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Background
A higher magnetic resonance image (MRI) resolution often results in fewer image 
artifacts, such as the partial volume effect (PVE), and a higher algorithm accuracy 
in the post-image processing steps (e.g., image registration and image segmentation). 
However, the MR resolution is affected by various physical, technological and eco-
nomic limitations. Thus, increasing the spatial resolution is of considerable interest 
in the field of medical image processing. Conventional super-resolution (SR) methods 
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has achieved a remarkable improvement in recovering detailed information from MR 
images and outperforms state-of-the-art methods.
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using Bicubic and B-spline interpolation [1, 2] compute new voxel gray-values accord-
ing to certain smoothness assumptions. However, these methods are not always valid 
in non-homogeneous areas and result in blurred images.

Super-resolution technologies have been implemented in the following two major 
categories. (1) During the acquisition stage, k-space data can be manipulated, and 
the parameters can be configured to improve the spatial resolution [3, 4]. (2) Dur-
ing the post-processing stage, conventional image super-resolution methods can be 
adapted and applied to MRI. Peled and Yeshurun [5] and Greenspan [6] applied an 
iterative back-projection method to 2D and 3D MRI super-resolution. The resolution 
enhancement [7] and non-local method [8] were also implemented and extended to 
reconstruct a high-resolution image from corresponding low-resolution image with 
inter-modality priors from another HR image [9].

Recently, sparse coding (SC)-based super-resolution approaches have been shown 
to have good performance and accuracy in several applications, including de-nois-
ing [10], and restoration [11]. Donoho [12] reconstructed MRI from a small subset 
of k-space samples to solve the super-resolution problem. Yang et al. [13] and Zeyed 
et  al. [14] implemented sparse representations of natural images and successfully 
adapted these representations to MRI [15]. The sparse representation-based super-
resolution method involves several steps. First, low-resolution and high-resolution 
dictionaries are trained by overlapping patches cropped from low- and high-reso-
lution images, respectively. Based on this, the low-resolution images are considered 
sparse combinations of patches in the low-resolution dictionary space. Finally, the 
solved sparse coefficients are mapped onto a high-resolution dictionary space and 
used to reconstruct the high-resolution version. Since the conventional sparse rep-
resentation method trains a dictionary based on a gradient or Sobel features, the 
reconstructed high-resolution images are not robust and are sensitive to noise. Addi-
tionally, the independent SC of the sequential patches cannot ensure the optimal 
reconstruction of entire dataset [16, 17].

Deep learning algorithms, such as the deep forward neural network or multiple layer 
perceptron, have recently regained their popularity [18–27] due to an improved com-
puter infrastructure (i.e., software and hardware) and increased amount of available 
training data. Deep convolutional neural networks (CNN) are specialized deep forward 
neural networks that use a convolution operation on 1D, 2D and 3D grids (e.g., 1D time 
series, 2D and 3D images). Successful applications in computer vision date back several 
decades [28, 29]. Recently, CNN-based methods have resulted in a significantly reduced 
error rate that is comparable to or better than that achieved by humans in many com-
puter vision applications, such as image classification [30], object detection [31], face 
recognition [32], and natural image super-resolution [26, 27]. CNN-based super-resolu-
tion learns image representations from training data similarly to all other deep learning 
approaches. Thus, it often produces better results than conventional feature-engineer-
ing-based methods, such as SC, when a large amount of training data is available [26], 
formulated the super-resolution problem into a function approximation problem. These 
authors have implemented a cascading convolution neural network to solve the prob-
lem of natural image super-resolution reconstruction. The end-to-end optimization of a 
large amount of training data produced a better result than the SC-based approach.
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In the literature, a few studies have addressed the MRI super-resolution problem using 
the deep CNN approach. A higher dimension (3D) MRI is associated with a huge com-
putational burden and complicates the training more than a 2D version. In addition, a 
large amount of training data is not always available. To overcome these challenges, we 
were inspired by studies using multi-scale analyses and residual networks [15, 33]; we 
fused multi-scale information and propagated this information along the convolution 
network. Unlike conventional deep CNN learning, we observed that fusing multi-scale 
information in a convolution network makes it easier to achieve 3D MRI super-reso-
lution using a limited amount of training data. In addition, the experiments indicated 
that the multi-scale fusion convolution network (MFCN) preserved detailed image 
information during the reconstruction procedure, which is essential for medical image 
applications.

The contributions of our work include the following three aspects:

• • We illustrated different convolution responses using different convolution kernel 
sizes experimentally and demonstrated that fusing different responses was ben-
eficial for recovering detailed information from a low-resolution image. Conven-
tional CNNs can learn different scale information from different convolution lay-
ers, but they are unable to integrate different scale information and decrease the 
error during the back-propagation procedure.

• • To overcome the drawback of conventional CNNs and integrate multi-scale infor-
mation induced by different convolution layers, we developed an MFCN. The 
proposed network, which is stacked by a multi-scale fusion unit (MFU), is a full 
convolution network that is capable of learning end-to-end mapping between 
low- and high-resolution images, makes full use of prior knowledge from high-
resolution images, and uses multi-scale information to infer missed details in 
low-resolution images. This network exhibits an outstanding performance in MRI 
reconstruction. The proposed network also has a faster convergence speed than 
the traditional convolution network. This network is capable of learning feature 
maps and provides exact guidance for the design of network architecture.

• • Contrary to the argument that “deeper is not better” [26], we found that a larger 
kernel size, an increased number of kernels, and a deeper structure are all ben-
eficial for improving the reconstruction performance. However, these features 
increase the computational burden and converge more slowly. Considering the 
ideal trade-off between performance and speed, the adopted network structure 
has achieved a better performance with both simulated and real MRI data com-
pared to some classical SR methods.

The remainder of this paper is organized as follows. "MRI super-resolution with 
deep learning" section presents detailed information regarding the implementation 
of MFCN for solving the super-resolution problem. "Experiments" section provides 
extensive validation using both simulated and real brain MRI datasets. A discussion 
and conclusion are presented in "Discussion" and "Conclusion" sections respectively.
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MRI super‑resolution with deep learning
Problem formulation

In the field of medical image analysis, a low-resolution MR image, L, can be presented 
as a blurred and down-sampled version of a high-resolution image, H, as follows:

where e is the noise, D is a down-sampling operator, and S is a blurring filter. The degra-
dation procedure is shown in Fig. 1.

In Eq. (1), the high-resolution image can be estimated by minimizing the following 
cost function:

where H̃ is the reconstructed high-resolution image. However, the above problem is ill-
posed, and it is difficult to find a perfect solution that satisfies Eq. (2). Normally, image 
patches are extracted to alleviate the ill-posed nature of the problem as follows:

where Hi and Li represent the i-th patch cropped from the high- and low-resolution 
images, respectively, H̃i is the i-th reconstructed high-resolution patch and m is the 
number of patches. Therefore, the key issue becomes identifying the mapping relation-
ship, DS, in Eq. (3) that maps the high-resolution images onto the low-resolution images.

MFCN for achieving MRI super‑resolution

Analysis of the network architecture

While implementing super-resolution reconstruction using deep learning, it is natural 
to acquire a mapping from the low- to high-resolution images. Generally, the low-reso-
lution image is up-sampled to have the same size as the high-resolution image before SR. 
Previous studies [26] have successfully implemented natural image SR with convolution 
neural networks. The SR based on the deep convolutional network is easy to implement 
due to its end-to-end learning strategy. An overview of SR based on the deep convolu-
tional network is shown in Fig. 2.

(1)L = DSH + e

(2)H̃ = arg min �DSH − L�2

(3)H̃i = arg min

m
∑

i

�DSHi − Li�
2

Blurred DownSampling

a b c

Fig. 1  Degradation model for MRI
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The success of convolution neural networks in SR mostly depends on the contribu-
tion of the learned convolution kernels from the training samples. To investigate the 
effects of different convolution kernels in SR tasks, we generated two distinct kernels 
with sizes of 3× 3 and 15× 15 for a better visual representation. Then, the two kernels 
were applied to a simple low-resolution image. The convolution results and the differ-
ence between the high-resolution and low-resolution images are shown in Fig.  3. As 
shown in the first row, the main difference between the high-resolution and low-resolu-
tion images is at the edges. Therefore, the task of SR is to recover detailed information, 
such as edges. Furthermore, the second and third rows in Fig. 3 show that convolution 
operations with different kernel sizes yield varying responses along the edges, and the 
strengths of the responses depend on the size of the convolution kernels. Due to the 
receptive field range of the convolution kernels with different sizes, the larger convolu-
tion kernels induce stronger responses along the edges. Consequently, these convolution 
responses are extracted as multi-scale information of the convolution kernels.

Design of multi‑scale network architecture

Due to the forward and back propagation mechanisms in the convolution neural net-
work, we constructed a simple convolution network stacked by two convolution layers 
as shown in Fig.  4. Both convolution layers have only one convolution kernel. In the 
convolution network, the input low-resolution images are submitted to the network 
and convoluted using the following convolution layers sequentially to obtain the feature 
maps. This procedure is called forward propagation. After the final convolution layer, 
the errors in the feature maps and high-resolution images, and the difference images, 
are computed based on the Euclidean distance of the loss layer. The difference images 
are very important for adjusting the kernel parameters of the final convolution layer. All 
parameters of each layer are adjusted using stochastic gradient descent.

Due to the multi-scale properties of different kernel sizes, fusing different scale con-
volution responses is assumed to accelerate the SR procedure. In the following study, we 
developed a simple MFCN as shown in Fig. 5. As depicted in Fig. 4, the MFCN has two 
convolution layers, and each layer has only one convolution kernel. We added a fusion 
layer to the network shown in Fig. 5. The function of the fusion layer is simply to add 
feature maps from (b) and (c). Initially, the fusion image had more details than the feature 
map in (c). Moreover, compared with the difference image I in Fig. 4, the difference image 
(f ) in Fig. 5 is darker, which indicates less error between the recovered image and high-
resolution image and is beneficial for accelerating the convergence in the training phase.

Therefore, it is desirable to design a convolution network that combines differ-
ent scale information. Reconstructed images benefit from end-to-end learning of low/

Fig. 2  Super-resolution reconstruction based on deep convolutional network
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high-resolution images and multi-scale information propagation through the whole net-
work structure. Inspired by residual networks [33], we defined the following structure, 
i.e., the MFU, to fuse different convolution paths as shown in Fig. 6:

where f represents the convolution layer and ReLU. SPj (xi, W̄i) denotes the j-th sub-
path in which input xi is convoluted by some convolution kernels. J is the number of 
sub-paths. According to the main path and several sub-paths, different scale informa-
tion is extracted by various convolution kernels, and then, the multi-scale information is 
combined in the fusion layer based on additional operations. Output xi+1 retains more 
detailed information than the output from the traditional convolution network that is 
simply stacked by a convolution layer and helps accelerate the convergence. "Experi-
ments" section provides a validation.

(4)xi+1 = f (xi,W0)+

J
∑

j=1

SPj(xi, W̄i)

Fig. 3  Convolution responses of convolution kernels with different sizes
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Based on the above-mentioned MFU, we developed the MFCN shown in Fig. 7. This 
network is stacked by a few MFUs and a reconstruction layer, in which the reconstruc-
tion layer is a convolution layer with one kernel.

Conv1
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Input LR image Feature map from Conv1 Feature map from Conv2
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Fig. 4  A simple convolution network for SR
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Fig. 5  A simple MFCN for SR
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Experiments
To evaluate the reconstruction performance of the proposed MFCN for structural MR 
images, we designed an extensive set of validation experiments using both simulated and 
real MR images. Furthermore, several methods were employed for comparison, includ-
ing bicubic interpolation, non-local mean (NLM) [11], sparse coding [13], and super-
resolution convolution neural network (SRCNN) [26].
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SubPaths
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Fig. 6  The structure of MFU
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Experimental settings

The proposed MFCN was run on an Ubuntu 14.04 with an Intel Xeon E5-2620 processor 
at 2.4 GHz, K80 GPU and the 96 GB of RAM based on the Caffe deep learning frame-
work [34].

Brain MR image sets

In this paper, the proposed MFCN was tested using different MR image sets, including 
both simulated and real images.

• • Simulated MR images were generated using an MRI simulator and obtained from the 
BrainWeb brain database [35]. The simulation provides volumes acquired in the axial 
plane with dimensions of 181× 217× 181 pixels and 1mm3 resolution.

• • Real T1-weighted brain MR images were obtained from thirty subjects and were 
acquired using a GE MR750 3.0T scanner with two different spatial resolutions of 
1mm× 1mm× 1mm and 3mm× 3mm× 3mm . For the high-resolution MR 
images, each anatomical scan had 156 axial slices with a size of 256× 256 pixels. The 
low-resolution MR images only included 52 axial slices.

Similarly to the pre-processing step in [15], the skull and skin were removed from the 
MR images using a brain extraction tool (BET) [36] to eliminate the influence of the 
background. The resulting MR image is shown in Fig. 8. For the training set, high-res-
olution patches were extracted from each slice of a brain region with a size of 33× 33 
pixels. To obtain low-resolution patches, a blurring and down-sampling operation was 
applied to the extracted brain regions. Then, a bi-cubic interpolator was implemented. 
Finally, low-resolution image patches were acquired from the interpolated brain region.

For the learning-based method, we constructed the same training set to ensure con-
sistency. The sparsity regularization parameter was set to 0.01 for the sparse coding-
based reconstruction as reported in the literature [15]. The learning rate was set to 0.001. 
The network was trained using mini-batches of size 32.

Quantitative performance measures

To quantitatively evaluate the performance of the reconstruction of different MR image 
sets, three different metrics were used to compare the original high-resolution images 
(x) with the reconstructed images (y).

• • The signal-to-noise ratio (SNR) was used to compare the level of the recon-
structed image with the level of the background noise: 

Input LR 
Image MFU MFU Reconstructio

n Layer
Output HR 

Image

Fig. 7  The structure of the MFCN
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where xk and yk are the image intensities at position k.
• • The peak SNR (PSNR) was used to measure the reconstruction accuracy between 

the reconstructed image and the original image: 

(5)SNR (x, y) = 10 log10

(

∑

k |xk |
2

∑

k

∣

∣xk − yk
∣

∣

2

)

(6)
PSNR (x, y) = 10 log10





R
�

1
|�|

�

k∈�

�

�xk − yk
�

�

2





Fig. 8  The MR image (top), its binary mask (middle) and the extracted brain region (down)
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where � is the brain region, and R is the maximum pixel value in the low-resolution 
image.

• • The structural similarity index (SSIM) [37] was used to measure the similarity 
between the two images, which is more consistent with human visual systems 
and perception. 

where c1 = (k1L)
2 , c2 = (k2L)

2 , and L are the dynamic range, k1 = 0.01 , and 
k2 = 0.03 . The terms µx and µy are the mean values of images x and y, respectively; 
σx and σy are the standard noise variance in images x and y, respectively; and σxy is 
the covariance of x and y.

Network architecture analysis

To achieve deep learning, a large number of parameters must be tuned, which 
affected the reconstruction performance of the proposed network. In this section, we 
discuss these various factors and investigate the best trade-off between performance 
and speed in the simulated data. For the simulated data, the training set was con-
structed from the BrainWeb database using 30 real MR brain slices acquired by sam-
pling 600 random image locations from each slice, and the test data were obtained 
from the slices excluded from the training set. For a baseline, the parameter configu-
ration is listed in Tables 1,  2 and 3, where nMFU is the number of multi-scale fusion 
units, MFUn is the n-th multi-scale fusion units, sk is the size of convolution kernel, 
nk is the number of convolution kernel, nSubPath is the number of sub-paths in each 
MFU, and nLayer is the number of convolution layers in each sub-path.

(7)SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)

Table 1  The network configurations of the baseline in MFCN

Network nMFU sk/nk in reconstruction layer

MFCNBL 2 5/1

Table 2  The MFU1 configurations in MFCNBL

sk/nk of main path in MFU nSubPath nLayer in each sub-path sk/nk of in sub-path

9/32 1 1 1/32

Table 3  The MFU2 configurations in MFCNBL

sk/nk of main path in MFU nSubPath nLayer in each sub-path sk/nk of in sub-path

3/64 1 1 1/64
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Parameter discussion for main path

In this section, we develop several networks that have the same structure as MFCNBL , 
except for a different kernel size and number in the main path in the MFU, and a final 
reconstruction layer to examine the reconstruction performance.

Kernel size Several image recognition and recognition experiments have demonstrated 
that if the number of kernels in each layer increases, the performance will improve. 
However, increasing the number of kernels also requires more time to train the network. 
Therefore, we compared the influence of the different kernel sizes on the reconstruction 
performance. The detailed parameter configuration is shown in Table 4.

The average PSNR with an upscaling factor of 3 is shown in Fig. 9. The proposed 
network with different kernel sizes always achieved a better performance than the 
bi-cubic interpolation and SC. Furthermore, the MFCNBL and MFCNs957 networks 
had a comparable PSNR, while the MFCNs713 network had a worse performance. 
One possible reason is that the MFCNs713 network had limited descriptive power for 
the super-resolution reconstruction due to the fewer parameters. However, we also 
observed that although the PSNR of the MFCNs1159 network increases as the itera-
tion number increases, it always performs worse than the MFCNBL and MFCNs957 
networks within limited iterative numbers, which probably illustrated that the 

Table 4  The different kernel size configurations

Network sk/nk in nMFU sk/nk 
in reconstruction 
layer

MFCNBL 9/32, 3/64 5/1

MFCNs713
7/32, 1/64 3/1

MFCNs957
9/32, 5/64 7/1

MFCNs1159
11/32, 5/64 9/1
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Fig. 9  The average PSNR with different kernel sizes in the main path in MFU and the final reconstruction 
layer
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networks with bigger kernel size need more training time to converge to achieve a 
better reconstruction performance, as shown in Table  5. Consequently, increasing 
the kernel size properly was helpful for achieving superior performance, but consid-
ering the balance between the reconstruction performance and the computational 
efficiency, bigger kernel size is not always good.

Kernel numbers Generally, increasing the kernel number will improve perfor-
mance. Based on the baseline network with 32 and 64 kernel numbers in the main 
path in MFU, we increased the kernel number to 64 and 96 and maintained the ker-
nel number in the last reconstruction layer 1, called MFCNn64961 . We also investi-
gated fewer kernel numbers in the main path in MFCN with 16 and 32, referred to as 
MFCNn16321 . The detailed configuration is shown in Table 6.

Table 5  The average SNR, PSNR, SSIM and  reconstruction time of  each slice 
with  a  different kernel size in  the  main path in  MFU and  the  final reconstruction layer 
at the 105 iteration

Network SNR PSNR SSIM Time (s)

MFCNs713
26.574 39.6064 0.9875 0.009123

MFCNBL 27.0741 40.1064 0.9891 0.019142

MFCNs957
27.0415 40.0738 0.989 0.020472

MFCNs1159
26.9858 40.0181 0.9885 0.027577

Table 6  The different kernel number configurations

Network sk/nk in nMFU sk/nk 
in reconstruction 
layer

MFCNBL 9/32, 3/64 5/1

MFCNn16321
9/16, 3/32 5/1

MFCNn64961
9/64, 3/96 5/1
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Fig. 10  The average PSNR with different kernel numbers in the main path
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These results are shown in Fig.  10. The MFCNn16321 network had the worst per-
formance. In the initial iteration, the MFCNn64961 network had a worse performance 
than the baseline MFCNBL network. The performance of the MFCNn64961 network 
improved as the iteration number increased. It is possible to surpass the base-
line network with additional training time likely because the MFCNn64961 network 
requires more learning of the network parameters. This network fails to converge 
during the 105 epochs; therefore, it is not superior to MFCNBL with 32 and 64 kernel 
numbers. 

Sub‑path parameter discussion

In this section, we discuss the influence of the sub-paths (e.g., the kernel size and the 
number of convolution layers in each sub-path) and the effects of preserving an ReLU 
layer before its addition to the MFU.

Kernel size of convolutional layers in the sub‑paths

First, we discuss the kernel size of the convolution layers. As shown in Table  7, we 
attempted to enlarge the kernel size from 1× 1 in the baseline network to 3× 3 in the 
convolution layers in the sub-path ( MFCNS3 ). The result is shown in Fig. 11. A superior 
performance was achieved in MFCNS3 . As discussed in "Sub-path parameter discussion" 
section, the same conclusion was reached, i.e., a wider kernel size is helpful for improv-
ing performance.

Table 7  The different kernel number configurations

Network sk/nk 
of sub-path 
within MFU

MFCNBL 1/32, 1/64

MFCNS3
3/32, 3/64
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Fig. 11  The average PSNR with different kernel sizes in the convolution layer in the sub-path in MFU
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Number of convolution layers in the sub‑paths

In the MFCNBL , the sub-path in each MFU contains a convolution layer. Increasing the 
number of convolution layers in the sub-path is helpful for adding depth to the network. 
Therefore, we further examined networks with more convolution layers and set two 
convolution layers in the sub-path of each unit. The detailed configuration is shown in 
Table  8. Although the average PSNR shown in Fig.  12 demonstrated that the baseline 
network with one convolution layer ( MFCNBL ) was superior to the network with two 
convolution layers ( MFCNL2 ), the performance of MFCNL2 approached that of MFCNBL 
near the 105 iteration and could potentially surpass the baseline networks with higher 
iterative numbers. MFCNL2 may need to learn more parameters and converges more 
slowly than MFCNBL . Consequently, a balance between the reconstruction performance 
and convergence speed is needed.

ReLU before the fusion layer

Previous studies [33] have shown that the “residual” unit should be in the range of 
(−∞,+∞) and suggested removing the ReLU before the addition of the fusion layer to 
achieve a lower error in the image classification. To confirm the performance of ReLU in 
MFU for MRI super-resolution reconstruction, we also investigated a network structure 
by adding ReLU before the addition of each MFU. The other settings remained the same as 
those in the baseline network ( MFCNBL ). As shown in Fig. 13, removing ReLU before add-
ing the fusion layer exceeded the performance compared to when ReLU was maintained.

Table 8  The different kernel number configurations

Network nLayer in each  
sub-path

sk/nk of sub-path  
within MFU1

sk/nk of sub-path 
within MFU2

MFCNBL 1 1/32 1/64

MFCNL2
2 1/32, 1/32 1/64, 1/64
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Fig. 12  The average PSNR with different numbers of convolution layers in MFU
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Fig. 13  Comparison of MFU with and without ReLU before adding the fusion layer
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Fig. 14  The average PSNR with different numbers of MFUs

Table 9  The different MFUs configurations

Network sk/nk of sub-path  
within MFU1

sk/nk of sub-path 
within MFU2

sk/nk of sub-path 
within MFU3

MFCNBL 1/32 1/64 N/A

MFCUU1 1/32 N/A N/A

MFCUU3 1/32 1/32 1/64

Number of MFUs

Several deep learning image recognition and classification experiments have demon-
strated that performance can benefit from increasing the network depth. However, 
previous studies [26] have claimed that deeper networks do not always achieve an 
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improved performance. In addition to increasing the number of convolution lay-
ers in the sub-path in "Sub-path parameter discussion", we attempted to deepen the 
network by adding several MFUs. The detailed configuration is shown in Table 9. As 
shown in Fig. 14, a network with one MFU ( MFCUU1 ) had a worse performance than 
the baseline network with two MFUs ( MFCNBL ). Initially, the networks with three 
MFUs ( MFCUU3 ) were superior to the baseline network, but their performance wors-
ened after approximately 20K iterations, and the curve increased by nearly 105 iter-
ative numbers. Therefore, it is difficult to achieve the same conclusion as [26]. We 
believe that this trend does not oppose the advantage of the network depth. Deeper 

Fig. 15  Low-resolution image (first row), feature maps learned by the main path (second row), feature maps 
learned by a sub-path in MFU (third row) and feature maps after the addition to an MFU (fourth row)
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networks cannot converge within 105 iterations due to the requirement of more 
learned parameters, which leads to a worse performance than that of the baseline net-
work from 2× 104 to 105 iterations.

Learned feature maps

To investigate why the proposed network is capable of super-resolution reconstruc-
tions, some feature maps were studied using different layers and are shown in Fig. 15. 
As shown in Fig.  15, different kernels in the main path extract distinct information 
from low-resolution images, such as different directions, as shown in the second row. 
Convolution layers in the sub-path recover different modalities based on the feature 
maps in the second row as shown in the third row. The feature maps in the second 
and third rows are complementary, and the final fusion layer with the addition opera-
tion in MFU is helpful for combining the complementary information as shown in 
the fourth row. For a better understanding of MFU, we further compared MFCNBL 
and the traditional convolution network (SRCNN) using the same configurations. The 
results are shown in Fig. 16. The MFCN was always superior to the SRCNN.

In summary, we investigated the parameter settings of the proposed network and 
decomposed MFU to visualize the feature maps of the main path and sub-path. Each 
of these experiments indicated that a larger kernel size, an increased kernel num-
ber in the convolution layers, and a deeper network are helpful for improving the 
reconstruction performance. However, many parameters need to be learned, and the 
convergence is, therefore, slow. Consequently, we must compromise between perfor-
mance and efficiency.

Comparisons to state‑of‑the‑art approaches

In previous experiments, the influence of different parameters on networks and 
reconstruction performance has been discussed. To balance the performance and 
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computational efficiency, we adopted the above-mentioned baseline network due to its 
good performance-speed trade-off. Once the network architecture was fixed, the super-
resolution reconstruction experiments were carried out to validate the performance of 
the proposed method. In this section, quantitative and qualitative results of the pro-
posed method were compared with results of certain classical methods for different up-
sampling factors f, including f = 2, 3 and 4. The implementation of existing methods 
was achieved using publicly available codes provided by the authors. For the MFCN and 
SRCNN, we trained the network using 105 iterations.

Different up‑sampling factors

As shown in Table 10, the proposed method always yielded the best scores with different 
evaluation metrics. Figure 17 also illustrates the reconstructed MR images using differ-
ent methods in a single slice. Notably, within the red circle of Fig. 17, it can be found that 
the reconstructions based on MFCN were able to restore more detailed information for 
the MR images than those based on the other classical methods.

Table 10  Quantitative evaluation (RMSE, SNR, PSNR, and  SSIM) of  different up-sampling 
factors using BrainWeb MR images

Eval. met Scale Bicubic NLM Sparse coding SRCNN MFCN

RMSE 2 2.5077 2.1112 1.7747 1.4836 1.2026

3 4.2038 3.7707 3.4262 2.8937 2.5415

4 5.849 5.5588 5.0577 4.6946 4.5196

SNR 2 27.1376 28.636 30.1495 31.7244 33.5375

3 22.6394 23.5894 24.422 25.9595 27.0741

4 19.767 20.2123 21.0326 21.7213 22.0571

PSNR 2 40.1699 41.6684 43.1819 44.7567 46.5698

3 35.6717 36.6218 37.4262 38.9918 40.1064

4 32.7993 33.2446 34.056 34.7536 35.0895

SSIM 2 0.9891 0.9923 0.9945 0.9963 0.9975

3 0.9678 0.9743 0.9788 0.9864 0.9891

4 0.9375 0.9434 0.9529 0.9639 0.9662

Ground Truth Bicubic NLM Sparse Coding SRCNN MFCN

PSNR=34.89 PSNR=35.88 PSNR=36.85 PSNR=37.08 PSNR=38.18
Fig. 17  Visual comparison of different methods using a BrainWeb Dataset
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Evaluation of real data

We further examined the performance of the MFCN using a real dataset. We selected 
fifteen subjects as the training data and the remaining subjects as the test data. Fig-
ure  18 shows representative image reconstruction results using various methods. 
From left to right, the first row shows the high-resolution image, the corresponding 
low-resolution image, and the results of NLM, sparse coding, SRCNN, and MFCN. 
The close-up views of the selected regions are also shown for better visualization. 
The results of NLM show severe blurring artifacts, and the results of sparse coding 
are better than those of NLM. The contrast is enhanced in the SRCNN results, while 
the proposed MFCN is the best for preserving edges and achieving the highest PSNR 
value as shown in Fig.  18. The quantitative results using the real datasets are illus-
trated in Fig. 19. As shown in Fig. 19, the total distribution of PSNRs for MFCN are 
better than others; The mean (small square in the box) and the median (the horizontal 

HR Real Data LR Real Data NLM Sparse Coding SRCNN MFCN

PSNR=35.08 PSNR=35.85 PSNR=35.8 PSNR=36.56
Fig. 18  Visual comparison of the different methods using real data
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Fig. 19  Boxplot of PSNR using different methods with a real dataset
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line in the box) of PSNR for MFCN are also greater than other one. Therefore, the 
proposed method significantly outperformed all compared methods.

Discussion
It is well known that the convolution neural network has a large number of network 
parameters and is needed for training with a large dataset to avoid over-fitting. However, 
due to limited MRI training data, it is difficult to achieve superior reconstruction using 
a standard convolution network. In this work, we developed an MFCN for MRI super-
resolution reconstruction and achieving end-to-end (one-to-one) mapping between low 
and high-resolution images. Instead of a traditional convolution network, the network 
is stacked by MFUs. Each MFU consists of a main path and several sub-paths, and all 
paths are finally added to the fusion layer to fuse multi-scale information. We conducted 
several experiments and demonstrated that when the training data are limited, the pro-
posed network always achieves superior reconstruction results using both simulated and 
real data compared with traditional SR methods, such as bi-cubic, NLM, sparse coding, 
and SRCNN.

An additional concern is the slow convergence speed caused by the traditional con-
volution network structure. Regarding fusing multi-scale information from the main 
path and sub-paths in MFU, we found that the proposed network achieves faster conver-
gence speed than the traditional convolution network SRCNN. As shown in Fig. 16, with 
the same parameter settings, the proposed network converges after 3000 epochs while 
SRCNN converges after 5000 epochs. Furthermore, the proposed network achieves 
a higher PSNR value in the same epoch. Moreover, the proposed network can recover 
more detailed information and has better visual effects as shown in Figs. 17 and 18.

Finally, currently used convolution networks for image super-resolution usually 
extract detailed information on a single scale, and the back propagation process fails to 
utilize prior knowledge of the high-resolution images.

According to previous research on SR [38], the extraction of multi-scale informa-
tion improves the reconstruction results. Using the proposed convolution network, 
we also experimentally validated that differently sized convolution kernels can acquire 
multi-scale information as shown in Fig. 3. We found that multi-scale information can 
be merged and transmitted from one MFU to the next as shown in Fig. 15. Thus, the 
proposed network can recover detailed information and achieve better reconstruction 
performance.

Our results are inconsistent with the conclusion reached using SRCNN [26] that 
“deeper is not better”, and many experiments investigating parameter settings have illus-
trated that incremental network depths and kernel sizes are helpful for improving the 
reconstruction results. Generally, we should seek a balance between computational effi-
ciency and reconstruction performance. Using both simulated and real data, the pro-
posed network has demonstrated visually and quantitatively prominent performance for 
MRI super-resolution reconstruction.
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Conclusion
In this paper, we demonstrated an MFCN for MRI super-resolution. The network is able 
to learn end-to-end mapping from low/high-resolution images. Simultaneously, due to 
the fusion of different paths in MFU, the network can extract multi-scale information 
to recover detailed information and accelerate the convergence speed. The extensive 
experiments using simulated and real data have also demonstrated that this approach 
is superior to other traditional methods. In addition, the proposed network architecture 
and experimental framework can be applied to other medical super-resolution recon-
structions, such as in CT and diffusion-weighted MR imaging.
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