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Gas fermentation: cellular engineering 
possibilities and scale up
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Abstract 

Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and 
municipal waste streams. Gasification of these materials allows all of the carbon to become available for product gen-
eration, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis 
stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and nitrogen (N2). Autotro-
phy–the ability to fix carbon such as CO2 is present in all domains of life but photosynthesis alone is not keeping up 
with anthropogenic CO2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and 
syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric 
composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus 
on acetogens are the focus of this review.
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Background
The critical need for technologies to limit greenhouse gas 
(GHG) outputs and slow down warming of the Earth is 
rapidly accepted. Essential to this is a further improve-
ment in global awareness of nations and generations, and 
their demand for sustainable technology development 
and products. At the same time continued question-
ing of polluting industry and government enforced fur-
ther tightening of emission rules is essential. Sadly, 2016 
marks the year the global atmospheric CO2 level, meas-
ured at Mauna Loa Observatory, permanently reached 
values over 400 ppm [1]. This level is thought to have an 
impact extending far beyond our lifetime and the link to 
the increasing average global temperature is undeniable. 
On the 14th of November 2016 the World Meteorological 
Organization (WMO) reported at the 22nd session of the 
Conference of the Parties (COP22) United Nations global 
climate summit in Morocco that 2016 is on track to be 
the hottest year on record. The vast amount of published 
research on climate change is unanimous and unequivo-
cal pointing to the carbon footprint of the expanding 

world population. The urgency to reduce emissions and 
divest from fossil fuels has been recognized by World 
leaders from over 190 countries who negotiated the 
Paris Agreement at the 21st Conference of the Parties to 
the United Nations Framework Convention on climate 
change [2]. This agreement was signed by 174 countries 
on 22 April 2016 in New York and each country that rati-
fies the agreement will have to set emission reduction or 
limitation targets, known as “nationally determined con-
tribution,” or “NDC,” however the targets will be volun-
tary [2].

Available gaseous feedstocks
A variety of large scale industrial processes generate side 
streams containing low to medium and high BTU (British 
Thermal Units) value off gases. Examples are steel mills, 
ferroalloy industries, refineries and chemical plants pro-
ducing high CO containing gases with variable composi-
tions of H2, CO2, CH4 and N2. Many of these gases are 
flared or preferably burned for internal energy generation 
within the production facility. Another large gas source, 
biomass gasification to generate fermentable syngas, is 
recognized as an alternative to lignocellulosic biomass to 
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fuel conversion. Virtually any waste product can be recy-
cled by turning this into syngas [3–6].

When derived from biomass, syngas can be variable 
in H2 (1.2–7.3 mol%) [7, 8] which makes this less suited 
for catalytic processes such as the Fischer–Tropsch Pro-
cess (FTP) which require a fixed H2:CO ratio of 2:1 [9, 
10]. In addition, non-lignocellulosic biomass gasification 
such as municipal solid waste (MSW) is another rapidly 
growing gas source with limited impact on land usage 
and a preferred technology in crowded nations. Within 
petrochemical refineries (syn)gas or natural gas to liquid 
(GTL) technologies are well developed but require high 
capital investment to be economically viable and com-
pared to petroleum based fuels have high greenhouse 
gas (GHG) output [11]. Within petrochemical refineries 
several streams of ‘stranded gas’ often remain underu-
tilized due to logistical and economic barriers [12]. To 
limit carbon emissions into the atmosphere governments 
are increasingly exploring regulatory incentives while 
planned CO2 capping can provide economic benefits 
[13]. New regulatory opportunities can be expected to 
arise, further growing the gaseous pool available for con-
version by gas fermentation.

According to life cycle analysis (LCA) studies, in many 
of the feed stock examples mentioned above a microor-
ganism based gas to liquid conversion could be an eco-
nomically profitable proposition while simultaneously 
decreasing GHG emissions when compared to fossil gas-
oline [14, 15].

Gas fermentation process
The advantages of gas fermentation have been made 
clear in recent reviews [16–19]. The available macro gas 
composition determines the organisms available for con-
version: autotrophic acetogenic, carboxydotrophic, and 
methanotrophic bacteria can fix the carbon from CO, 
CO2 or CH4 containing gases, respectively. Although 
chemical processes are generally faster than biological 
conversions, the high enzymatic specificities of biological 
reactions result in higher product selectivity with the for-
mation of fewer by-products.

In this review we present data from acetogens which 
can conserve energy through CO2 (CO) fixation via the 
Wood-Ljungdahl pathway (WLP). This is the most effi-
cient known pathway to convert CO2 to secreted organic 
products [20, 21]. The key intermediate of the WLP, 
acetyl-CoA, is a precursor for enzymatic production of 
various other organic compounds, production of which 
can be of commercial interest [20, 22–25].

H2 can provide an additional energy source and certain 
acetogens are able to grow and produce ethanol from 
CO2 and H2 [26], providing direct CO2 sequestration into 
products. Direct input of wind, hydro or solar generated 

electrons could further improve carbon capture utiliza-
tion (CCU) in these naturally occurring microbial cell 
factories. Sakimoto et all showed a remarkable biomi-
metic approach with direct electron input into the WLP 
of Moorella thermoacetica by photosensitizing these 
nonphotosynthetic microbes using a biological-inorganic 
hybrid approach. This is a true solar to chemical carbon 
dioxide reduction with 90% selectivity to acetate and 10% 
selectivity to biomass [27]. A wide variety of CO2 reduc-
tion technologies remain under development and each 
could have its own positive impact reducing atmospheric 
CO2 levels [28–31].

A critical aspect of any fermentation involving gases 
as a substrate is the ability of the gas to solubilize in the 
liquid to a concentration that does not inhibit micro-
bial metabolism. Inhibition can occur by the substrate 
being too concentrated [32] or by a low volumetric mass 
transfer coefficient (kLa) when substrate availability can 
become rate-limiting. A variety of reactor configurations 
attempting to achieve an optimal and controllable kLa 
have been extensively discussed in the literature: Con-
tinuous stirred tank reactors (CSTR’s), bubble columns, 
loop reactors, immobilized beds, and hollow fiber mem-
brane columns each have certain process dependent ben-
efits and specific volumetric mass-transfer coefficients [4, 
6, 18, 33–36].

Detailed gas composition
The wide variety of industries producing waste gas 
streams invariably introduce impurities due to process 
variables and trace elements in process feed stocks. These 
impurities can affect downstream conversion perfor-
mance, compounds such as ash, char, tar and aromatics, 
lipophilic compounds that are known to accumulate into 
lipid bilayers affecting their functional properties [37]. 
Halogens and mono nitrogenous species such as hydro-
gen cyanide (HCN), ammonia (NH3), nitrogen oxide 
(NOx) and other known enzyme inhibiting gases such 
as acetylene (C2H2), ethylene (C2H4), ethane (C2H6) and 
oxygen (O2) can be present [3, 5, 6, 38, 39]. Sulfur com-
pounds in the gas such as hydrogen sulfide (H2S), car-
bonyl sulfide (COS), carbon disulfide (CS2) can in turn 
negatively affect catalyst based scrubbing systems and 
their atmospheric release is restricted by environmental 
regulations.

For many of the above compounds commercially avail-
able scrubbing systems exist, however microbial gas fer-
mentation as the downstream process is a relatively new 
addition. Monitoring optimal scrubbing system perfor-
mance, including peak loads, saturation and regen cycles 
is critical to effectively maintain a reactive microbial 
population. A complete understanding of upstream pro-
cess variability effect on gas contaminants production, 
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together with the effect that accumulating and reactive 
impurities have, could reduce treatment costs. However, 
assuming feed gas process stability, at macro and micro 
composition, is an unrealistic expectation and can cause 
production delays at scale [40].

Gas contaminant process tolerance
A distinct advantage of the biological conversion route is 
that a biocatalyst is versatile, constantly renewing due to its 
growth rate and as a consequence also capable of adapting 
to its environment. The biocatalyst is therefore less suscep-
tible to poisoning by sulfur, chlorine and tar contaminants 
than inorganic catalysts which in turn have a much longer 
residence time, and therefore exposure to, the aforemen-
tioned gas contaminants [41, 42]. However tolerance lev-
els to certain compounds is low, C2H2, HCN and NO are 
considered particularly troublesome as they are known to 
inhibit enzymes responsible for initial harvesting of car-
bon and energy from syngas in acetogenic organisms [43].

Hydrogen cyanide can be formed in gasifiers fed with 
nitrogen containing materials, and output concentra-
tions can be influenced by gasifier operation parameters 
[44, 45]. Enzyme specific tolerance has been reported 
where cyanide specifically interacted with Fe-hydroge-
nases but not with di-nuclear metal centers as found in 
NiFe or FeFe hydrogenases [39]. In another study it was 
found cyanide acts as a competitive inhibitor acting on 
the Ni-4Fe-5S center of carbon monoxide dehydrogenase 
(CODH) [46], a key enzyme of the WLP [39, 44–47].

Besides cyanide, nitric oxide can be cogenerated in 
gasifiers. NO is a radical gas and used within biological 
systems as a transcriptional regulator [48]. At high con-
centrations however this reactive gas interacts within 
the cell to form toxic nitrogen oxides that inhibit key 
enzymes and at high concentrations prevent microbial 
growth [49]. A report on the inhibition of hydrogenase 
activity within a syngas operating system found tolerance 
levels to 40  ppm without compromising productivity 
while 200 ppm levels resulted in complete enzyme inac-
tivation [49]. Biological tolerance can be based on con-
version of NO to less reactive compounds such as nitrate 
(NO3) nitrous oxide (N2O) or ammonia (NH3) [48].

Acetylene dissolves well in aqueous solution, up to 
47 mM at standard conditions and is a well-known inhib-
itor of metalloproteins due to reversible binding to the 
catalytic site [50]. Acetylene can reversibly inhibit hydro-
genases limiting energy generation through H2 uptake 
[51, 52]. Due to the high reactivity with metalloenzymes 
tolerance levels are found to be low. Using 10% (v/v) 
C2H2 fed to Rhodospirillum rubrum, it was found that 
CO-linked hydrogenases had 50% reduced activity [52]. 
However it was found that only NiFe hydrogenases, not 
Fe hydrogenases, are inhibited by acetylene binding [51]. 

Using the rate of methanogenesis in marine sediments 
to study inhibitory compounds it was found acetylene 
irreversibly inhibits methane production while ethylene 
had a reversible inhibitory effect [53]. In the same study 
ethane was found to have no effect. Ethylene has also 
been described as a toxic compound to the gas fermen-
tation process [38]. For commercialization of their gas 
fermentation process LanzaTech has performed exten-
sive laboratory gas contaminant exposure tests on con-
tinuously grown Clostridium autoethanogenum cultures. 
Test results indicate ethylene appears to have limited to 
no effect on gas uptake rates in C. autoethanogenum cul-
tures tested at up to a partial pressure of 10 mbar (Fig. 1).

For obligate anaerobic Clostridium species in indus-
trial settings, oxygen and reactive oxygen species (ROS) 
are considered gas contaminants although some species 
are reported to withstand microoxic conditions [54–56]. 
In laboratory experiments on C. autoethanogenum under 
a partial pressure of up to 8 mbar oxygen an impact on 
CO utilization was measurable (Fig.  2). After reducing 
the oxygen concentration to 2 mbar the carbon monox-
ide uptake levels increased again indicating the tolerance 
level and reversible nature of the oxidative effect.

Synthetic biology development
Synthetic biology and metabolic engineering approaches 
play an essential role in expanding acetogen product 
spectrum beyond the native products, such as ethanol, 
acetate and butanediol (BDO) to other fuels and com-
modity chemicals. These approaches had been applied to 
classic model microorganisms, such as E. coli and yeast 
which have been successfully engineered to produce 
non-native products at commercial scale [57–60]. On the 
other hand, acetogenic clostridia had long been consid-
ered challenging hosts for genetic modification. The slow 
development of reliable molecular biology tools is partly 
contributed by a strong native restriction-modification 
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Fig. 1  CO consumption profile of a continuously operating C. 
autoethanogenum gaseous fermentation undergoing addition of eth-
ylene by sparging with ethylene containing Nitrogen. CO consump-
tion remains stable around 5800 mmol CO/day



Page 4 of 11Heijstra et al. Microb Cell Fact  (2017) 16:60 

system, non-standard culturing conditions (toxic gas 
at pressure and obligate anaerobic), and slow doubling 
times. Since the successful demonstration of gas fermen-
tation at pilot and pre-commercial scale as mentioned 
below, significant progress had been made in understand-
ing acetogens at both the molecular and system biology 
levels [61–63]. Most notably, whole genome sequences, 
genome scale models, transcriptomic, proteomic stud-
ies and genetic tools have now been developed for these 
organisms. [18, 22, 26, 56, 61–71].

DNA transfer
In order to genetically modify a microorganism, 
whether to delete a competing pathway or to introduce 
a new product pathway, it is imperative to have a reliable 
method to introduce foreign DNA into the cell. Elec-
troporation and conjugation are the most frequently used 
methods for introducing foreign DNA into acetogens [26, 
62, 72]. These strategies have been successfully demon-
strated in C. ljungdahlii, C. autoethangenum, C. aceti-
cum, A. woodii and M. thermoacetica [22, 62, 65, 73–76]. 
The highest transformation efficiency was reported to be 
around 1.7 × 104 cfu/μg DNA for C. ljungdahlii in aceto-
gens and the authors successfully introduced suicide vec-
tor with homology arms for chromosomal modification 
[62, 77]. Although electrocompetent cells preparation is 
elaborate, the method is donor cell independent, unlike 
conjugation. Further improvement of electroporation 
efficiency has been achieved through in  vitro methyla-
tion or disruption of host’s restriction endonuclease, such 
as those examples in C. acetobutylicum [78], C. pasteu-
rianum [79] and C. cellulolyticum [80], when the meth-
ylation/restriction patterns are identified either through 

restriction digestion pattern identification or PacBio 
sequencing [79, 81, 82].

In addition, conjugation is used broadly among 
Clostridium species, mainly because during conjugation 
DNA is transferred from donor to recipient cell as a sin-
gle strand, not recognizable by the recipient’s restriction 
modification system. This method has been successfully 
used in C. autoethanogenum [26] and A. woodii [83]. In 
combination the two methods provide a robust basis 
platform for routine and advanced synthetic biology 
discovery.

Genome modification
Homologous recombination utilizing host’s own recom-
bination machinery is widely used for genome engineer-
ing. More specifically, a plasmid that carries homologous 
arms to the upstream and downstream areas of target 
gene(s), is introduced into the host. In order to select 
for a double crossover event (gene deletion), a positive 
selection (such as antibiotic resistance cassettes) or com-
bination with a negative selection (such as mazF [84] or 
pyrE [85]) is used. Other variant methods that rely on 
homologous recombination also include Allele-Coupled 
Exchange (ACE) [86], Triple crossover [87] and scar-less, 
marker-less knockout or knock-in using two negative 
selection markers (C. thermocellum), detailed informa-
tion has recently been reviewed [88]. In some instances, 
specific DNA sequences which can be recognized by site-
specific recombinases, flanking the antibiotic resistance 
cassettes were introduced into the chromosome at the 
same time during the double crossover event. The anti-
biotic resistance cassettes can then be excised out of the 
chromosome by the site-specific recombinase and pro-
duce a marker-less mutant [77].

Other genetic modification tools utilizing RNA 
machinery, such as the group II intron gene inactivation 
[89] and CRISPR/Cas9 (Clustered Regularly Interspaced 
Short Palindromic Repeats/CRISPR-associated protein 
9), a RNA-guided prokaryotic immune system which can 
cleave foreign DNA [90]. The group II intron method had 
been applied to different Clostridium species including 
acetogens such as C. autoethanogenum [26, 61], and oth-
ers [91]. This method, based on RNA-mediated, retro-
homing mechanism [89], provides a quick and easy gene 
inactivation tool without relying on host recombination 
machinery, thus bypassing the low occurrence of dou-
ble crossover events, and resulted in greater success in 
genome editing in acetogenic Clostridium. However, the 
nature of group II intron mutagenesis is based on inser-
tion of the group II DNA at the target gene, therefore, 
this method is flawed with the possibility of polar effects 
on downstream genes.
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Fig. 2  CO consumption profile of a continuously operating C. 
autoethanogenum gaseous fermentation undergoing varying levels 
of oxygen addition. At 2 mbar oxygen concentration CO uptake 
is stable at approximately 5900 mmol/day which, when oxygen is 
increased to 8 mbar, reaches a reversible equilibrium of CO uptake 
around 5000 mmol/day
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It was recently reported that the CRISPR/Cas9 system 
from Streptococcus pyogenes was successfully applied 
to acetogens, many other bacteria, and also yeast and 
Eukaryotes due to high and reliable efficiency, the sim-
plicity in design and fast turnaround to generate scar-less 
mutants [90, 92–96]. Moreover, CRISPR/Cas9 system 
has been reported to target multiple genes at the same 
time (multiplex gene editing) [92], which allows for engi-
neering bacterial strains with desired phenotypes in a 
one-step. This system has also reported to be able to edit 
bacterial strains at the single nucleotide level [97]. The 
CRISPR/Cas9 system has rapidly become the preferred 
method for genome editing in most organisms, facilitat-
ing rapid functional analysis and strain development for 
industrial applications.

Genetic parts
In addition to chromosomal editing tools, genetic parts 
such as promoters, terminators ribosomal binding sites 
(RBS) [98, 99] are essential for both strain and path-
way development. Unlike other model microorganisms 
for which commercial genetic parts and even software 
designing tools are available, acetogens’ part library is less 
well-developed, the majority of genetic parts such as the 
promoters are extracted from close Clostridium relatives 
or from its own genome. Recently inducible promoter 
systems had been successfully developed in C. ljungda-
hlii and C. autoethanogenum, respectively [25, 87]. It is 
critical to develop an organism specific validated library 
of genetic parts.

One limiting factor to carry out promoter screening 
in acetogens is the lack of fluorescent reporter protein 
that would allow signal to correlate with the amount of 
translation from a given quantity of mRNAs transcribed. 
So far, there has only been a flavin-based fluorescent pro-
tein derived from Pseudomonas putida that works under 
anaerobic conditions [100]. This has been used to char-
acterize two endogeneous promoters of C. cellulolyti-
cum [101]. However, it remains to be determined if this 
flavin-based fluorescence system will work in acetogens. 
Thus for most parts, promoters in acetogens are charac-
terized using either the gusA or catP systems, encoding 
β-glucuronidase and chloramphenicol acetyltransferase, 
respectively [25, 87]. Characterizing promoter strength, 
based on the enzymatic activities, is however less 
straightforward and time consuming.

Metabolic engineering in gas fermentation
Gas fermentation offers the benefit of not using heter-
ologous feedstocks such as sugars that affect food supply 
chain. Metabolic engineering of acetogens in an indus-
trial setting has been reviewed at length elsewhere [18]. 
The central metabolic pathway in acetogens begin with 

the reduction of CO/CO2 to acetyl-CoA through the 
WLP. Depending on the choice of strains and feedstocks 
used, various native products can be produced, including 
acetate, ethanol, 2,3-BDO, lactate, butyrate, etc. (Table 1 
in [18] and reference therein). The metabolic profiles 
of acetate, ethanol and 2,3-BDO produced by various 
industrial strains have recently been summarized [19]. 
At LanzaTech a proprietary process has been developed 
that maximizes the conversion of CO to ethanol in C. 
autoethanogenum using steel mill off-gas. Furthermore, 
it has been demonstrated that deletion of the budA gene 
encoding for an enzyme catalyzing 2,3-BDO production 
resulted in an increase in ethanol selectivity and titer as 
a result of diminished production of 2,3-BDO [61, 102]. 
The ethanol pools currently produced from the demo 
plants around the world have been converted into the 
jet fuels by the catalytic process known as alcohol-to-jet, 
which involves dehydration to alkenes and oligomeriza-
tion to the targeted C-length [103].

To enhance process viability, the conversion of gas to 
more valuable products than ethanol have to be devel-
oped. There have been several reported successes in 
expressing heterologous pathways to produce acetone, 
butanol, butyrate, and isopropanol, in acetogens [22, 25]. 
Recent publication by the White Dog Lab even employed 
a co-feeding strategy, producing a mix of acetone, iso-
propanol, ethanol, at 12.5  g/L in C. ljungdahlii with a 
combination of CO and sugar [104]. In addition to these 
products, LanzaTech has also developed and owns sev-
eral patent families exemplifying the synthesis of higher 
value products such as 3-hydroxypropionic acid, methyl 
ethyl ketone, and mevalonate, by expressing correspond-
ing biosynthetic pathway genes from photosynthetic 
bacteria Chloroflexus aurantiacus, Klebsiella, E. coli and 
even plant [105–108]. In most instances, the productions 
were demonstrated using a plasmid platform under the 
control of native promoter systems.

Pathway and strain optimization
In order to scale up production, pathway gene expression 
needs to be optimized to minimize metabolic bottlenecks 
and un-wanted side products [109–111]. Even though the 
number of publications on this topic in the field of gas 
fermentation is limited, many of the approaches devel-
oped through the metabolic engineering of E. coli and 
yeast are applicable to the gas fermentation organisms. 
In general, the strategy involves multilayers of analysis 
and debugging, both at the biosynthetic pathway level 
as well as the overall metabolic flux level of the host cells 
[112, 113]. Due to the inherent complexity of a biologi-
cal system, however, debugging bottlenecks one gene at a 
time is tedious and time consuming. Thus, it is more effi-
cient to manipulate the gene expressions systematically, 
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refactoring the biosynthetic pathway via modular design, 
combinatorial analysis and high-throughput screening, 
to identify the best combination of genes and promot-
ers, and other transcriptional elements such as riboso-
mal binding sites (RBS), and terminators. [109, 114, 115]. 
Additionally, routine targeted proteomics and metabo-
lomics can be performed to rapidly assess gene expres-
sions and key metabolites accumulation [116–119]. With 
the technologies developed in the field of synthetic biol-
ogy for the past 10 years, including computer-aided path-
way design algorithms [120–122], DNA assembly and 
sequencing [123–125], it is now routine to screen a large 
combinatorial libraries. When combined with rational 
design and effective screening methodologies, the com-
binatorial library facilitates the search for ideal pathway 
combinations for highly productive strains [126, 127].

Use of omics based technology to monitor 
bioprocess performance
Nextgen sequencing has become a powerful tool in pro-
cess optimization. Routine sequence analysis at genomic 
and transcriptomic levels are carried out to determine 
gene expression and mutation rate, which directly relate 
to process productivity and stability at molecular level. 
One recent study linked the genomic and metabolic anal-
ysis of various acetogens to confirm the involvement of 
the acetaldehyde oxidoreductase (AOR) in ethanol pro-
duction and NADPH-dependent alcohol dehydrogenase 
(ADH) in the hydration of acetone to isopropanol in ace-
togens [19]. Moreover, C. autoethanogenum has been 
the subject of a multi-omics investigation to compare 
energy metabolism between autotrophic and hetero-
trophic growth [61]. The study highlighted the interplay 
of hydrogenases and the electron-bifurcating Nfn com-
plex in ethanol formation during the autotrophic growth. 
The study also concluded that the overall energy yield 
does not change during the autotrophic or heterotrophic 
growth. The vast data provided by omics analysis from 
production plants, can be used to further improve path-
way and strain design.

Metabolic flux analysis is often used in conjunction 
to the omics analyses to debug bottlenecks through the 
metabolic flux of interest [128]. A metabolic flux analysis 
on the syngas species, Clostridium tyrobutyricum, corre-
lated increase in NADH with increase in butanol produc-
tion [129, 130]. Moreover, genome-scale metabolic flux 
balance analysis has been used to construct spatiotem-
poral metabolic models for Clostridium ljungdahlii [131]. 
When combined with the Optknock computation, the 
models could predict new gene knockout targets relevant 
to the overproduction of ethanol, lactate and 2,3-BDO in 
a bubble column reactor [132].

Scale‑up
As described above the research output in the gas fer-
mentation field and the synthetic biology capabilities on 
its subject microorganisms have been rapidly expanding. 
However, in 2016 two of the three companies that own 
and operate scaled up gas fermentation facilities sus-
pended operations. This immediately raises the question 
whether gas fermentation is scalable. Below we briefly 
summarize what is known about these three compa-
nies and for the first time present gas fermentation pro-
duction data from a LanzaTech demonstration facility 
located within a steel mill plant in China.

Three companies, Coskata, INEOS Bio, and LanzaT-
ech have operated pilot and demonstration plants for 
extended periods of time. Coskata’s technology reformed 
methane into syngas with a H2:CO ratio of between 2:1 
and 3:1, followed by fermentation of this syngas to etha-
nol. This approach seeks to take advantage of the current 
low price of natural gas in geographies such as the US. 
While Coskata announced that it was to cease operation 
in 2015, the technology developed in this company now 
forms the basis of a new company: Synata Bio [133].

INEOS recently announced it is selling the INEOS Bio 
facility in Vero Beach, FL, USA [134]. This name-plate 8 
million gallon per year (Mgy) semi-commercial facil-
ity was built as a joint venture with New Planet Energy 
Holdings, LLC. Commissioned in 2012, the facility used 
lignocellulosic biomass and MSW for generating syngas 
and coproduced 6 MW of electrical power. In July 2013 
the company announced successful production of etha-
nol at its facility [135]. In September 2014 operational 
changes were imposed to optimize the technology and 
de-bottleneck the plant to achieve full production capac-
ity [40].

LanzaTech
LanzaTech was founded in 2005 and after extensive pilot-
ing at a modest capacity steel mill plant in New Zealand, 
it partnered with 2 larger Chinese steel mills to build gas 
fermentation demonstration facilities. The first Dem-
onstration unit was located at one of BaoSteel’s mills 
near Shanghai (operational since 2012) and the second 
at a Shougang steel mill near Beijing (operational since 
2013), both facilities have a 100,000 gpy pre-commercial 
capacity. Typical production results from the second 
facility (Fig. 3) are shown below. To our knowledge this 
is the first time continuous, long term gas fermentation 
production data has been published from a demonstra-
tion facility. It is important to note this facility is running 
directly off steel mill produced off-gas and operational 
set-ups are a reality of scaled up operations. The gas 
fermentation process has proven robust to a wide vari-
ety of process upsets such as: macro gas concentration 
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fluctuations, presence of gas contaminants, intermittent 
gas supply and equipment failure which can be replaced 
during the continuous fermentation.

The Shougang facility earned the Roundtable on Sus-
tainable Biomaterials (RSB) certification for sustainability 
[136]. The RSB is the most robust and credible global sus-
tainability standard and certification system for biofuels 
and biomaterials production. Here we present produc-
tion and gas utilization data from a typical run from the 
RSB certified plant. The resulting ethanol from the Lan-
zaTech Demo facilities has been turned into jet fuel ready 
for a test flight scheduled for 2017 [137].

In 2015, both China Steel Corporation of Taiwan and 
ArcelorMittal of Luxembourg approved commercial pro-
jects with LanzaTech. The former will be a 17 Mgy facility 
with the intention to scale up to 34 Mgy [138]. The lat-
ter 21 Mgy facility will be built at ArcelorMittal’s flagship 
steel plant in Ghent, Belgium with intention to construct 
further plants across ArcelorMittal’s operations [139]. 
If scaled up to its full potential at steel mills in Europe 
alone, the technology could enable the production of 
around 104 Mgy with the potential to displace 1.6 million 
barrels of fossil fuel-derived gasoline on a BTU basis.

Summary and outlook
Gas fermentation is rapidly becoming an established 
platform for the conversion of (waste) gas to valuable liq-
uid chemicals. Clear advantages are process stability and 
tolerance to inhibitory compounds and therefore flex-
ibility in gas feedstock sourcing. Process upsets, either 
upstream or downstream can occur with limited warn-
ing at scaled up operations. Resilience of the microbial 

culture to upsets can be enhanced by engineering design 
to limit their impact. The production of ethanol has been 
proven robust at scaled up operations, the next stage is 
now set for expanding the product portfolio utilizing 
advanced synthetic biology technologies developed for 
gas fermenting microorganisms. This allows for a prof-
itable carbon recycling operation, producing sustain-
able chemicals independent of carbon credits, to further 
limit GHG emission. With an industrially robust strain, 
efficient genetic toolbox, advanced synthetic biology 
capabilities, and scalable reactor design, the field of gas 
fermentation remains on course to reduce global carbon 
emissions.
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