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Abstract

Metastatic spinal tumours are the most common type of bone metastasis. Various methods have been used to treat
metastatic spinal lesions, including radiotherapy, chemotherapy, isotope therapy, bisphosphonate therapy, analgesics,
and surgery. Conservative treatments such as radiotherapy and chemotherapy are not appropriate and usually are
ineffective in patients with vertebral fractures and/or spinal instability. Minimally invasive surgical treatments using non-
vascular interventional technology, such as percutaneous vertebroplasty (PVP), have been successfully performed in the
clinical setting. PVP is a non-invasive procedure that creates small wounds and is usually associated with only minor
complications. In the present study, we will review the clinical status and prospects for the use PVP combined with '*°|
seed implantation (PVPI) to treat spinal metastases. The scientific evidence for this treatment, including safety, efficacy,
and outcome measures, as well as comparisons with other therapies, was analysed in detail. PVPI effectively
alleviates pain in metastatic spinal tumour patients, and the use of interstitial '*° seed implants can enhance the
clinical outcomes. In conclusion, PVPI is a safe, reliable, effective, and minimally invasive treatment. The techniques

of PVP and '?’| seed implantation complement each other and strengthen the treatment’s effect, presenting a
new alternative treatment for spinal metastases with potentially wide application.
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Review

Metastatic spinal tumours are the most common type of
bone metastasis, and 39% of bone metastases are located
in the axial skeleton [1,2]. The thoracic spine is the most
common site of involvement, followed by the lumbar
spine and the cervical spine [3]. Spinal metastases are
often seen in patients with breast, lung, and prostate
cancers. The majority of spinal metastases are due to
haematogenous spread; a small number of lymphatic
metastases are also seen. The vertebral body is much
more easily damaged by spinal metastases than its the
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other parts of the vertebra due to its large volume and the
abundance of blood vessels within it. Many tumour cells
in spinal metastases produce and secrete osteoclast-
stimulating factors, thus enhancing bone absorption and
leading to bone destruction. Metastatic lesions can ultim-
ately destroy vertebral bodies and their attachments,
resulting in spinal deformity and spinal instability [4],
which can cause severe back pain and neurologic dysfunc-
tion. The quality of life and psychological state of patients
with spinal metastases may be seriously affected.

Various treatment methods, including radiotherapy,
chemotherapy, isotope therapy, bisphosphonate therapy,
analgesics, and surgery, have been used to treat meta-
static spinal lesions. Conservative treatments such as
radiotherapy and chemotherapy are not appropriate and
usually are ineffective in patients with vertebral fractures
and/or spinal instability. Open surgery often requires a
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significant postoperative recovery period and can pre-
vent or delay treatment of the primary tumour. Indeed,
open surgery can lead to increased mortality in patients
with primary tumours. In addition, it is often more diffi-
cult to treat patients with non-adjacent and multi-
segmental vertebral metastases with open surgery.

Recently, minimally invasive surgical treatment with
percutaneous vertebroplasty (PVP), which is a non-
vascular interventional technology, has been successfully
performed in the clinical setting. PVP is a minimally in-
vasive, image-guided therapy in which bone cement is
injected at sites of vertebral lesions by percutaneous
puncture, thereby enhancing the strength of the verte-
bral bodies and improving spinal stability. PVP is a well-
established local anti-cancer treatment that can be used
to relieve back pain from a vertebral body fracture.

Interstitial radiation therapy with '*°I seed implant-
ation is a new after-loading technology that has been in-
creasingly used in recent years. It is a new, effective, and
minimally invasive therapy in which encapsulated radio-
active particles with certain specifications and activity
are directly implanted into tumour tissues to provide
low-dose, long-term radiation exposure for therapeutic
purposes. Currently, interstitial radiation therapy is used
to treat multiple solid tumours, and it has been widely
shown to effectively inhibit tumour growth, relieve pain
and improve patients’ quality of life.

Yang et al. [5] reported that the combined technique
of PVP and '*°I seed implantation (PVPI) into the verte-
bral body for bone interstitial brachytherapy in the treat-
ment of spinal metastases produced better clinical
results. PVPI is a novel composite treatment technology
that combines two types of treatment and has a unique
technological advantage.

Herein, we review the clinical status and application
prospects of this new method in the treatment of spinal
metastases by PVP combined with '*°I seed implantation
(PVPI).

Status of the clinical use of PVP

PVP was developed as a method to inject bone cement
into lesions of the vertebral body by percutaneous punc-
ture. It enhances the strength of the vertebral body and
the stability of the spine, thus preventing collapse, reliev-
ing back pain and backache, and allowing partial restor-
ation of vertebral height. The French radiologists Galibert
et al. [6] successfully treated a patient with chronic pain
caused by a C2 vertebral haemangioma with PVP for the
first time in 1984. In 1989, Kaemmerlen [7] used the tech-
nology in the treatment of patients with vertebral body
metastases. Thus, PVP has been used for nearly 20 years.
During this time, its use in the treatment of spinal metas-
tases has gradually been extended worldwide, and its
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beneficial effects have been extensively recognized by cli-
nicians and patients [8-10].

Indications for PVP

PVP is primarily used in three specific clinical situations.
The first is in cases of vertebral compression fractures,
which often occur in older patients and are usually
treated with bed rest and medication. However, bed rest
usually aggravates osteoporosis and can easily lead to re-
compression, resulting in a vicious cycle. PVP can rap-
idly relieve back pain caused by osteoporosis, stabilize
the spine, and prevent vertebral collapse and fracture re-
currence. Second, PVP is often used to treat vertebral
haemangiomas, which are usually asymptomatic, benign
lesions. When pain occurs, radiotherapy has historically
been the major treatment method despite the variety of
possible complications. Hence, radiotherapy has grad-
ually been replaced by PVP [11]. Gilbert et al. [12] be-
lieved that 80% of patients thought they were effectively
treated by PVP after a short period of time, and 73% of
patients thought it had a significant analgesic effect and
improved their quality of life. In a third clinical applica-
tion, PVP is used to carry certain drugs, such as bone
cement mixed with bone growth hormones, other bio-
logically active substances, or anticancer drugs; the
resulting effects have been shown to be better than those
obtained with PVP alone.

Selection and application of filler material
The following filling materials are commonly used for
PVP in the clinical setting:

Polymethylmethacrylate (PMMA) bone cement does
not have bone-inducing activity or conductivity; it
requires high temperature for polymerization.
Carbonated hydroxyapatite bone cement has bone-
conducting properties and good tissue compatibility. It
does not produce heat and integrates with new bone
during the curing process.

Calcium phosphate cement is a novel bone substitute that
has bone-conducting properties and is biocompatible. It
can restore the height and biomechanical strength of
vertebral bodies without causing significant inflammatory
effects. Later, mechanical fixation can be changed to
biological fixation.

Ceramic materials that have biological activity and
opacity can be chemically combined with the bone
cement. In this way, the elastic modulus of the bone
cement can be improved and the hardness of the
vertebral body increased.

Treatment of spinal metastases with PVP
PMMA is inexpensive and widely used in clinical ortho-
paedics; it is the most commonly used substance for
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PVD, leading to the accumulation of extensive experience
with this material. Cold storage and the use of a suitable
ratio of powder to liquid to contrast agent can lengthen
the intraoperative injection window and improve the
ability of the material to set [13,14]. A study to identify
the optimal proportion of materials and temperature for
locally available cement demonstrated that the most
suitable material for PVP is domestic PMMA in tooth-
paste form that has been kept at 4°C, with a powder (g):
liquid (mL): contrast agent (mL) ratio of 3:2:1 at room
temperature [15].

The other filling agents mentioned above, with their
good bone conductivity, are more appropriate for verte-
bral bone fusion and thus are suitable for the treatment
of osteoporotic compression fractures. We believe that
when spinal tumours are treated by PVD, the residual
tumour tissues are mainly and inevitably distributed in
the periphery of the bone cement core, between the nu-
clear area of the bone and the normal bone cement. Be-
cause these distribution characteristics suggest that a
filling agent with bone-conducting properties has only
limited advantages, the above material is not suitable for
PVP treatment of spinal tumours.

PMMA filling dosage and distribution

Cotton et al. [16] reported that the required amounts of
vertebral bone cement filling were, on average, 2.5 mL in
the cervical spine, 55 mL in the thoracic spine, and
7.0 mL in the lumbar spine. Vertebral body stiffness re-
covery is closely related to the quantity of bone cement
used for filling. If the bone cement fills 14% of the verte-
bral body, recovery will proceed to the same level as was
present before damage occurred. If 30% of the vertebral
body is filled, more than half of the initial shear stiffness
will be lost. Under the same loading conditions, mea-
surements of unilateral pedicle puncture and bilateral
stiffness are similar. Therefore, excessive filling does not
produce optimal biomechanical effects, and a reasonable
treatment strategy for the vertebral body includes the
use of a small, symmetrically distributed amount of bone
cement filling [17,18]. The use of excessive bone cement
filling material increases the likelihood that surgery will
be necessary due to leakage of bone cement and the oc-
currence of bone cement implantation syndrome.

Clinical applications of '*°| seeds

Interstitial brachytherapy with radioactive particles has
been used to treat tumours for more than 100 years.
Roentgen discovered '*I radiation in 1895. In 1901,
Pierre Curie was the first to propose interstitial brachy-
therapy, which involves embedding radioactive sources
directly within cancerous tissue. In 1903, Strebel treated
tumours by inserting radium-226 into the tumour
through a needle, thus creating a precedent for the
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treatment of tumours by interstitial implantation with
radioactive sources.

In brachytherapy, the distance from the radioactive
source to the target site should be less than 5 cm, which
is different than the optimal distance for conventional
external beam radiotherapy [19]. Due to the unique
physical properties of radionuclides, high doses of radi-
ation are produced in the target area. However, the dose
is rapidly attenuated in the normal tissues surrounding
the tumour. Thus, interstitial brachytherapy can kill
tumour cells, protect normal tissues, and reduce compli-
cations [20].

Available radionuclides for interstitial radiotherapy in-
clude ®°Co, '¥"Cs, '®Ta, "'Ir, '*®Au, '*'Cs, '*°1, and '*°Pb;
of these, '*°I and '®Pb are the most commonly used. The
biological effect of '®*Pb is higher than that of '*°I (initial
dose rate was 7 cGy/h, '*°I was 7.5 cGy/h). The energy
emitted by these radioisotopes can effectively kill cancer
cells, while adjacent tissues and organs are not damaged.
Compared with '®Pb, the advantages of '*’I are its low
energy, long half-life, and suitability for use in slow-
growing tumours. '*°[ is the most widely used material for
permanent implantation.

1251 an artificial isotope, was first produced in 1965.
24Te absorbs a neutron and is converted into '*’I by
electron capture, and '*’I spontaneously decays into the
excited state of '*>Te by electron capture. In total, 93%
of the decay energy is transformed into X-rays and elec-
tron beam through the process of decay; 7% of the decay
energy is released as y -rays with an energy of 35.5 KeV,
which mainly interact with tissues via the photoelectric
effect.

In 1965, Whitmore successfully treated prostate cancer
at Memorial Hospital in New York with the first clinical
application of '*°I seeds. In 1974, the first permanent
implant treatment of radioactive '*°I particles to cure
non-resectable and malignant tumours, effectively
prolonging a patient’s life, was performed at Stanford
University Hospital. In 1986, Theragenics began produ-
cing implantable particles of '*’I and '®*Pb that were
certified by the United States FDA; permanent implant
therapy thereafter quickly came into wide use and has
been extensively studied. Currently, interstitial brachy-
therapy is routinely used to treat many tumours and has
become a standard treatment for early-stage prostate
cancer in the United States. Worldwide, reports have
discussed the use of '*°I particles for the treatment of
brain tumours, solid tumours (including lung, liver, pan-
creatic, cervical, and other tumours), and metastatic
spinal cancer, among other malignancies.

Structure of '?| particles
The '*°I capsule for brachytherapy applications features
a titanium pipe with a diameter of 0.8 mm, a length of
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4.5 mm, and a wall thickness of 0.05 mm; at its centre is
a silver bar, 0.05 mm in diameter and 3.0 mm in length,
which is permeable to the radiation emitted by the
radioactive '*°I nuclide. **°I has a half-life of 59.41 days,
and its electron capture decay process yields a character-
istic X-ray and an internal conversion electron, the titan-
ium wall can absorb the '*°I particle source. The main
Te-KX characteristic X-rays are 27.4-KeV, 31.4-KeV, and
35.5-KeV y -rays, as well as 22.1-KeV and 25.2-KeV
fluorescence X-rays that are emitted from the silver bar.
The lead half-layer thickness of '*°I is 0.025 mm; thus, a
lead sheet 0.025 mm thick can block more than 99% of
the rays.

Presently, these particles can be locally produced. In
2001, the Institute of Atomic Energy of China (reactor
engineering research and design) produced a CIAE-
6711-"%°I particle seal that successfully passed the na-
tional quality assurance processes and is now widely
used in clinical settings.

Physical characteristics of the '*°I particle

1) '®I releases gamma radiation with an average
energy of 28 KeV, making it a low-power radioiso-
tope. Thus, it is able to penetrate local tissues with
good curative effects and little injury. The treatment
ratio can be increased to 1.0 - 1.5 and 1.2 - 1.2.

2) The half-life of **I is approximately 60 days; thus, its
use can provide 200 days of continuous irradiation
(three half-lives). The radiation emitted by 1251 can
extensively damage and break double-stranded DNA.
The biological effects of '*’I-generated radiation are
appropriate for clinical use.

3) Because the lead half-value layer of **I is 0.003 cm,

it is easy to provide complete protection for the

operator.

'2°[ is rapidly attenuated within the target treatment

volume. Because the '*°I radioactive nuclide is of

low energy, in vivo tissue penetration is minimal

(approximately 17 mm). It therefore is easy to

protect surrounding tissues and organs, as the

radioactive energy emitted by this isotope is not
sufficient to damage the surrounding vital organs

[21].

5) %I provides a highly conformal dose distribution
and is associated with a reduced incidence of
late-responding tissue damage [22].

4

=~

23| seed implantation techniques

The radioactive particles can be implanted temporarily
or permanently. Currently, the **°I particles for clinical
use are generally implanted permanently, meaning
that particles are placed in tissues or lesions and are
not later removed. The implantation methods used
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include percutaneous puncture implantation, stitch-
ing, adhesive fixation, tumour bed and draining area
implantation, minimally invasive implantation, and
cavity mirror implantation.

Detection of the activity of *°| seeds

To control the quality of the particle source used for inter-
stitial brachytherapy implants and to prevent medical ex-
posure incidents, certain standard procedures must be
followed. In accordance with Technical Report No. 1274
of the International Atomic Energy Agency, Calibration of
Photon and Beta Ray Sources Used in Brachytherapy:
Guidelines on Standardized Procedure sat Secondary
Standards Dosimetry Laboratories (SSDLs) and Hospitals,
10% of the radioactive sources in each batch should be
measured, and the activity of the measured particle
sources should be maintained within 5% of the manufac-
turers’ values.

The '*°I seed source air kerma rate can be measured
using a well-type ionization chamber. This method is
simple, quick, and can be used to estimate the apparent
particle source activity [23].

23| particle dose calculation

The Memorial Sloan-Kettering Cancer Center was the
first medical institution to use '*°I seeds as an alterna-
tive radioactive source to **Rn for permanent interstitial
seed implants. The '*’I photons are of low average en-
ergy and are attenuated to a much greater extent in tis-
sue than higher-energy rays.

Currently, there is no uniform standard for the radi-
ation dose of implanted '*°I seeds in interstitial brachy-
therapy. Thus, we refer to the recommended standard
proposed by the American Brachytherapy Society (2001)
[24]: low dose rate after-loading irradiation should be
administered at 40 to 45 Gy / 4 to 6 d at a dose rate of
approximately 0.45 Gy/h (0.35 to 0.60 Gy/h). It is gener-
ally believed that a total dose of greater than 45 Gy sig-
nificantly increases the incidence of complications [25].

Currently, treatment plans can be developed using com-
puterized planning software. The operator need only enter
the position and the image, and the treatment planning
system (TPS) will automatically complete the design.

Use of a TPS in '*°I seed interstitial brachytherapy

The indicators used to evaluate a radiation therapy treat-
ment plan are high tumour control probability and low
normal tissue complication probability. The goal of such
therapy is to irradiate a sufficiently large area of the
tumour over at a sufficiently precise dose, while minim-
izing the radiation dose to surrounding normal tissues
and reducing the radiation dose to surrounding normal
tissue. The radiation dose can be calculated using TPS
software, and an exact treatment plan can be formulated
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iv) Needle position: The tip of the needle should be
placed 1/3 of the way between the spinous process
and the transverse process of the vertebra. The tip
should be located within the pedicle shadow of the

in the clinical setting. The main functions of the TPS
software system are as follows:

1) Calculation of different radiation isodose curves

(different tumours require different radiation
doses).

2) Calculation of the position of the particle and the

safe distance to radiation-sensitive tissues.

3) Calculation of the dose distribution range for

minimally invasive treatment of subclinical lesions.

4) Calculation of parameters relevant to surgical

applications (palliative resection and areas that may
benefit from partial resection). Based on CT/MRI
images, the target area is drawn on the TPS, and the
numbers of implanted particles and required needles
are calculated. There are two ways to implement a
TPS: the Paris System Act and the peripheral dense,
sparse Law Center. The former is used to determine
the treatment volume (target) and to implant the
radioactive particles in a uniform manner. The latter
is used in treatments involving more uniform dose
volumes.

Clinical application of PVPI

i) For a successful PVD, it is key that experienced

orthopaedic doctors or interventional radiologists
have access to accurate real-time images. The most
commonly used imaging equipment and technologies
include X-ray machines (including the C-arm and the
G-arm), CT, digital subtraction angiography (DSA),
and intraoperative navigation system. G-arm, CT,
and DSA can provide two-dimensional imaging,
and the intraoperative navigation system can
obtain three-dimensional images, all of which help
physicians make smooth and precise adjustments
during surgery and can significantly shorten the
operative time.

ii) Preoperative preparation: Preoperative X-rays, bone

scan images, CT, or MRI are used to determine the
location and the number of affected vertebrae, the
degree of vertebral collapse, the extent of osteolysis,
the overall degree of damage, the integrity of the
posterior wall of the vertebral body, pedicle violations,
and the degree of spinal cord compression. Routine
examinations such as tests of cardiopulmonary
function, blood glucose, prothrombin time, liver and
kidney function tests, iodine allergy test, and other
parameters are also conducted.

ili) Surgical approach: For the cervical spine, the

anterolateral or oral approach is used [26]. For the
thoracolumbar spine, the pedicle approach is used.
Sacral vertebrae require a direct near-surface
approach.

A%

~

“bull’s-eye” sign when the needle reaches the cortical
bone, but the depth should not exceed the leading
edge of the pedicle. The tip is located in the upper
or lower half of the vertebral body and should be
directed towards one side. The centre of the
vertebral body should be avoided in order to spare
the vertebral central venous supply.

Implantation: When the needle enters the vertebral
body, the needle core is removed. Using the needle
as a channel, the implantation needle for the **°I
seed is inserted into the needle tube. For the needle
insertion process, the bilateral pedicle needle
approach, in which one side of the needle tip is
directed towards the upper vertebral body and the
other side of the needle tip is directed towards the
lower vertebrae, should be used if possible. Spacing
of 0.3 cm around the target area of '*°I seed
implantation should be ensured, and the '*I seeds
should be distributed three-dimensionally in the
vertebral body. A bevelled tip is recommended to
carry the puncture needle in the needle tip. The
direction of the needle tip can be constantly
adjusted as needed to permit implantation of >’
seeds in the ideal location.

vi) Contrast agent injection: Following puncture and

1251 seed implantation, a contrast agent is injected
at a volume of 5 mL. The diffusion of contrast
agent and venous return is recorded by DSA.
Depression suction for contrast agents and blood
left in the vertebral body is used to reduce the
pressure inside.

vil) Bone cement injection: After the bone cement is

mixed, it is aspirated into the syringe and injected.
Throughout the procedure, lateral fluoroscopy
should be used to monitor the injection in order to
determine if leakage of bone cement has occurred
and to ensure that the cement-loaded needle is
oriented in the proper direction. When the injection
has been completed, the needle should be retracted
to the cortical bone; the needle core is inserted, and
the needle is rotated and removed to avoid sticking
of the needle in the bone cement.

viii) Suitable period for bone cement injection: It is safe

to inject bone cement while it is of “toothpaste”
consistency.

ix) Volume of injected bone cement: The injection

volume is generally 2 to 9 mL. The average volumes
required are 2.5 mL in the cervical vertebral bodies,
5.5 mL in the thoracic vertebral bodies, and 7.0 mL
in the lumbar vertebral bodies.
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Indications and contraindications for surgery
Indications

i) Patients who have the following characteristics: a
clear medical history of cancer; a high suspicion of
spinal metastases based on imaging; severe pain
from vertebral collapse caused by metastases; and a
requirement for bed rest and analgesics to relieve
pain.

ii) Patients with decreased stability of the spine caused
by metastases.

iii) Unexplained vertebral destruction that is surgically
proven to be due to the presence of a primary
tumour or metastatic spinal tumours.

iv) Patients with contraindications to open surgery or
who are unwilling to undergo surgery.

v) As preliminary preparatory treatment for surgery
and internal fixation, preoperative PVP can increase
vertebral strength, partially embolize arteries,
improve local conditions to reduce blood loss, and
improve surgical safety Phase II [27,28].

vi) Patients whose estimated survival time is more than
2 months.

Contraindications

i) Patients with coagulation disorders or bleeding
diathesis.

ii) Patients with severe peripheral osteolytic
destruction, especially at the central border of the
vertebral bodies. This is because leakage of bone
cement or particle migration could damage the
spinal cord or the adjacent blood vessels.

ili) Patients in poor physical condition, such as those
with severe anaemia, cachexia, vital organ failure, or
similar conditions.

Complications and prevention

Leakage of PMMA

PMMA leakage is the most common complication, ac-
counting for approximately 65% of cases [29]. It is
closely associated with the filling amount; excessive in-
jection of PMMA can cause increased pressure within
the vertebral body. Bone cement acts as a liquid during
perfusion. If the injection volume is increased blindly,
the risk of PMMA leakage and compression fracture of
the vertebral body increases. There are four types of
bone cement spillover: type I (paraspinal), type II (inter-
vertebral disc), type III (spinal canal), and type IV
(mixed). In most cases, PMMA leakage is asymptomatic.
However, if leakage reaches the spinal canal and forami-
nae, which are critical areas in an enclosed space, nerve
damage can result. The complication rate is 5% to 8%;
3% to 6% of these patients have short-term symptoms of
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nerve root injury and require steroids or other anti-
inflammatory drugs to relieve pain, and another 2% to 3%
of cases require surgical decompression [30]. The amount
of PMMA injected should be appropriately reduced in pa-
tients who have cortical destruction of the posterior and
lateral edges, which can reduce the leakage risk of PMMA.
Complete dural can effectively block leakage and prevent
compression damage to the spinal cord [31].

Kyphoplasty can restore the compressed vertebral body
height and correct vertebral kyphosis, and is a good choice
for the treatment of vertebral osteoporotic compression
fractures. However, compression fractures in spinal metas-
tases are mainly accompanied by posterior edge defects.
Posterior edge defects may worsen following the balloon
dilatation that occurs during kyphoplasty, and the leakage
rate may increase [32]. In addition, tumours within the
vertebral body can be squeezed into the spinal canal dur-
ing kyphoplasty balloon dilatation. Thus, we do not advo-
cate the use of kyphoplasty for the treatment of vertebral
metastases.

Pulmonary artery embolism and deep vein thrombosis

The complications of pulmonary artery embolism and
deep vein thrombosis are mainly related to the entrance of
fat or bone marrow into the venous circulation during the
procedure. This phenomenon can be caused by venous
diffusion of bone cement, especially if a needle is within
the vertebral body communicates with a vein, which can
occur when bone cement is released in an overly rapid in-
jection. Bone cement aggregates generate heat, which can
injure the vascular endothelium. Furthermore, monomers
that enter the bloodstream can activate the complement
system, increasing pulmonary vascular permeability and
leading to activation of clotting factors. A hypercoagulable
state develops, and fat and bone marrow tissue are re-
leased into the blood circulation, promoting thrombosis
and leading in combination to pulmonary embolism.
Chemical toxicity of the bone cement monomer promotes
the release of mononuclear cells, which can cause deform-
ation and separation of endothelial cells, resulting in the
release of fibrous protein and the formation of pulmonary
hypertension and blood clots [33]. Before injecting PM
MA, vertebral angiography should be performed during
the ‘toothpaste stage’, and high-pressure, rapid injections
should be avoided.

Central vascular response

A central vascular response to PMMA is commonly seen
in clinical settings. Most scholars believe that the bone
cement monomer used in PMMA polymerization can
inhibit myocardial contraction, resulting in low cardiac
output and arrhythmias. However, some scholars believe
that the bone cement monomer is not the direct cause
of the decrease in cardiac output [34].
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Adjacent vertebral fractures

In an in vitro biomechanical study, Ferguson [35] found
that vertebroplasty may reduce the probability of seg-
mental fracture but increased the probability of adjacent
segmental vertebral compression fracture. The risk of
fracture was related to the distribution of cement in the
vertebral body and to the leakage of bone cement [36].

Myelitis

Both PVP surgery and '*°I seed implantation can lead to
myelitis. Myelitis induced by PVP alone is extremely
rare, as it is a chemical or immunological reaction. How-
ever, '*°I seed implantation-induced myelitis due to radi-
ation damage, which causes multifactorial neuronal
degeneration and necrosis. This complication is rare in
clinical practice and requires further evaluation.

Yang et al. reported that irradiation with **°I triggered
autophagy in neural cells; this autophagy stressed the
endoplasmic reticulum and was primarily dependent on
the PERK-elF2a pathway [37]. In its early stages, the au-
tophagy caused by '*°I radiation may represent an at-
tempt to increase cell survival, but it is a self-destructive
process and ultimately promotes apoptosis and necrosis,
which occur when cells are irradiated with '*’I for more
than 72 hours. Interference with PERK expression by
intrathecal administration of a lentiviral vector can ef-
fectively inhibit autophagy and alleviate radiation myeli-
tis in Banna pigs [37].

It has been reported in animal models that radiation
myelitis due to '**I-based brachytherapy is related to the
dose and duration of exposure. The rates of apoptosis
and necrosis observed in spinal cord cells were effect-
ively reduced with low doses of radiation and short
treatment durations. At the dose prescribed in TPS, PVP
in combination with '*°I seed implantation has not been
reported to induce radiation myelitis [38].

Tissue necrosis due to overdose of local irradiation

It has been reported that nearly 10% of patients require
surgical procedures to remove necrotic tissue from sur-
rounding brain areas following '*’I-based brachytherapy
for cerebral gliomas [39]. A similar situation has also been
observed in prostate cancer therapy, where toxicity can
occur in the urethra and rectum [40]. Therefore, radiation-
induced damage to the adjacent spinal cord tissue should
be given special consideration during preoperative treat-
ment planning and postoperative follow-up.

Local pain

Local inflammation can be induced by local mechanical
stimulation at the puncture site and by the heat that is
produced during PMMA polymerization. A few hours
after injection, transient exacerbation of pain or fever
may occur; however, these symptoms are often alleviated
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in 2 to 4 days by treatment with anti-inflammatory
drugs.

Other complications, such as infection, puncture dam-
age to surrounding organs, and tumour seeding along
the needle channel, are also possible.

Effectiveness and mechanisms

Studies of the mechanism of PVP alone have generally
focused on the study of its analgesic effects. However,
in addition to its analgesic effects, PVP combined with
1251 seed implantation can be an effective antitumour
therapy.

Dual mechanism of analgesia

Pure PVP treatment of spinal disorders can deliver a good
analgesic effect

Overall, 90% of patients treated with PVP achieved
pain relief within 6 to 72 h (mean 36 h); in some cases,
rapid recovery has been observed [41,42]. In a previ-
ous study, the degree of pain relief was significantly
greater in the treated group than in the control group
after 2 months [43]. Nevertheless, the analgesic effect
of PVP and the volume of bone cement injected are
not positively correlated. For the treatment of verte-
bral metastases, a bone cement injection volume of
1.5 mL is sufficient to achieve a good analgesic effect
[44]. However, the mechanism of action is not fully
understood. Recent research has identified the follow-
ing key mechanistic observations:

i) The polymerization of PMMA bone cement
generates heat, and the PMMA monomer has a
similar effect as absolute alcohol, which can cause
the degeneration and necrosis of pain nerve fibres in
vertebral bodies, leading to the loss of sensory
function.

ii) Very small fractures can be repaired using bone
cement, thereby eliminating stimulation of the
nociceptive nerve endings due to extrusion and
friction.

iii) After fixation with bone cement, improvements in
spinal stability and a decrease in spinal stress may
also help to relieve pain.

iv) Collapse of the tumour focus can reduce tension
and widen the spinal canal and can decrease the
pressure on surrounding tissues, increasing the pain
receptor threshold.

v) Chemical media release the pain, which can be
modulated. Pain can be observed to ease within
a few days, which is mainly attributable to the
decreased concentration of various chemical
media. However, durable pain relief may be
due to a reduced tumour burden and to
calcification [45].
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The mechanism of pain relief by '?| radioactive particles

Radiation therapy is directed at vertebral metastatic sites
that are painful or are associated with significant epidural
involvement. '*°I radioactive particles emit low-energy y
-rays, thereby producing a sustained effect on tumour cells.
Studies of interstitially implanted *I radioactive particles
in cancer treatment have demonstrated that pain signifi-
cantly decreases approximately 5 to 7 days following im-
plantation, improving patient quality of life.'*’I treatment
may affect cancer pain through the following mechanisms:

i. Direct invasion of bone-activated local nociceptors by
the tumour can compress neighbouring nerve blood
vessels and soft tissues, causing pain. When the
tumour invades the nerve root, sharp pain is produced
in the nerve’s distribution area. Radiation can block
conduction at peripheral nerve endings or affect the
nerve sheath, leading to electrophysiological
anaesthesia and stopping the pain pathway.

ii. Direct damage to nervous tissue. A day after tissue
damage caused by irradiation, low electron density,
granular degeneration, swelling of mitochondria, and
visible shaft damage were observed by electron
microscopy, leading to axoplasmic clearance of
cellular material, which formed lacunae, altered the
membrane axis, and caused separation of the myelin
[46]. Within 10 days, the myelin sheaths lost
resolution, and free myelin bubbles were visible with
the nerve sheath, but myelin resolution was not
obvious. Subsequently, changes were also seen in the
sparse nerve fibres, with nerve fibre shrinkage and
irregularity. The myelin collapsed and curled into
irregular forms, with visible myelin degeneration and
disintegration of residual nuclei. A study of these
indirect injuries found that at 1 month after
radiotherapy, endothelial cells showed inflammatory
necrosis and depigmentation; repair led to vascular
hyperplasia, leading to stenosis of the vascular
lumen stenosis, thrombosis, and consequent nerve
ischaemia. Marx and Johnson [47] showed that
blood perfusion decreased in the irradiated area,
reducing oxygen tension and leading to decreased
oxygen saturation. In the irradiated area, the blood
capillary density decreased by 20% to 30%, compared
with the non-irradiated area. Ischaemia, hypoxia,
acidosis and increased oxygen free radicals can affect
various enzyme systems, altering cell metabolism and
resulting in cellular edema, swollen mitochondria,
metabolic disorders, and inhibition of protein
synthesis. Lysosomal damage results in the release of
proteolytic enzymes that destroy the tissue. Also
affected peanut four dilute acid metabolism, reduce
the synthesis of the top ring element, leading to an
imbalance between the body top ring and
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thromboxane A2. Platelet aggregation and blood

vessel damage are associated with hypercoagulability,

further damaging the microcirculation; this process

leads to nerve ischaemia and hypoxia and creates a

vicious cycle. In the radiated area around the nerve,

degeneration of nerve fibres, damage to axons, and
myelin damage can be found. Near irradiated
peripheral nerves, normal structures may be
maintained; however, at more distant areas, a wide
range of fibrotic contractures and scarring can
occur gradually. These lesions can organize and
lead to extensive stenosis and compression of the
nerve fibres. If these changes continue, the neural
microcirculation may be damaged, both internally
and externally, and nerve transmission can be
impaired.

i) PG1 and PG2 can cause severe pain by bony
destruction. Radiation can eventually kill cancer
cells, reduce or stop the release of serotonin, and
slow the release of pain factors such as kinin or
prostaglandin.

ii) The tumour may infiltrate blood vessels and
lymphatic vessels, which stimulate the nerves that
surround blood vessels. Vascular occlusion can
lead to tissue oedema, fascial disruption, and
other consequences, all of which can produce
severe pain. If malignant tumours are damaged by
radiation-induced microthrombus formation or
fibrosis, the production of pain factors can be
completely blocked.

In conclusion, it is thought that after 1251 radioactive
particle implantation, pain caused by malignancies is re-
lieved primarily by inhibition of the release of pain fac-
tors and blocking of nerve impulse transmissions.

The mechanism of PMMA and '**| in spinal metastases
Dual mechanism of tumour destruction

The mechanism though which PMMA Kkills tumour cells
remains unclear. Nevertheless, the following potential
mechanisms have been proposed:

i) During polymerization of the PMMA resin bone
cement, a large amount of heat is generated; this
could effectively inactivate the tumour cells around
the bone cement [48], which are poorly heat-
resistant and may undergo necrosis. The production
of inflammatory and pain mediators would decrease,
the growth of tumour cells would be prevented, and
the compression of nerve endings would decrease.
However, under these conditions, normal tissues
experience no irreversible damage.

ii) Bone cement can infiltrate tumour tissues and
solidify, thereby separating part of the tumour tissue
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from its feeding vessels, leading to necrosis of
tumour cells [48].

iii) The bone cement monomer has a similar effect on
tissues as absolute alcohol, which can cause cell
dehydration, solidification, and death [48].

The mechanism and effects of the killing of tumour
cells by bone cement need to be further studied. The
usefulness of this effect is limited to the areas surround-
ing the bone cement; some tumour cells may still sur-
vive and continue to invade adjacent tissues, decreasing
the long-term efficacy of PVP treatment. Thus, PVP
combined with '*I radioactive particle implantation ef-
fectively kills tumour cells.

Tumouricidal mechanism of '*°| seeds

There are many ways to kill tumour cells by ionizing ra-
diation. In addition to the direct killing effect, an im-
portant mechanism of radiotherapy is the induction of
tumour cell apoptosis. Compared to all previous radi-
ation treatments, permanent interstitial implantation of
1251 particles provides continuous irradiation at a lower
dose rate [49]. Many researchers have studied the effects
on cells of a low dose rate and single irradiation; these
studies demonstrated that, within a certain dose rate
range, cells were radiosensitized at a lower dose rate.
The sensitivity of cells to radiation is a comprehensive
reflection of a variety of mechanisms, including
radiation-induced apoptosis, which is an important fac-
tor [50-52]. The cell cycle was blocked when tissues
were irradiated with "I seeds. The number of cells in
the G2 and S phases increased, and cell cycle redistribu-
tion occurred. As cells in the G2 and S phase are more
sensitive to y rays [53], the killing effects on tumour
cells caused by '*I particle irradiation would be ex-
pected to increase.

The low-energy radiation released by '*’I seeds con-
sists primarily of y rays, which can damage the nuclear
DNA of tumour cells, inducing tumour cell apoptosis
and causing them to lose the ability to divide.

Radioactive implants in tumours mainly interact with
substances via the photoelectric effect, the Compton ef-
fect, and electron pair effects, all of which cause changes
in molecular structure and function. As a result, the
RNA and DNA content of the cells decreases, catabolite
levels increase, and the intracellular environment is
damaged, resulting in imbalance of the regulation of ac-
tivities at a cellular level. Finally, apoptosis of tumour
cells occurs [54].

i) Direct effect: Ionizing radiation has a direct effect on
biological macromolecules, which compose cells.
Energy from ionizing radiation is deposited directly
in biological macromolecules by the direct effect of
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radiation. When this occurs, biological
macromolecules are ionized, and the material,
including nucleic acids, proteins, enzymes, etc., is
destroyed. Only a small fraction of cells (called
active phase cells) undergo continuous reproduction
during tumour growth. The cell cycle is divided into
four phases: the phase prior to DNA synthesis (G1
phase), the DNA synthesis phase (S phase), the
phase following DNA synthesis (G2 phase), and
mitosis (M phase). Exposure of cells in the late DNA
synthesis and mitosis phases to only a small amount
of y rays (3 cGy) can destroy the nuclear DNA of
tumours, which lose their ability to reproduce and
proliferate.

ii) Indirect effects: ionizing radiation acts directly on
water molecules, decomposing them into a series of
products such as H*, OH", HO%, H,O, and other
free radicals. These decomposition products then act
on biological macromolecules, altering their physical
and chemical characteristics [55]. These two types of
effects often coexist in living cells, and they
complement each other. Free radicals display high
reactivity, instability, and paramagnetism and have
the following effects on biological molecules:

1) Free radicals participate in chemical reactions,
including addition reactions, electron capture
reactions, disproportionation reactions, reduction
reactions, and oxidation reactions, among others.

2) Free radicals can damage DNA. For example,
pyrimidines and purines can be damaged by the
addition reaction caused by free radicals.

3) Peroxidation of lipids, in which oxygen radicals
attack polyunsaturated fatty acids in membrane
phospholipids and lipid hydroperoxides are
produced by lipid peroxidation, can occur. The role
of active oxygen is amplified by chain and branched-
chain reactions, and active oxygen can decompose
many lipids. Some of the decomposition products
can induce barriers to cell metabolism and function,
leading to cell damage.

The mechanisms of these effects may include changes
in membrane lipids, changes in membrane function, and
damage to membrane enzymes, as well as cytotoxic effects
of the decomposition products of lipid peroxidation.

The spatial structure of membrane proteins is changed
by the exposure of cells to continuous low-dose radi-
ation, and the ion channel activity of the membrane de-
creases or becomes inactive. Generally, endothelial cell
proliferation is blocked, and the transmission of infor-
mation between cells and the supply of nutrients to the
surrounding tissues is reduced. All these effects lead to
tumour cell apoptosis.
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The advantages and prospects of PVPI for the
treatment of bone metastases
Yang et al. successfully established an animal model of
PVPI in miniature pigs, and the safety of minimally inva-
sive surgery has thus been verified [56,57]. PVP is a min-
imally invasive procedure that is associated with less
trauma, simple operations, and usually only minor com-
plications. It can effectively alleviate pain in patients
with osteolytic spinal metastases. The antitumour effects
of PVP can be enhanced if it is performed in combin-
ation with interstitial implantation of '2°I seeds [5].
Further studies have shown that spinal osteoblastic me-
tastases are not a contraindication for PVP surgery. In
PVP surgery, bone cement can be successfully injected
and distributed in the peripheral or central regions of
osteoblastic lesions. Mechanical strength is improved,
pain is controlled, and the growth of local tumour le-
sions is inhibited. PVP is more effective when it is com-
bined with *°I seed implantation [5].

Compared with other existing treatments, PVP com-
bined with '*’I seed implantation to treat spinal metas-
tases has the following advantages:

1) Only low-energy radiation is released by '*I particles.
Most radiation is absorbed by the tumour tissues; a
very conformal high-dose area can be accurately de-
signed within the tumor, allowing the continuous de-
livery of radiotherapy. Thus, y rays can continuously
kill tumour cells, whereas there is limited destruction
to the surrounding normal tissues.

2) The mechanical strength of the vertebral body is
increased, while continuous irradiation at a low dose
rate inhibits the mitosis of tumour cells. Tumour
cells accumulate in the G2 phase, and tumour cell
proliferation is significantly reduced. Tumour foci
become stagnant and are destroyed by multiple
mechanisms. The tumour volume is reduced, and
the condition of local tissues is improved. PVP can
be used before surgery to avoid compression
fractures of vertebral bodies during preparation for
surgery [58,59].

3) Minimally invasive surgical techniques are used for
implant therapy, and the procedure is associated
with shorter operative times, shorter hospital stays,
little pain, and rapid postoperative recovery. Because
its clinical efficacy is clear, it is easily accepted by
patients; furthermore, postoperative patient quality
of life is significantly improved.

4) Simple equipment is used in the treatment, which
has low costs.

5) Compared with interstitial '*’I brachytherapy only,
the use of bone cement can fix defects and
theoretically reduce the possibility of particle
removal.
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6) The mechanical properties and efficacy of bone
cement are not affected by radiation [16,60,61].

Lu et al. reported that local tumours still progressed
during follow-up after treatment with PMMA loaded with
antineoplastic drugs, suggesting that chemotherapy drugs
do not completely inhibit tumour growth. Vertebroplasty
combined with external radiotherapy can enhance local
anti-tumour effects, but this approach requires approxi-
mately 3 weeks of external beam radiotherapy and affects
the total treatment time for the primary lesion [62,63].
Yang et al. reported that PVPI had considerable local anti-
tumour activity and that comprehensive treatment of pa-
tients, including chemotherapy, for 1 week can signifi-
cantly enhance overall outcomes [63].

Conclusions
In conclusion, PVPI is a safe, reliable, effective, and min-
imally invasive therapy. PVP and '*°I seed implantation
enhance each other’s effects and represent a novel,
broadly applicable method of treating spinal metastases.
Currently, PVPI technology is still exploratory, and
further research is required; a large amount of clinical
and basic research is required. Future research should
focus on possible complications and sequelae, methods
of using TPS to design and precisely control the
spacing of implanted particles, methods of optimally
distributing the particle sources in accordance with the
target tissue volume and density, as well as the relation-
ship between adjacent vital organs, and how to achieve
“directional blasting” to maximize the killing of tumour
cells and minimize damage to normal tissue and
functions.
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