
in myoelectric interfaces and related applications. Biomed Signal Process
Control Elsevier Ltd. 2015;18:334–59.

8. Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B, Dietl H, et al. The
extraction of neural information from the surface EMG for the control of
upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural
Syst Rehabil Eng. 2014;22(4):797–809.

9. Oskoei MA, Hu H. Myoelectric control systems-A survey. Biomed Signal
Process Control. 2007;2(4):275–94.

10. Hargrove LJ, Englehart K, Hudgins B. A comparison of surface and
intramuscular myoelectric signal classification. IEEE Trans Biomed Eng. 2007;
54(5):847–53.

11. Zhang X, Zhou P. High-Density Myoelectric Pattern Recognition Toward
Improved Stroke Rehabilitation. IEEE Trans Biomed Eng. 2012;59(6):1649–57.

12. Scheme E, Englehart K. Training strategies for mitigating the effect of
proportional control on classification in pattern recognition-based
myoelectric control. J Prosthetics Orthot. 2013;25(2):76–83.

13. Boschmann A, Platzner M. Reducing the Limb Position Effect in Pattern
Recognition Based Myoelectric Control using a High Density Electrode
Array. ISSNIP Biosignals Biorobotics Conf. 2013;2013:1–5.

14. Young AJ, Hargrove LJ, Kuiken TA. Improving myoelectric pattern recognition
robustness to electrode shift by changing interelectrode distance and
electrode configuration. IEEE Trans Biomed Eng. 2012;59(3):645–52.

15. Li Y, Chen X, Zhang X, Zhou P. Several practical issues toward
implementing myoelectric pattern recognition for stroke rehabilitation. Med
Eng Phys. 2014;36(6):754–60.

16. Tkach D, Huang H, Kuiken TA. Study of stability of time-domain features for
electromyographic pattern recognition. J Neuroeng Rehabil. 2010;7:21.

17. Liu J, Zhou P. A novel myoelectric pattern recognition strategy for hand
function restoration after incomplete cervical spinal cord injury. IEEE Trans
Neural Syst Rehabil Eng. 2013;21(1):96–103.

18. Englehart K, Hudgins B, Parker PA, Stevenson M. Classification of the
myoelectric signal using time-frequency based representations. Med Eng
Phys. 1999;21(6-7):431–8.

19. Oskoei MA, Hu H. GA-based feature subset selection for myoelectric
classification. 2006 IEEE Int Conf Robot Biomimetics, ROBIO 2006. 2006;
1465–70

20. Merletti R, Botter A, Troiano A, Merlo E, Minetto MA. Technology and
instrumentation for detection and conditioning of the surface
electromyographic signal: State of the art. Clin Biomech. 2009;24(2):122–34.

21. Merletti R, Aventaggiato M, Botter A, Holobar A, Marateb H, Vieira TMM.
Advances in surface EMG: recent progress in detection and processing
techniques. Crit Rev Biomed Eng. 2010;38(4):305–45.

22. Vieira TMM, Merletti R, Mesin L. Automatic segmentation of surface EMG
images: Improving the estimation of neuromuscular activity. J Biomech.
2010;43(11):2149–58.

23. Holtermann A, Roeleveld K, Karlsson JS. Inhomogeneities in muscle activation
reveal motor unit recruitment. J Electromyogr Kinesiol. 2005;15(2):131–7.

24. Tucker K, Falla D, Graven-Nielsen T, Farina D. Electromyographic mapping of
the erector spinae muscle with varying load and during sustained
contraction. J Electromyogr Kinesiol. 2009;19(3):373–9.

25. Rojas-Martínez M, Mañanas MA, Alonso JF, Merletti R. Identification of
isometric contractions based on High Density EMG maps. J Electromyogr
Kinesiol. 2013;23(1):33–42.

26. Merletti R, Hermens H. Detection and Conditioning of the surface EMG
signal. Electromyography: Physiology, Engineering, and Noninvasive
Applications. New Jersey, USA: Wiley; 2004. p. 115–20.

27. Pizzigalli L, Ahmaidi S, Rainoldi A. Effects of sedentary condition and
longterm physical activity on postural balance and strength responses in
elderly subjects. Sport Sci Health. 2014;10(2):135–41.

28. Holobar A, Minetto MA, Botter A, Negro F, Farina D. Experimental Analysis
of Accuracy in the Identification of Motor Unit Spike Trains From High-
Density Surface EMG. IEEE Trans Neural Syst Rehabil Eng. 2010;18(3):221–9.

29. Rojas-Martínez M, Mañanas MA, Alonso JF. High-density surface EMG maps
from upper-arm and forearm muscles. J Neuroeng Rehabil. 2012;9:85.

30. Mañanas MA, Romero S, Topor ZL, Bruce EN, Houtz P, Caminal P. Cardiac
interference in myographic signals from different respiratory muscles and
levels of activity. 2001 Conf Proc 23rd Annu Int Conf IEEE Eng Med Biol Soc.
2001;2:1115–8

31. Staudenmann D, Roeleveld K, Stegeman DF, van Dieen JH. Methodological
aspects of SEMG recordings for force estimation - A tutorial and review.
J Electromyogr Kinesiol. 2010;20(3):375–87.

32. De Luca CJ. The use of surface electromyography in biomechanics. J Appl
Biomech. 1997;13(2):135–63.

33. Hermens H, Freriks B. SENIAM 9: European Recommendations for Surface
ElectroMyoGraphy, results of the SENIAM project (CD). Enschede, the
Netherlands: Roessingh Research and Development; 1999.

34. Wang Y, Li J, Li Y. Measure for data partitioning in m x 2 cross-validation.
Pattern Recognit Lett Elsevier Ltd. 2015;65:211–7.

35. Zimmer C, Sahle S. Comparison of approaches for parameter estimation on
stochastic models: Generic least squares versus specialized approaches.
Comput Biol Chem. 2016;61:75–85.

36. Farina D, Colombo R, Merletti R, Olsen HB. Evaluation of intra-muscular EMG
signal decomposition algorithms. J Electromyogr Kinesiol. 2001;11(3):175–87.

37. Searle A, Kirkup L. A direct comparison of wet, dry and insulating bioelectric
recording electrodes. Physiol Meas. 2000;21(2):271–83.

38. De Luca CJ. Myoelectrical manifestations of localized muscular fatigue in
humans. Crit Rev Biomed Eng. 1984;11(4):251–79.

39. Wan B, Xu L, Ren Y, Wang L, Qiu S, Liu X, et al. Study on fatigue feature
from forearm SEMG signal based on wavelet analysis. 2010 IEEE Int Conf
Robot Biomimetics, ROBIO 2010. 2010;1229–32

40. Greenhouse SW, Geisser S. On methods in the analysis of profile data.
Psychometrika. 1959;24(2):95–112.

41. Landa S, Everitt BS. A Handbook of Statistical Analyses using SPSS. Boca
Raton: Chapman & Hall/CRC; 2004.

42. Loftus GR, Masson ME. Using confidence intervals in within-subject designs.
Psychon Bull Rev. 1994;1(4):476–90.

43. Grouven U, Bergel F, Schultz A. Implementation of linear and quadratic
discriminant analysis incorporating costs of misclassification. Comput
Methods Programs Biomed. 1996;49(1):55–60.

44. Muller-Putz G, Leeb R, Tangermann M, Hohne JH, Kubler AK, Cincotti F, et al.
Towards Noninvasive Hybrid Brain–Computer Interfaces: Framework,
Practice, Clinical Application, and Beyond. Proc IEEE. 2015;103(6):926-943.

45. Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, et al.
Hybrid brain-computer interfaces and hybrid neuroprostheses for
restoration of upper limb functions in individuals with high-level spinal cord
injury. Artif Intell Med. 2013;59(2):133–42.

46. Kendall FP, Kendall McCreary E, Provance PG. Muscles: testing and function.
4th ed. New York: Williams & Wilkins; 1993.

Jordanic et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:41 Page 11 of 11


	Abstract
	Background
	Method
	Results
	Conclusion

	Background
	Method
	Measurements
	Instrumentation
	Experimental setup
	HD-EMG recordings

	HD-EMG maps and feature extraction
	HD-EMG maps calculation
	Feature extraction

	Identification of motion intention
	Classification
	Short-term identification
	Influence of time- progress on identification
	Influence of muscle fatigue on identification
	Statistical methods


	Results
	Short-term identification
	Influence of time on identification
	Influence of muscle fatigue on identification

	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

