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Abstract

Background: Cardiovascular magnetic resonance (CMR) myocardial native T1 mapping allows assessment of interstitial
diffuse fibrosis. In this technique, the global and regional T1 are measured manually by drawing region of interest in
motion-corrected T1 maps. The manual analysis contributes to an already lengthy CMR analysis workflow and impacts
measurements reproducibility. In this study, we propose an automated method for combined myocardium
segmentation, alignment, and T1 calculation for myocardial T1 mapping.

Methods: A deep fully convolutional neural network (FCN) was used for myocardium segmentation in T1 weighted
images. The segmented myocardium was then resampled on a polar grid, whose origin is located at the center-of-mass
of the segmented myocardium. Myocardium T1 maps were reconstructed from the resampled T1 weighted images using
curve fitting. The FCN was trained and tested using manually segmented images for 210 patients (5 slices, 11 inversion
times per patient). An additional image dataset for 455 patients (5 slices and 11 inversion times per patient), analyzed by
an expert reader using a semi-automatic tool, was used to validate the automatically calculated global and regional T1
values. Bland-Altman analysis, Pearson correlation coefficient, r, and the Dice similarity coefficient (DSC) were used to
evaluate the performance of the FCN-based analysis on per-patient and per-slice basis. Inter-observer variability was
assessed using intraclass correlation coefficient (ICC) of the T1 values calculated by the FCN-based automatic method and
two readers.

Results: The FCN achieved fast segmentation (< 0.3 s/image) with high DSC (0.85 ± 0.07). The automatically and manually
calculated T1 values (1091 ± 59ms and 1089 ± 59ms, respectively) were highly correlated in per-patient (r = 0.82;
slope = 1.01; p < 0.0001) and per-slice (r = 0.72; slope = 1.01; p < 0.0001) analyses. Bland-Altman analysis showed
good agreement between the automated and manual measurements with 95% of measurements within the
limits-of-agreement in both per-patient and per-slice analyses. The intraclass correllation of the T1 calculations by the
automatic method vs reader 1 and reader 2 was respectively 0.86/0.56 and 0.74/0.49 in the per-patient/per-slice
analyses, which were comparable to that between two expert readers (=0.72/0.58 in per-patient/per-slice analyses).

Conclusion: The proposed FCN-based image processing platform allows fast and automatic analysis of myocardial
native T1 mapping images mitigating the burden and observer-related variability of manual analysis.
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Introduction
Cardiovascular magnetic resonance (CMR) myocardial
native T1 mapping [1–5] enables quantification of inter-
stitial diffuse fibrosis [6] and has been increasingly used
in diagnosis and prognosis of different cardiomyopathies
[7, 8]. In myocardial T1 mapping, a set of T1 weighted
images are acquired by changing the time between the
preparation pulse and image acquisition [1–5] to gener-
ate different T1 weightings. The T1 value at each voxel is
then estimated by fitting an exponential relaxation curve
to the voxel intensities of the different T1 weighted
images [4, 9]. This necessitates that voxels align perfectly
on different images to avoid errors in estimation and
increase the reproducibility [4]. Both respiratory and car-
diac motion could cause artifact in T1 maps and should
be addressed during acquisition or post-processing step.
To minimize the impact of cardiac motion, T1 mapping
is acquired during systolic or diastolic quiescent period
within a short acquisition window [2, 10]. For respiratory
motion, both breath-holding [1, 2] and free-breathing using
slice tracking have been used [5, 11]. However, both
techniques still require post-processing motion correction
[12–14]. Numerous semi-automatic techniques are avail-
able to compensate this respiratory motion [12–14], how-
ever these methods are not effective in all patients [15].
T1 mapping analysis requires manual segmentation of

T1 maps from different slices [14]. Endocardial and
epicardial contours are drawn manually on the maps to
delineate the myocardial areas. Regional T1 values (e.g.
septal T1) can also be measured by drawing a region of
interest (ROI) in the desired area. However an experi-
enced reader is often needed for reproducible measure-
ments [6, 16]. Despite the availability of semi-automatic
and automatic techniques for cardiac cine [17–19] and
flow [20, 21] imaging, there is no software for auto-
matic analysis of myocardial tissue characterization
images. Therefore, there is a need for automating the
analysis of myocardial tissue characterization sequences
such as T1 mapping.
Recent advances in deep learning technologies,

namely convolutional neural networks, have shown
potential for fully automated segmentation of the left
[18, 19, 22–24] and right [24, 25] ventricles in cine
and myocardial scarring in late gadolinium enhance-
ment [26]. Deep convolutional neural networks
comprises several layers of linear and nonlinear oper-
ations with millions of functional parameters [27, 28].
The large number of network parameters allows rep-
resentation of objects with diverse appearance and
shape patterns. Deep learning based myocardium seg-
mentation pipelines usually employs a single convolu-
tional neural network architecture [24, 26]. However,
a cascade of different neural network architectures
has been also used to achieve different tasks such as

locating the heart within the imaging field of view
and extracting the myocardium boundaries [22, 25].
Also, combining classical image processing methods
(e.g. level sets and deformable models) with deep
learning has been proposed to refine the segmenta-
tion results [19, 23].
In this study, we propose to develop and evaluate a

fully automated analysis platform for myocardial T1

mapping using fully convolutional neural networks
(FCN) [27, 28]. The proposed method automates the
analysis of short-axis T1 weighted images to estimate the
myocardium T1 values. The performance of the pro-
posed approach was evaluated against manual T1

calculation.

Methods
The proposed workflow for automated T1 map analysis
is summarized in Fig. 1. In summary, the first step
includes FCN-based myocardium segmentation, with
additional automatic evaluation and refinement of the
segmented myocardium shapes. The second step
includes transformation of the segmented myocardium
within the different T1 weighted images onto a polar
coordinate system, which implicitly aligns the segmented
myocardium regions. The myocardium T1 maps are then
estimated (in the polar coordinate system) and trans-
formed to the Cartesian coordinates for conventional
map visualization. Validation of the proposed method
was accomplished by comparing the automatically calcu-
lated myocardium T1 values to a current state-of-the-art
semi-automatic T1 mapping technique [13]. Manual
analysis by two independent readers was used to assess
the inter-observer variability. Both per-slice and
per-patient analyses were performed for all validation
experiments. The following subsections provide further
insight into the steps.

Myocardium segmentation
Fully convolutional neural networks
A deep FCN based on the U-Net architecture [29] was
used for myocardium segmentation (Fig. 2). FCN is a
special class of neural networks where all the network
layers are based on convolutional sub-layers [29]. The
FCN input is a two-dimensional 256 × 256 T1 weighted
image, Ik,s(x,y), acquired at slice s (= 1 to 5) and inversion
time TIk (with k = 1 to 11), and the output is a binary
image, Bk,s(x,y), of the same size and with pixels labeled as
myocardium or background. Our network comprised 149
processing layers with a total of approximately 9 million
kernels. The basic structural unit in U-Net, referred to as
a bottleneck (Fig. 2)b, contains three functional layers:
batch-normalization which accelerates the network train-
ing [2, 30]; a rectified linear unit (ReLU) which introduces
the nonlinearities required to model complex operations
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involved in the image segmentation; and [3] spatial convo-
lution with a set of n kernels of size s × s × w, where the
values of s and w are as indicated in Fig. 2. The weights of
the convolutional kernels are the FCN parameters
that are estimated during the training process. Spatial
down-sampling (or up-sampling) operations are also
applied during convolution and are combined with
doubling (or halving) the number of kernels, n. To
prevent overfitting, a dropout layer is used in each
bottleneck to randomly (with 50% probability) pass or
block the processed data [31]. A cross-entropy loss
function was used to represent the network error and
an Adam optimizer was used to estimate the network
parameters [32]. A weight decay of 0.001 was used
for regularization [33]. The final stage in the FCN
network is a prediction block that generates two
probability maps representing the likelihood of each
pixel to belong to a background or a myocardium region.
A softmax layer is then used to produce a binary image
with pixels assigned 1 or 0 for myocardium or back-
ground, respectively.

Post processing and automated segmentation assessment
The binary image resulting from FCN segmentation was
enhanced through a set of post-processing operators.
First, an area-filter was applied to remove all segmented
objects with an area less than 5 cm2 and maintaining
only the largest segmented object. The segmented myo-
cardium was then automatically assessed for potential
shape errors; e.g. absence of an annulus shape. A proper
myocardium shape was quantified by two geometric
parameters: Euler number and Eccentricity. The Euler
number represents the number of holes in the object
and should equal zero for the typical annulus shape of

the myocardium in short axis slices. The Eccentricity
represents deviation from a perfect circle (= zero for a
circle and = 1 for a line segment). The training dataset
was analyzed to determine the typical range of myocar-
dium eccentricity and the maximum was 0.65. If the
segmented myocardium has Euler number ≠0 or eccen-
tricity > 0.65, it is marked as an improper segmentation
and becomes eligible for automatic shape refinement.

Automatic segmentation refinement
Given an image, Ik,s(x,y), and its segmentation, Bk,s(x,y),
that was identified to have a segmentation shape error,
the binary image, B∞, s(x,y), resulting from segmenting
the image with the longest inversion time was used to
refine Bk,s(x,y). The image with the longest inversion
time was chosen due to its high myocardium-to-blood
contrast which leads to increased segmentation reliabil-
ity. The refinement was done by applying an affine
transformation (translation, rotation and scaling) to the
binary image B∞, s(x,y) to obtain a refined binary image
B̃k,s(x,y) with maximum overlap with Bk,s(x,y). It is worth
noting that if B∞, s(x,y) was found to have segmentation
error, no refinement was done and the image Bk,s(x,y)
was excluded from analysis. An image segmentation is
considered successful if a myocardium with a valid
shape is produced (whether automatic refinement was
applied or not).

T1 map reconstruction and analysis
To align the myocardium regions in different T1

weighted images, the segmented myocardium in a given
image, Ik,s(x,y), was transformed to polar coordinates on
a uniform grid (Additional file 1: Figure S1). The origin of
the polar coordinates was located at the center-of-mass of

Fig. 1 Pipeline for myocardium T1 map reconstruction. The myocardium in an input T1 weighted (T1w) image is first segmented using a fully
convolutional neural network (FCN). The segmented myocardium is refined if needed (see text for details) and transformed into polar coordinates. All
T1w images at a given slice are used to estimate the myocardium T1 map, which is displayed after applying inverse polar transformation
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the segmented myocardium. The transformation was
achieved by sampling the myocardium intensities along
360 radial rays, with angular spacing of 1o, from the origin
to the epicardium. A number of C intensity values were
sampled between the endocardium and the epicardium
along each ray. The result was a rectangular image,
Pk,s(m,n), of size C × 360, which represents a temporary
image in the polar coordinates, where the T1 map is gen-
erated and then inverse transformed to the Cartesian
coordinates. To avoid loss of data during transformation;
i.e. avoid many-to-one transformation, C was arbitrary
fixed to a value (= 20) that is larger than the maximum
myocardium thickness found in the training set (= 15
pixels). The set of all transformed images at a given slice
location, Pk,s(m,n) for all inversion times k (= 1 to 11), was
then used to estimate the myocardium T1 map,
MAPs(m,n), at the given slice. This was achieved by per-
forming pixel-wise curve fitting of a 2-parameter model to

the myocardium intensities, Pk,s (m,n) for all k values [5].
T1 map reconstruction was done only for slices with at
least 8 successfully segmented T1 weighted images. Finally,
the resulting 20 × 360 T1 map was inverse transformed to
the Cartesian coordinates. While any of the T1 weighted
images could be used as a reference for the inverse polar
transformation, the image with shortest inversion time
was used to match the reference of the semi-automatic
method. Inverse polar transformation is accomplished by
determining the polar coordinate of each myocardium
point on the Cartesian grid of the reference image and
estimating its T1 value using bilinear interpolation of the
reconstructed polar T1 map.
The pixels in sub-endo and sub-epicardial borders

were excluded in automatic measurements to mimic the
manual analysis. This was accomplished by automatically
pruning the segmented myocardium, where the myocar-
dium skeleton (i.e., central contour of 1 pixel width) [34]

Fig. 2 The fully convolutional neural network architecture (a) comprises a number of building blocks, referred to as bottlenecks (b). An input
256 × 256 image undergoes a series of convolutions (Conv), nonlinear rectifications (ReLU), and batch normalizations (Norm). Down-sampling (↓)
and up-sampling (↑) of the processed images are applied in the contracting and expansion paths, respectively. The l, k, m, and n values in (b) are
determined by the image size and number of channels at the input and output of each bottleneck as shown in (a)
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was extracted and dilated (using image morphological
operator) to one-third of the segmented myocardium
mean wall thickness. The thickness was chosen arbitrary
and could be changed manually.
The global and regional myocardium T1 values were

calculated by averaging the T1 values in the recon-
structed maps over all 5 slices and over each slice,
respectively. Any pixel with a T1 value outside the
acceptance range for native T1 at 1.5 T (i.e. 850 ms to
1500 ms) was excluded from the average T1 calculations.

Image acquisition
We prospectively recruited 665 consecutive patients
(526 male; age 56 ± 15 years) with known or suspected
cardiovascular diseases referred for a clinical CMR exam
during the period from 2014 to 2017. All patients pro-
vided consent at the time of examination for use of their
imaging data in research; the imaging protocol was
approved by the Institutional Review Board. Patient data
was handled in compliance with the Health Insurance
Portability and Accountability Act. Imaging was
performed using a 1.5 T Philips Achieva system (Philips
Healthcare, Best, The Netherlands) with a 32-channel
cardiac coil. The imaging protocol included free-breathing,
respiratory-navigated, slice-interleaved T1 (STONE)
sequence [5] with the following parameters: TR/TE = 2.7/
1.37ms, FOV= 360 × 351mm2, acquisition matrix = 172 ×
166, voxel size = 2.1 × 2.1mm2, linear ordering, SENSE
factor = 1.5, slice thickness = 8mm, bandwidth = 1845Hz/
pixel, diastolic imaging, and flip angle = 70o. Each patient
imaging set was comprised of 55 images representing a
stack of five short axial slices covering the left ventricle
(LV) from base to apex. At each slice location, eleven T1

weighted images were acquired at eleven different inversion
times, TI, (= ∞, 115ms, 115ms + RR, 115ms + 2 RR, …,
115ms + 4 RR, 350ms, 350ms + RR, …, 350ms + 4 RR;
and RR is duration of the cardiac cycle) [5]. The matrix size
of all images was unified to 256 × 256.
The image dataset was split into two subsets for: 1)

FCN training and testing and 2) validation of the T1 cal-
culations. The first dataset contained 210 patients (134
male; 57 ± 14 years; total of 11,550 T1 weighted images)
and was used to train and test the proposed FCN net-
work. The myocardium of the LV in each image was
manually segmented (HE, 4 year experience in medical
image analysis); the resulting binary image was used as
the segmentation reference standard. The dataset was
then split at random into training and testing subsets
containing 63 patients (total of 3465 images) and 147
patients (total of 8085 images), respectively.
The second image subset contained 455 patients (392

male; 56 ± 15 years) and was used to assess the agree-
ment between T1 values computed by the automated
versus the manual analysis. An experienced reader (SN,

with 8 year CMR experience) used an in-house T1 map
reconstruction tool to estimate T1 values for each
myocardium slice [13]. First, for each slice, the reader
manually delineated the endocardium on a reference T1

weighted image. Then, intensity-based similarity metrics
were used to estimate the global LV motion of the T1

weighted images relative to the reference T1 weighted
image. A regularized optical flow based method was
then used to refine the image registration of the regis-
tered T1 weighted images to the reference using an
optical flow based algorithm [13]. The resulting T1 maps
were then manually processed to select a ROI within the
myocardium that excluded all areas suspected of
imaging or mapping artifacts. To assess the inter-observer
variability, a subset of 40 patients (24 male; age 56 ± 11.7
years) was selected at random and manually processed by
a second reader (MN, with 5 year CMR experience) to re-
construct and analyze the T1 maps as described above.

Implementation and evaluation
Network training was performed for 48 h (number of
iterations = 6700) using a manually annotated dataset
described below. The intensity dynamic range of each
image was normalized by subtracting the mean and
dividing by the standard deviation (SD) of the image
pixel intensities. A transfer learning approach was
employed to speed up training and to mitigate the
requirement of large training datasets [35, 36]. That is,
instead of random initialization of the network parame-
ters, we re-used the optimal parameter values of a previ-
ously trained FCN. The re-used FCN had the same
architecture as the current network and was trained
(using 6305 images from 831 patients) to segment the
myocardium in late gadolinium enhancement CMR
images [26]. Image augmentation was also used to
reduce overfitting [37], where each training image pair
(T1 weighted image and its corresponding manually seg-
mented image) was used to synthesize a number of
training image pairs. Several methods of image augmen-
tation were presented in literature, where geometric
and/or intensity transformations can be used to synthe-
tize the training images [38]. In our network, no inten-
sity transformation was used for image augmentation
because of the naturally high dynamic range of the
image intensities and contrast in the T1 weighted images.
Geometric image transformation was used through ran-
dom translation, mirroring and elastic deformation of
the training images with probabilities of 0.95, 0.95, 0.5,
respectively. The FCN segmentation error was measured
as by a cross-entropy loss function (between the FCN
output and the manual segmentation). For network par-
ameter estimation, the loss function was optimized using
the Adam method with a learning rate of 0.001 and
exponential decay rate [32].
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The performance of the FCN network for myocardial
segmentation was evaluated using the independent test-
ing images. Dice similarity coefficient (DSC) was used to
measure the overlap between the automatically and
manually segmented myocardium in each testing image.
The DSC ranges from 0 to 1 with higher values indicat-
ing higher similarity in shape between the automatically
and manually segmented regions [39].
Network training and testing was performed on an Intel

Core i7-6700 K CPU workstation with NVIDIA GeForce
GTX Titan 12GB GPU. The network was implemented
using Python (Python Software Foundation, Wilmington,
Delaware, USA) with Tensorflow machine learning frame-
work (Google Inc., California, USA).

Data analysis
Calculated T1 values were expressed as mean ± SD per
patient and per slice. The performance of the automatic
T1 analysis was evaluated by analyzing the agreement
between the automated and manual T1 calculations. The
Pearson correlation coefficient, r, was used to examine
the linear relationship (with zero intercept) between
the automated and manual T1 calculations. The
Bland-Altman analysis was also used to assess the
biases and limits of agreement between automated
and manual T1 calculations.
Intraclass correlation coefficient (ICC) was used to as-

sess inter-observer agreement. Inter-observer agreement
was assessed between each pair of observers: automatic
vs reader 1, automatic vs reader 2, and reader 2 vs
reader 1. Intra-observer variability of the presented map-
ping and analysis method is deterministically zero (due
to full automation) and thus was not studied using a
dedicated experiment. All analyses were done on a
per-patient and per-slice basis. All statistical analyses

were performed using the statistical toolbox of Matlab
(Mathworks Inc., Natick, Massachusetts, USA).

Results
The FCN successfully segmented the myocardium in 7382
testing images (91.3% of 8085 images) with an overall
DSC score of 0.85 ± 0.07 (Fig. 3) after applying refine-
ments. The computation time for segmenting a single T1

weighted image was less than 0.3 s. Automatic refinement
of the myocardium segmentation was done to 241 images
(3% of 8085 images) (Additional files 2: Figure S2 and
Additional file 3: Figure S3). Table 1 summarizes the num-
ber of slices with correct, failed or refined segmentation.
The FCN segmentation of the myocardium showed good
overlapping with the manually segmented myocardium
with mean DSC greater than 0.82 in all slices at all inver-
sion times (Figs. 3 and 4). In the mapping validation
images (2275 T1 maps for 455 patients), automatic recon-
struction of T1 maps was successful in 1982 slices (87.1%
of 2275 slices) in 449 patients (98.7% of 455 patients). The
success rate of map reconstruction in the non-apical slices
(1682 slices; 92.4% of 1820 slices) was higher than that in
the apical slices (300 slices; 65.9% of 455 slices). The auto-
matically and manually calculated T1 values within the
myocardium ROI (Fig. 5) averaged over all patients were
1091 ± 59ms and 1089 ± 59ms, respectively. The auto-
matically reconstructed T1 maps showed a strong correl-
ation with the manually reconstructed T1 values in
per-patient (r = 0.82; slope = 1.01; p < 0.0001; 449 patients)
(Fig. 6)a and per-slice (r = 0.74; slope = 1.01; p < 0.0001;
2275 slices) analyses (Fig. 6) b. The correlation between
the automatic and manual T1 mean values were compar-
able across the five slice locations (r/slope = 0.74/1.03,
0.76/1.02, 0.73/1.0, 0.76/1.01, and 0.75/1.01 for the 5 slices
from apex to base respectively; p < 0.0001 for all slice loca-
tions). The automated and manual T1 calculations were in

Fig. 3 The Dice similarity coefficient of the automatic segmentation averaged over 147 patients (7382 images) categorized by inversion time (a)
and slice location (b). Error bars represent standard deviation
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good agreement with 95% of the measurements located
between the limits-of-agreement lines in per-patient (9.6
± 86.6ms) and per-slice (12.9 ± 110.1 ms) analyses (Fig. 7).
The automated T1 calculations showed good agreement
with the manual calculations in the per-patient (ICC =
0.86 and 0.74 for automatic vs. reader 1 and reader 2,
respectively) and per-slice (ICC = 0. 56 and 0.49 for auto-
matic vs. reader 1 and reader 2, respectively) analyses
(Table 2). The ICC between the two expert readers was
0.72 and 0.58 in the per-patient and per-slice analyses,
respectively. The average computation time for generating
a T1 map of one slice was less than 15 s (segmentation
and refinement = 5 s, polar transformation = 7.5 s, curve
fitting = 1.5 s).

Discussion
In this work, we introduced an automated method for
combined segmentation, alignment, and T1 estimation
of the myocardium. Myocardium segmentation was
achieved using a deep learning approach where a FCN
was used to segment the myocardium in all slice loca-
tions and all inversion times. Typically, multiple shape
and appearance models are needed to capture the wide
variation of myocardium shapes and intensity patterns in
different T1 weighted images [14]. However, despite
highly variable shapes and intensity patterns in the
images, the employed FCN showed good performance as
assessed by DSC. The developed FCN-based analysis
platform showed the potential to mitigate the require-
ment of tedious manual T1 mapping analysis, with good
agreement between automatic and manual calculations.
Furthermore, inter-observer variability of the automatic
vs manual calculations was comparable to that between
the two expert readers.
In this work, we employed the same deep neural net-

work architecture (Unet) that we previously trained and
used to segment the myocardium and scar in short-axis
late gadolinium enhancement (LGE) images [26]. We
also used the estimated network weights of the previ-
ously trained network to initialize the weights of our
network. Deep neural network architectures requires a

large training set to allow generalization of the trained
model through seeing all potential variations of the
images [36]. In our study, limited size of the training
image sets was supported by employing two standard
techniques for improving network training; namely, data
augmentation and transfer learning [35, 36]. Data aug-
mentation has been shown previously to be effective to
reduce over-fitting and thus boost the segmentation per-
formance in images from outside the training set [40, 41].
Also, transfer learning approach was shown to outperform
training-from-scratch approach (i.e. initialization of net-
work parameters using random values) [42]. Networks
trained using transfer learning approach were also shown
to be more robust to the size of training sets compared to
networks trained from scratch [42]. Several techniques
based on deep learning have been proposed and evaluated
for the segmentation of cine images [18, 19, 22–24, 43–
45]. Network design varied among the different methods
and included using only one fully convolutional neural
network [24, 44], multi-stage convolutional neural net-
works [45], or cascaded convolutional and auto-encoder
networks [25]. Convolutional neural networks have been
also combined with classical image processing techniques
such as deformable models [19] and level sets [23] aiming
to refine the segmentation results. These methods
achieved high segmentation accuracy of the LV cavity
(DSC =0.9–0.94) but determining the parameters of the
refinement algorithm can be a limitation. Oktay et al.
showed that applying anatomical shape constraints to
the convolutional neural networks can improve the
segmentation accuracy without a need for a refine-
ment step [43]. A non-convolutional neural network
model was also proposed for cine image segmenta-
tion, where the segmentation problem was formulated
as parameter regression rather than conventional pixel
classification. In this formulation, the network was
trained to estimate the radial distance between the
myocardium boundary points and the myocardium
centroid [18]. Any of these methods can be readily
incorporated into our analysis framework. However,
further investigation is warranted to adapt these

Table 1 The number of images with correct, failed or refined segmentation reported for 147 patients (total of 7382 images) and
categorized by the slice location and inversion time (TI)

TI (ms)a 115 350 1115 1350 2115 2350 3115 3350 4115 4350 ∞

Number of Images Correct 597 649 637 634 643 654 664 662 665 668 668

Failed 82 59 61 63 65 61 61 61 61 62 67

Refined 56 27 37 38 27 20 10 12 9 5 0

Slice location 1 (apical) 2 3 4 5 (basal)

Number of Images Correct 1093 1393 1533 1560 1562

Failed 432 165 43 38 25

Refined 92 59 41 19 30
aAssuming cardiac cycle duration of 1000 ms

Fahmy et al. Journal of Cardiovascular Magnetic Resonance            (2019) 21:7 Page 7 of 12



Fig. 4 Automatic (a) and the corresponding manual (b) segmentation of T1 weighted images for five slices (columns) and four different inversion
times (rows) for one patient
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methods to segment T1 weighted images and evaluate
T1 map analysis.
Unlike current T1 mapping analysis methods that

require explicit image registration of the T1 weighted
images prior to T1 map reconstruction [12–14], our
method inherently aligns the myocardium regions
through polar transformation. For example, maintaining
the location of the origin point of the polar coordinates
at the center-of-mass of the segmented myocardium

results in inherent correction of the global translational
heart motion [46]. Also, resampling of the segmented
myocardium via a uniform polar grid results in
non-rigid alignment of the myocardium across all T1

weighted images. Utilization of geometric transforma-
tions leads to image alignment that is independent of
the image intensity and contrast, and thus overcomes a
limitation of conventional intensity-based image regis-
tration methods [12–14]. The proposed workflow did

Fig. 5 Myocardial T1 mapping at five short axial slices (apex to base from left to right respectively) of the left ventricle of one patient. Automatically
reconstructed map before (a) and after (b) pruning overlaid on a T1 weighted image with shortest inversion time; (c) Manually reconstructed T1 map.
The contours in (c) represent the myocardium region of interest manually selected by the reader

Fig. 6 Scatter plots of the automatic versus manual myocardium T1 values averaged over the patient volume (a) and each imaging slice (b). Solid
lines represent the unity slope line
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not include an explicit motion correction and instead re-
lied on polar transformation and alignment to compen-
sate for motion. An alternative approach is to apply
motion correction to the T1 weighted images,
reconstruct the T1 maps, and then use deep-learning
based segmentation of myocardium from T1 maps.
While this approach can be simpler, it might be limited
by cascading the errors of the motion correction and the
segmentation steps. Also, training the network to seg-
ment the myocardium in presence of residual motion
artifacts can be challenging. A dedicated study is needed
to investigate the performance of this workflow.
The polar grids have been previously used to register

the myocardial strain and displacement maps using
ultrasound imaging [47, 48]. The myocardium contours
were first extracted at each cardiac time frame by means
of semi-automatic tracking and then a polar grid was
used to accumulate the displacement values of the
deforming myocardium. One limitation of our method is
that inaccurate myocardium segmentation can lead to
erroneous T1 maps especially at the boundaries. How-
ever, T1 mapping errors at the myocardium boundaries
are common to T1 mapping techniques due to partial
volume effects and/or residual uncompensated motion
effects, which necessitate manual exclusion of erroneous
regions. In our method, these errors can be reduced by
automatic pruning of the segmented myocardium.

The automatic refinement used in this work is a
simple form of affine binary image registration, where
the best segmentation mask is aligned with any given
mask at the same slice location that has improper
myocardium shape. An additional advantage of this
approach is the efficient computations that result from
confining image alignment and curve fitting to the myo-
cardium regions-of-interest, rather than the entire
field-of-view [13, 14].
The automated T1 calculations showed strong agree-

ment with manual calculations in both per-patient and
per-slice comparisons. Residual biases in automated T1

calculations might not necessarily correspond to T1 esti-
mation errors and may be due to the inherent differ-
ences between the two methods of reconstructing and
analyzing the T1 maps. In 12.9% of the slices, the myo-
cardium was detected in less than eight T1 weighted
images, which we set as the minimum number of T1

weighted images per slice required for T1 map recon-
struction. These slices can be processed using manual or
semi-automatic analysis. Alternatively, reconstruction
might be allowed using fewer T1 weighted images to
increase the success rate but might impact the accuracy
of the T1 calculations. The failed reconstruction cases
were mostly apical slices where the success rate (66%)
was lower compared non-apical slices (92%). This is
directly related to the higher segmentation failure of the
myocardium at the apical slices, which is commonly
encountered in myocardial segmentation techniques due
to the blurred myocardium boundaries caused by
motion artifacts or partial voluming [49, 50].
In our study, we used STONE sequence for T1 map-

ping, which results in 11 T1 weighted images spanning a
relatively high dynamic range (due to the use of inver-
sion recovery pulses). Training the FCN with images of
diverse contrast, combined with data augmentation, and
allowed a higher level of abstraction in learning the
important image features. The roughly similar image
contrast and dynamic range between STONE and other
inversion recovery based techniques warrants validation

Fig. 7 Bland-Altman plots of the automatic versus manual myocardium T1 values averaged over the patient volume (a) and each imaging slice
(b). Solid and dashed lines represent the bias and ± 2SD limits, respectively

Table 2 Inter-observer analysis of the automated and
manually calculated myocardium T1 maps in per-patient and
per-slice analyses

Per-patient Per-slice

Automatic vs
Reader 1

ICC = 0.86; CI = 0.74–0.92 ICC = 0.56; CI = 0.44–0.67

Automatic vs
Reader 2

ICC = 0.74; CI = 0.55–0.86 ICC = 0.49; CI = 0.36–0.61

Reader 2 vs
Reader 1

ICC = 0.72; CI = 0.53–0.84 ICC = 0.58; CI = 0.48–0.67

ICC intraclass correlation coefficient; CI = 95% confidence interval
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of extending our trained FCN-based method to auto-
mate T1 map analysis in other mapping sequences such
as modified Look-Locker inversion recovery (MOLLI)
and [1] and shortened modified Look-Locker inversion
recovery (ShMOLLI) [2]. Extension of our trained FCN
to segment saturation-recovery based sequences such as
saturation recovery single-shot acquisition (SASHA) [3],
or combined inversion-recovery and saturation-recovery
such as SAPPHIRE [4], are yet to be studied to investi-
gate its reliability for analyzing T1 weighted images with
inherent elevated noise levels. The additional
post-processing of the FCN output was needed to
correct for improper automatic segmentation of the LV
structure. Alternative training strategies, including train-
ing of a separate network for each T1 weighted image,
may be useful to improve the FCN performance and
avoid heuristic post-processing. One limitation of this
study is the lack of a ground truth for the myocardial T1

maps. Also, we did not investigate the capacity of the
proposed analysis method to automate post-contrast T1

mapping and extracellular volume (ECV) mapping.

Conclusion
The proposed FCN-based image processing platform
allows fast and automatic analysis of myocardial native
T1 mapping images mitigating the burden and
observer-related variability of manual analysis.

Additional files

Additional file 1: Figure S1. Transformation of the segmented
myocardium into a uniform grid of size 20 × 360 in the polar coordinates.
The origin of the polar coordinates is located at the center of mass of
the segmented myocardium. (DOCX 115 kb)

Additional file 2: Figure S2. Example results of the automatic
segmentation before and after refinement. (DOCX 470 kb)

Additional file 3: Figure S3. Effect of area filter on the output of the
neural network. (a) input T1 weighted image; (b,c) network output before and
after area filtering, respectively; (d) manual segmentation. (DOCX 225 kb)

Abbreviations
CI: Confidence interval; CMR: Cardiovascular magnetic resonance; DSC: Dice
similarity coefficient; ECV: Extracellular volume; FCN: Fully convolutional
neural network; GRE: Gradient recalled echo; ICC: Intraclass correlation
coefficient; LV: Left ventricle; MOLLI: Modified Lock-Looker inversion recovery;
ROI: Region of Interest; SAPPHIRE: Saturation pulse prepared heart rate
independent inversion-recovery; SASHA: Saturation recovery single-shot ac-
quisition; SD: Standard deviation; ShMOLLI: Shortened modified Lock-Looker
inversion recovery; SNR: Signal to noise ratio; STONE: Slice-interleaved T1;
TE: Time of echo; TI: Inversion time; TR: Time of repetition

Acknowledgments
We thank Jennifer Rodriguez for editing the manuscript.

Funding
Research reported in this publication was supported in part by National
Institutes of Health under award numbers: 5R01HL129185, 1R01HL129157-01A1
and AHA 15EIA22710040.

Availability of data and materials
The datasets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Authors’ contributions
Author contribution are as following; conception and study design (ASF, RN),
development of algorithms and analysis software (ASF,HAE), data collection
and protocol design (SN,RN), image reading (SN, MN), data analysis (ASF, SN,
MN), interpretation of data and results (ASF,RN), drafting (ASF, RN), revising
(RN). All authors read and approved the final manuscript.

Authors’ information
Ahmed S. Fahmy,PhD; Department of Medicine (Cardiovascular Division),
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston,
Massachusetts, USA. Hossam El-Rewaidy, MS; Department of Medicine (Car-
diovascular Division), Beth Israel Deaconess Medical Center and Harvard
Medical School, Boston, Massachusetts, USA. Maryam Nezafat, PhD Depart-
ment of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical
Center and Harvard Medical School, Boston, Massachusetts, USA. Shiro Naka-
mori, MD; Department of Medicine (Cardiovascular Division), Beth Israel Dea-
coness Medical Center and Harvard Medical School, Boston, Massachusetts,
USA. Reza Nezafat, PhD (corresponding author); Department of Medicine
(Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard
Medical School, Boston, Massachusetts, USA.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board at Beth Israel
Deaconess Medical Center, Harvard University. All subjects provided
informed consent for research participation.

Consent for publication
Not applicable.

Competing interests
RN holds a patent on a system for tissue characterization using multi-slice
magnetic resonance imaging (US Patent 2015/0323630). The authors declare
that they have no other competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Medicine, Beth Israel Deaconess Medical Center and Harvard
Medical School, 330 Brookline Ave, Boston, MA 02215, USA. 2Biomedical
Engineering Department, Cairo University, Cairo, Egypt.

Received: 12 July 2018 Accepted: 5 December 2018

References
1. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU,

Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-
resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6.

2. Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S,
et al. Shortened modified look-locker inversion recovery (ShMOLLI) for
clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat
breathhold. J Cardiovasc Magn Reson. 2010;12(1):69.

3. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB.
Saturation recovery single-shot acquisition (SASHA) for myocardial T1
mapping. Magn Reson Med. 2014;71(6):2082–95.

4. Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al.
Accuracy, precision, and reproducibility of four T1 mapping sequences: a
head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE.
Radiology. 2014;272(3):683–9.

5. Weingärtner S, Roujol S, Akçakaya M, Basha TA, Nezafat R. Free-breathing
multislice native myocardial T1 mapping using the slice-interleaved T1
(STONE) sequence. Magn Reson Med. 2015;74(1):115–24.

6. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P,
et al. Clinical recommendations for cardiovascular magnetic resonance
mapping of T1, T2, T2* and extracellular volume: a consensus statement by

Fahmy et al. Journal of Cardiovascular Magnetic Resonance            (2019) 21:7 Page 11 of 12

https://doi.org/10.1186/s12968-018-0516-1
https://doi.org/10.1186/s12968-018-0516-1
https://doi.org/10.1186/s12968-018-0516-1


the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the
European Association for Cardiovascular Imagi. J Cardiovasc Magn Reson.
2017;19(1):75.

7. Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, et al. T1
mapping in cardiomyopathy at cardiac MR: comparison with
endomyocardial biopsy. Radiology. 2012;265(3):724–32.

8. Puntmann VO, Carr-White G, Jabbour A, Yu C-Y, Gebker R, Kelle S, et al. T1-
mapping and outcome in nonischemic cardiomyopathy. JACC Cardiovasc
Imaging. 2016;9(1):40–50.

9. Akçakaya M, Weingärtner S, Roujol S, Nezafat R. On the selection of
sampling points for myocardial T1 mapping. Magn Reson Med. 2015;73(5):
1741–53.

10. Ferreira VM, Wijesurendra RS, Liu A, Greiser A, Casadei B, Robson MD, et al.
Systolic ShMOLLI myocardial T1-mapping for improved robustness to
partial-volume effects and applications in tachyarrhythmias. J Cardiovasc
Magn Reson. 2015;17(1):77.

11. Jyun-Ming T, Teng-Yi H, Yu-Shen T, Yi-Ru L. Free-breathing MOLLI:
application to myocardial T1 mapping. Med Phys. 2012;39(12):7291–302.

12. Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly M-P, et al. Motion
correction for myocardial T1 mapping using image registration with
synthetic image estimation. Magn Reson Med. 2012;67(6):1644–55.

13. Roujol S, Foppa M, Weingärtner S, Manning WJ, Nezafat R. Adaptive
registration of varying contrast-weighted images for improved tissue
characterization (ARCTIC): application to T1 mapping. Magn Reson Med.
2015;73(4):1469–82.

14. El-Rewaidy H, Nezafat M, Jang J, Nakamori S, Fahmy AS, Nezafat R. Nonrigid
active shape model-based registration framework for motion correction of
cardiac T1 mapping. Magn Reson Med. 2018;80(2):780–91.

15. Bellm S, Basha TA, Shah RV, Murthy VL, Liew C, Tang M, et al. Reproducibility
of myocardial T1 and T2 relaxation time measurement using slice-
interleaved T1 and T2 mapping sequences. J Magn Reson Imaging. 2016;
44(5):1159–67.

16. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et
al. Myocardial T1 mapping and extracellular volume quantification: a Society
for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of
the European Society of cardiology consensus statement. J Cardiovasc
Magn Reson. 2013;15(1):92.

17. Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional
neural network and 3D deformable approach for tissue segmentation in
musculoskeletal magnetic resonance imaging. Magn Reson Med. 2017;79(4):
2379–91.

18. Tan LK, Liew YM, Lim E, McLaughlin RA. Convolutional neural network
regression for short-axis left ventricle segmentation in cardiac cine MR
sequences. Med Image Anal. 2017;39:78–86.

19. Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and
deformable-model approach to fully automatic segmentation of the left
ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.

20. Schnell S, Entezari P, Mahadewia RJ, Malaisrie SC, McCarthy PM, Collins JD,
et al. Improved semi-automated 4D-flow MRI analysis in the aorta in
patients with congenital aortic anomalies vs tricuspid aortic valves. J
Comput Assist Tomogr. 2016;40(1):102–8.

21. Goel A, McColl R, King KS, Whittemore A, Peshock RMA. Fully automated
tool to identify the aorta and compute flow using phase-contrast MRI:
validation and application in a large population based study. J Magn Reson
Imaging. 2014;40(1):221–8.

22. Yang X, Zeng Z, Yi S. Deep convolutional neural networks for automatic
segmentation of left ventricle cavity from cardiac magnetic resonance
images. IET Comput Vis. 2017;11(8):643–9.

23. Ngo TA, Lu Z, Carneiro G. Combining deep learning and level set for the
automated segmentation of the left ventricle of the heart from cardiac cine
magnetic resonance. Med Image Anal. 2017;35:159–71.

24. Tran PV. A fully convolutional neural network for cardiac segmentation in
short-Axis MRI. ArXiv: 1604.00494. 2016;

25. Avendi MR, Kheradvar A, Jafarkhani H. Automatic segmentation of the right
ventricle from cardiac MRI using a learning-based approach. Magn Reson
Med. 2017;78(6):2439–48.

26. Fahmy AS, Rausch J, Neisius U, Chan RH, Maron M, Appelbaum E, et al.
Automated cardiac MR scar quantification in hypertrophic cardiomyopathy
using deep convolutional neural networks. JACC Cardiovasc Imaging. 2018;
2677. https://doi.org/10.1016/j.jcmg.2018.04.030.

27. Kayalibay B, Jensen G, van der Smagt P. CNN-based segmentation of
medical imaging data. ArXiv: 1701.03056. 2017

28. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev
Biomed Eng. 2017;19:221–48.

29. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical
image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors.
Medical image computing and computer-assisted intervention -- MICCAI 2015:
18th international conference, Munich, Germany, October 5–9, 2015, vol. 3.
Cham: Springer International Publishing; 2015. p. 234–41.

30. Ioffe S, Szegedy C. Batch Normalization: Accelerating deep network training
by reducing internal covariate shift. ArXiv:1502.03167. 2015;

31. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. J Mach Learn Res.
2014;15:1929–58.

32. Kingma DP, Ba J. Adam: a method for stochastic optimization. In:
Proceedings of international conference on learning representations. 2015.

33. Krogh A, Hertz JA. Simple weight decay can improve generalization. In:
Advances in neural information processing systems (NIPS)-Volume 4. USA:
Morgan-Kaufmann; 1992. p. 950–7.

34. Maragos P, Schafer R. Morphological skeleton representation and coding of
binary images. IEEE Trans Acoust. 1986;34(5):1228–44.

35. Bengio Y. Deep Learning of Representations for Unsupervised and Transfer
Learning. In: Proceedings of the 2011 International Conference on
Unsupervised and Transfer Learning Workshop, vol. 27; 2011. p. 17–37.

36. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional
neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–98.

37. Hussain Z, Gimenez F, Yi D, Rubin D. Differential data augmentation techniques
for medical imaging classification tasks. AMIA Annu Symp Proc. 2017;2017:979–84.

38. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. In: proceedings of the 25th international
conference on neural information processing systems, vol. 1. USA: Curran
Associates Inc; 2012. p. 1097–105.

39. Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, et al.
Statistical validation of image segmentation quality based on a spatial
overlap index1. Acad Radiol. 2004;11(2):178–89.

40. Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using
convolutional neural networks in MRI images. IEEE Trans Med Imaging.
2016;35(5):1240–51.

41. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided
detection using convolutional neural networks and random view
aggregation. IEEE Trans Med Imaging. 2016;35(5):1170–81.

42. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al.
Convolutional neural networks for medical image analysis: full training or
fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.

43. Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, et al.
Anatomically constrained neural networks (ACNNs): application to cardiac
image enhancement and segmentation. IEEE Trans Med Imaging. 2018;
37(2):384–95.

44. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated
cardiovascular magnetic resonance image analysis with fully convolutional
networks. J Cardiovasc Magn Reson. 2018;20:65.

45. Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Ω-net (omega-net):
fully automatic, multi-view cardiac MR detection, orientation, and
segmentation with deep neural networks. Med Image Anal. 2018;48:95–106.

46. Gupta SN, Solaiyappan M, Beache GM, Arai AE, Foo TKF. Fast method for
correcting image misregistration due to organ motion in time-series MRI
data. Magn Reson Med. 2003;49(3):506–14.

47. Ma C, Varghese T. Lagrangian displacement tracking using a polar grid
between endocardial and epicardial contours for cardiac strain imaging.
Med Phys. 2012;39(4):1779–92.

48. Ma C, Wang X, Varghese T. Segmental analysis of cardiac short-Axis views using
Lagrangian radial and circumferential strain. Ultrason Imaging. 2016;38(6):363–83.

49. Lee H-Y, Codella N, Cham M, Prince M, Weinsaft J, Wang Y. Left ventricle
segmentation using Graph searching on Intensity and Gradient and A priori
knowledge (lvGIGA) for short axis cardiac MRI. J Magn Reson Imaging. 2008;
28(6):1393–401.

50. Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J, et al. Comparison of long
and short axis quantification of left ventricular volume parameters by
cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc
Magn Reson. 2011;13(1):40.

Fahmy et al. Journal of Cardiovascular Magnetic Resonance            (2019) 21:7 Page 12 of 12

https://doi.org/10.1016/j.jcmg.2018.04.030.

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Methods
	Myocardium segmentation
	Fully convolutional neural networks
	Post processing and automated segmentation assessment
	Automatic segmentation refinement

	T1 map reconstruction and analysis
	Image acquisition
	Implementation and evaluation
	Data analysis

	Results
	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

