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Abstract 

Two-component regulatory systems (TCRSs) mediate cellular response by coupling sensing and regulatory mecha‑
nisms. TCRSs are comprised of a histidine kinase (HK), which serves as a sensor, and a response regulator, which 
regulates expression of the effector gene after being phosphorylated by HK. Using these attributes, bacterial TCRSs 
can be engineered to design microbial systems for different applications. This review focuses on the current advances 
in TCRS-based biosensors and on the design of microbial systems for bioremediation and their potential application in 
biorefinery.
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Background
Toxic chemicals have currently been released into the 
environment by accidental spills and the improper man-
agement of chemical industries. These toxic chemicals 
include inorganic products such as heavy metals and 
organic products such as benzene, toluene, ethylbenzene, 
biphenyl, and styrene, accidental release of which into 
environment are a significant threat to the environment. 
Heavy metals and oil products are difficult to remove 
from the environment and cannot be easily degraded. 
Thus, they are ultimately indestructible and consti-
tute a global environmental hazard. As a result, soil and 
groundwater contamination has become a major prob-
lem at these polluted sites and requires urgent remedia-
tion technology to protect the environment.

Over the past few decades, several technologies based 
on novel analytical methods have been developed to 
remove certain metals and organic pollutants from the 
environment [1]. Unfortunately, many conventional 
techniques have been found to be ineffective and/or 
expensive due to low permeability, different subsurface 
conditions, and contaminant mixtures. Owing to the lim-
itations of traditional methods, researchers have focused 
on in situ bioremediation, which uses microorganisms to 
degrade petroleum products or immobilize heavy metal 
contaminants. Bioremediation strategies have been pro-
posed as potential alternatives for the removal of organic 
and inorganic pollutants due to their safety, speed, low 
cost, and high efficiency in removing pollutants from the 
environment.

The central principle of bioremediation is that micro-
organisms are able to produce energy they need to grow 
and reproduce by degrading hazardous contaminants. 
In some cases, bioremediation occurs spontaneously 
because the essential materials required for bacterial 
growth are naturally present at the contaminated sites. 
More often, bioremediation requires an engineered bac-
terial system to accelerate the tailor-made biodegradation 
of organic compounds or bio-adsorption of inorganic 
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elements as we desired [2, 3]. It is also needed to fur-
ther optimize the environmental conditions, in which 
the microorganisms carry out the detoxification reac-
tions by employing several engineered microorganism 
systems such as cell surface display- and secretion-based 
strategies to remediate the contaminated environment. 
Cell surface display technologies have widely been used 
in both pharmaceutical and bioremediation applications 
such as live vaccine development, antibody production, 
peptide library screening, biosensors, bio-adsorption of 
organic and inorganic pollutants, and whole-cell bioca-
talysis (Fig. 1) [4–7].

Heavy metals are common pollutants that are byprod-
ucts of various industrial activities. Microorganisms 
usually mobilize metals from one location and scavenge 
metals from another. Recently, recombinant bacterial 
systems displaying chimeric proteins on the cell sur-
face have been developed for use in the bio-adsorption 
of specific heavy metals. To address organic products, 
microorganisms have been engineered to produce extra-
cellular enzymes or display enzymes as outer membrane 
proteins, and they act as a whole-cell catalyst to break 
down petroleum hydrocarbons and their derivatives. 
However, all of these constructs require expensive induc-
ers, or the constitutive expression of a membrane pro-
tein on the cell surface may affect the growth of the host 
system. Additionally, none of these engineered bacteria 
can sense the particular bio-component to be degraded. 
Therefore, engineered bacteria should be designed to 
monitor the environmental pollutants, and the design 
should also include a well-defined removal system. The 
engineered bacterial system should behave normally until 
it senses the target in the environment. Once the target 
is detected, the system should modulate bacterial genes 
in response. In this way, the genes needed to remove the 
target are only transcribed and expressed when required. 

Therefore, it is essential to construct an inexpensive sys-
tem that can efficiently examine and remove hazardous 
materials present in the environment.

Nature has provided an excellent solution to this 
problem. Interestingly, cells have evolved many intri-
cate sensory apparatuses to control cellular growth and 
behavior. Thus, some cells not only sense light, tempera-
ture, oxygen, and pH, but also detect the toxic status of 
the external environment. An essential requirement 
for a biosensor or bioremediation process is promoting 
contact between the contaminants and microbes. As a 
result of this contact, the microbes adapt their cellular 
functions in response to the surrounding environmen-
tal conditions and then express the relevant genes when 
needed. If the aim is to monitor and remove an individual 
toxic compound from the environment, then a synthetic 
biological strategy will be more feasible because the nec-
essary genetic circuits can be assembled to sense and 
reduce the level of the exogenous toxin. These synthetic 
genetic circuits can be assembled using a two-compo-
nent regulatory system (TCRS) in bacteria [8].

Two-component regulatory systems are widely found 
in prokaryotes, but only a few have been identified in 
eukaryotic organisms that can be coupled to environ-
mental stimuli for an appropriate cellular response. This 
system senses environmental changes and regulates cel-
lular metabolism in response to these changes thereby 
allowing bacteria to grow, thrive and adapt in different 
environments. A prototypical TCRS has two compo-
nents: a histidine kinase (HK) and a response regulator 
(RR). The HK sensor is a homodimeric integral mem-
brane protein that contains a sensor domain as an extra-
cellular loop located between two membrane-spanning 
segments (TM1 and TM2) and a transmitter domain 
located in the last transmembrane segment confined 
to the cytoplasm. All HK domains contain two highly 

Fig. 1  Application of different cell surface display technologies in A antibody production, B peptide library screening, C biosensors, D biocatalysts, 
E bio-adsorption, and F vaccine development
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conserved domains: dimerization and histidine phos-
photransfer domain (DHp) and catalytic ATP-binding 
domain (CA). The periplasmic or extracellular region 
serves mostly as the signal recognition domain. The DHp 
and CA domains are responsible for the molecular recog-
nition of the cognate RR as well as the hydrolysis of ATP. 
The transmitter domain, which serves as a signal trans-
mitter linking the periplasmic and cytoplasmic regions, 
contains three domains that are named after the proteins 
where they were first discovered: PAS (Periodic circadian 
proteins, Aryl hydrocarbon nuclear translocator proteins 
and Single-minded proteins), HAMP (HKs, Adenylate 
cyclases, Methyltransferases, and Phosphodiesterases), 
and GAF (cGMP-specific phosphodiesterases, adeny-
lyl cyclases, and formate hydrogenases). These domains 
can either transmit signals from the periplasmic region 
or directly recognize the cytoplasmic signals. Therefore, 
the HK senses stimuli from the external environment and 
autophosphorylates conserved histidine residues in the 
kinase itself. The RR is regulated by the HK, which phos-
phorylates aspartate residues on the RR. The phosphoryl-
ated RR generates output by binding to promoters and 
thus activates or represses gene expression [8].

Aside from the application of TCRSs in the develop-
ment of engineered microorganisms for coupled detec-
tion and degradation of environmental pollutants, 

recently, the potential application of TCRSs to metaboli-
cally engineered microorganisms has also been exten-
sively examined for different biotechnological purposes. 
Thus, the recent advances in TCRS-based biosensors 
designed for cell-mediated bioremediation in response 
to different environmental pollutants are discussed along 
with the potential application of TCRSs for the develop-
ment of engineered host microorganisms in biorefinery 
process to produce bio-based chemicals.

TCRS sensing of heavy metals and organic pollutants
Two-component regulatory systems can detect a broad 
range of environmental signals, such us light, oxy-
gen, pH, temperature, and even some heavy metals and 
organic contaminants [9]. Many types of TCRS-based 
environmental biosensors have been reported, but only 
a few heavy metal- and organic pollutant-based sen-
sors have been developed to date (Fig.  2). Bacteria use 
several TCRSs to sense specific heavy metals. Because 
heavy metals are cations that are both toxic and essen-
tial, bacterial cells use TCRSs to regulate the homeostasis 
of these metal cations. A HydHG TCRS (also known as 
ZraSR) was identified in Escherichia coli that senses and 
controls the expression of zraP gene encoding zinc efflux 
protein under high concentrations of Zn2+ and Pb2+ in 
aerobic condition [10]. HydH protein is tightly bound 

Fig. 2  a Domain structure of bacterial two-component regulatory systems (TCRS). Typical two-component phosphotransfer systems contain a 
sensor domain and a cytoplasmic response regulator (RRs). b A multi-component phosphorelay system containing the HAMP, PAS, and phospho‑
transfer domains. The periplasmic metal-sensing receptors sense heavy metals and phosphorylate the HK domain and activate the corresponding 
RR. The RR activates the synthetic genetic circuit of the TCRS resulting in the expression of the reporter protein. The genetic circuit shown in gray 
can be developed as a biosensor
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to the cell membrane and is assumed to be responsible 
for sensing high periplasmic Zn2+ and Pb2+ concentra-
tion. Then, in the presence of a phosphoryl donor, HydG 
binds to the intergenic region within zraP-hydHG result-
ing in the upregulated expression of ZraP [10]. Likewise, 
the CusRS (ylcA, ybcZ) TCRS found in E. coli K-12 is 
responsive to Cu2+ ions and is required for the induc-
ible expression of pcoE, belonging to the plasmid-borne 
pco operon, the induction of the genes in this operon 
activates the copper efflux system thereby allowing the 
excess Cu2+ to exit the cell [11]. Some TCRS can regu-
late the expression of several specific genes in an operon 
or a whole operon. The SilRS TCRS increases the resist-
ance of Salmonella enterica to silver cations through the 
coupled sensing and activation expression of the peri-
plasmic silver-specific binding protein, SilE encoded by 
silE gene and two parallel efflux pumps, SilP and SilCBA 
[12]. This is also in the case of NrsSR TCRS identified in 
Synechocystis sp. PCC6803. NrsSR senses Ni2+ and Co2+ 
ions and regulates the expression of the nrsBACD operon 
that encodes proteins involved in Ni2+ resistance [13]. In 
another study, a PfeS/R TCRS senses ferric enterobactin 
and induces the production of the enterobactin receptor 
PfeA in Pseudomonas aeruginosa [14].

Aromatic compounds are the most abundant organic 
contaminants. However, utilizing these compounds is 
disruptive to most bacteria. Due to the genetic and meta-
bolic flexibility of bacteria, some microorganisms can use 
organic contaminants as their sole carbon source. Several 
TCRSs have been identified to be involved in catabolizing 
aromatic compounds by inducing and activating the aro-
matic metabolism pathways. The TodST TCRS of Pseu-
domonas putida can be induced by different aromatic 
substrates such as toluene, xylene, benzene, and ethylb-
enzene. This TCRS modulates the expression of the tod 
genes, which encode enzymes for the catabolism of these 
aromatic compounds [15]. The StySR TCRS identified 
in Pseudomonas sp. strain Y2 activates the expression 
of the styABCD genes in response to changes in styrene 
concentration in the environment [16]. Another TCRS, 
BpdST, potentially controls biphenyl or polychlorobiphe-
nyl degradation in Rhodococcus sp. [15].

TCRS‑based heavy metal bio‑adsorption coupled with a 
biosensor
One of the best approaches to a biosensor-based method 
is to use a genetically modified microorganism that emits 
a clear signal when the microbes encounter a target mol-
ecule [17, 18]. To date, many metal-specific and a few 
petroleum product-based bacterial sensors have been 
developed [19–23]. Based on the nature of the cells used, 
a variety of TCRS-based environmental contaminant 
sensors has been constructed by several research groups. 

However, to remediate environmental pollutants, new 
synthetic genetic circuits are needed so that the bacte-
rial system can have both sensor and remediation activi-
ties. Future research on the application of biosensors in 
bioremediation should focus on the development of such 
TCRSs. Some of the TCRS-based heavy metal biosensors 
for use in bioremediation applications have been devel-
oped and are reviewed below.

A zinc adsorption system was developed by using the 
ZraSR TCRS and chimera Zinc binding OmpC. In nor-
mal microbial system, ZraSR detects and induces the 
membrane protein ZraP, which is responsible for the 
efflux of Zn2+ ions. Engineered zinc adsorption system 
was based on normal ZraSR TCRS, in which ZraS is used 
for detecting Zn2+ ions, but the ZraR activates the ompC-
Zinc binding peptide chimeric gene under the ZraP pro-
moter instead of native ZraP. The zinc binding peptides 
displayed in the cell surface can adsorb exogenous Zinc. 
This system is sensitive to zinc even at low concentra-
tions (0.001 mM) [24].

In the same manner, simultaneous detection and 
removal of copper ions in the bacterial surface was 
achieved through the combined application of CuSR 
TCRS and cell surface displayed copper binding peptides 
(CBP) fused to the membrane protein OmpC. In this sys-
tem, CuSR induces the expression of the chimera OmpC-
CBP upon sensing Cu2+ ions. Then, the chimera proteins 
expressed in bacterial cell surface can adsorb the copper 
ions [25].

An interesting feature of these adsorption systems is 
that the expression of the chimeric OmpC with the metal 
binding site is induced by heavy metals (Table 1). Hence, 
the construction of a heavy metal biosensor in combina-
tion with a bio-adsorption system would complement 
analytical heavy metal detection methodologies and 
enable the rapid monitoring and removal of toxic levels 
of bioavailable metal contaminants in industrial settings. 
The above biosensor combined with bio-adsorption 
was able to absorb heavy metals efficiently without any 
induction system. Following this scheme, this synthetic 
bacterial system is an excellent paradigm for developing 
multifunctional synthetic systems that can be applied 
both in the efficient removal and recovery of the target 
compound.

Engineering chimeric TCRSs for detecting novel 
compounds
The successful design and construction of TCRS provide 
a better understanding of the system to obtain a chimeric 
TCRS customized for achieving a desired input/output. 
The HK domain, which has a variety of signal recogni-
tion capabilities, may be used to couple or shuffle a broad 
range of input signals to the appropriate output responses 
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through a conserved phosphotransfer process. This shuf-
fling can be achieved by cross-linking the domains of 
evolutionarily distinct TCRSs, and a chimeric TCRS with 
the desired sensing ability can be obtained. Most of the 
domain shuffling required for rational design of chimeric 
proteins is between HKs and rarely between RRs. At 
present, several research groups have successfully con-
structed a chimeric two-component sensor protein by 
fusing the HK domain to the sensory domain of another 
kinase or a completely unrelated protein. These studies 
improve our understanding of the molecular events that 
occur during signal transduction across membranes in 
these organisms.

Engineering receptor kinases mainly involve a domain 
swapping or shuffling strategy in which a receptor pro-
tein or another HK contributes their functional module. 
The domain swapping in HKs implies that these proteins 
are flexible, allowing the construction of new kinases 
using a rational design strategy. The domain swapping 
strategy has been used to produce chimeric TCRSs that 
include chemotaxis proteins. There are several periplas-
mic chemotactic receptors, such as Tsr, Tar, Trg, and Aer, 
that recognize specific chemicals, and they can be cou-
pled with the cytoplasmic domain of EnvZ to allow signal 
transduction [26]. EnvZ is the most studied HK protein 
that regulates the phosphorylation state of OmpR in 
response to osmolarity changes. OmpR is an RR protein 
responsible for the controlled expression of ompF and 

ompC genes encoding for the membrane porin proteins 
OmpF and OmpC, respectively. Aside from OmpR, EnvZ 
can also regulate the phosphotransfer of 11 different RRs 
found in E. coli [27]. Because the EnvZ–ompR complex in 
E. coli is a well-studied TCRS that is widely-distributed 
in bacteria, the DHp and CA domains of EnvZ are com-
monly used for the domain swapping strategy. A good 
example of this is the hybridization of Tar, a chemore-
ceptor transmembrane protein that can detect aspartate 
and EnvZ. By replacing the cytoplasmic signaling domain 
of Tar protein with the cytoplasmic kinase/phosphatase 
domain of EnvZ, the hybridized proteins were able to 
carry out both the sensing capability of Tar for aspartate 
and the regulation capability of EnvZ towards OmpR 
thereby consequently activating ompC [28]. This strat-
egy also worked in the hybridization of Trg protein and 
EnvZ, allowing the recognition of ribose-binding pep-
tides and activation expression of ompC [29]. In addition 
to functioning as chemotactic receptors, HK domains 
are also involved in light sensing, and kinases that sense 
C4-dicarboxylate, sugar, aspartate, and acidic amino 
acids have been engineered with the EnvZ cytoplasmic 
domain to provide a better sensing ability for the desired 
substance (Table 1). This approach to engineering novel 
two-component sensor proteins not only acts as a high 
throughput screening system but also provides knowl-
edge of the newly identified two-component signaling 
pathways.

Table 1  Two-component regulatory systems based on microbial biosensors coupled with bio-adsorption

Field of  
application

TCRS Function Host chassis Promoter-
reporter

Chemical target Detection  
range (mM)

References

Bioremediation ZraSR (also 
known as 
HydHG) 

Biosensor E. coli XL1-blue zraP-gfp-HydG Zinc 0.01–1 [66]

CuSR Biosensor E. coli XL1-blue cusC-gfp-CusR Copper 0.004–1 [25]

ZraSR and CusSR Biosensor coupled 
with bio-adsorp‑
tion

E. coli XL1-blue zraP-gfp, cusC-gfp Zinc and Copper 0.05–1 [67]

ZraSR Biosensor coupled 
with bio-adsorp‑
tion

E. coli TOP10 zraP-gfp-ompC Lead 0.3–1 [68]

ZraSR Biosensor coupled 
with bio-adsorp‑
tion

E. coli XL1-blue zraP-gfp Zinc 0.1–1 [24]

Biorefinery DcuSZ (Chimeric) Biosensor E. coli BL21
(DE3)

ompC-gfp Fumarate 0.1–10 [55]

MalKZ (Chimeric) Biosensor E. coli BL21
(DE3)

ompC-gfp Malate 0.1–10 [56]

AauSZ (Chimeric) Biosensor E. coli BL21
(DE3)

ompC-gfp Acidic amino acid 0.05–10 [57]

Tazl (Chimeric) Biosensor E. coli RU1012 ompC-lacZ Aspartate 0.2–1 [28]
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Chimeric TCRS‑based screening and regulation 
of microbial chemical production
In line with the depletion of fossil fuels, renewable bio-
mass is being exploited as a sustainable substitute for 
petroleum. Among the renewable biomass resources, 
lignocellulosic biomass is one of the most promising due 
to its abundance. Lignocellulosic biomass undergoes dif-
ferent pretreatment methods that result in a hydrolysate 
containing mixed sugars and inhibitors that can be detri-
mental to the growth of microbial cells during fermenta-
tion [30].

Metabolic engineering strategies have been developed 
in systems level for the development of metabolically 
engineered microorganisms as host strains in biorefinery 
processes to produce bio-based fuels [31–35], chemicals 
[36–41] and polymers [42–47] from renewable resources. 
Also, engineered strains that have high levels of growth 
and tolerance in the presence of high concentrations of 
sugars and inhibitors are extensively being developed to 
utilize biomass-derived renewable resources [48–53]. 
Therefore, it is important to develop a high-through-
put screening method to identify the high-producing 
strains. High-producing strains can be screened using a 

riboselector, which is composed of a riboswitch that can 
detect the target compound and a selection module such 
as tetA, which will enable favorable growth of a lysine-
accumulating cell in the presence of selection pressure 
(NiCl2) [54]. Likewise, chimeric TCRS can be potentially 
used in screening for high-producing strains (Fig.  3). 
DcuSZ is an EnvZ/OmpR-based chimeric TCRS that was 
constructed by fusing the DcuS HK sensory domain with 
the cytoplasmic domain of EnvZ. The chimeric DcuSZ is 
highly specific to fumarate in such a way that the expres-
sion of the gfp gene under the control of the ompR-
regulated ompC promoter is proportional to different 
fumarate concentrations in the medium [55]. Other chi-
meric TCRSs based on EnvZ/OmpR were constructed by 
fusing the HK sensory domain of MalK and AauS to the 
EnvZ catalytic domain to detect high malate- and aspar-
tate-producing strains, respectively [56, 57].

Two-component regulatory systems may also be 
used to develop tightly regulated gene expression sys-
tems. Tightly regulated gene expression is important in 
engineering metabolic pathways to avoid leaky expres-
sion that may cause a metabolic burden to the micro-
bial cell. Typical induction strategies include the use of 

Fig. 3  Application of TCRSs in bioremediation and microbial biorefinery. TCRSs serve as a regulatory system for the expression of genes encoding 
enzymes for the degradation of the detected target pollutant compound or for genes encoding enzymes for the production of the target chemical 
product
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isopropyl-β-d-thiogalactopyranoside (IPTG). However, 
IPTG is expensive and can be toxic to cells at high con-
centrations. An example of tightly regulated gene expres-
sion induced by an inexpensive substrate is the invertible 
promoter system. In this system, the promoter is active or 
‘ON’ when the target substrate that serves as an inducer 
is present and ‘OFF’ (inverted orientation) when absent 
[58]. Based on this invertible promoter system’s mecha-
nism, the coupled sensing and regulating activities of 
TCRSs can be modified to achieve tightly regulated gene 
expression.

Summary and perspectives
To date, some TCRSs have been identified that sense 
organic compounds (benzene, toluene, ethylbenzene, 
biphenyl, styrene, fumarate, and malate) and regulate the 
gene expression of proteins involved in catabolic path-
ways. These compounds can be metabolized and used 
as a carbon source for most groups of microorganisms 
[9]. In TCRSs, the signal recognized by the sensor kinase 
domain catalyzes the ATP-dependent phosphorylation of 
a conserved histidine residue in the protein. The phos-
phoryl group is then transferred from the histidine to an 
aspartate residue located in the RR. The phosphorylated 
RR binds to specific promoter sequences to either acti-
vate or repress transcription. At present, a wide range 
of synthetic genetic circuits has been developed that 
can couple a sensor output to a desired biological activ-
ity [59]. In addition, numerous genetic switches are also 

available to turn on gene expression once a target mole-
cule has reached its activation threshold. A switch can be 
assembled using transcriptional repressors or activators, 
which allows the connection between the sensor output 
and regulation of the biological response [58]. Several 
switch types have been developed to control the cellu-
lar response: inverter switches that produce a reciprocal 
response [60]; biphasic switches that use both negative 
and positive regulation and respond to small amounts of 
input [61]; toggle switches that use two repressors that 
cross-regulate each other’s promoters [62]; and ribos-
witches that regulate gene expression by inhibiting pro-
tein synthesis [63]. Likewise, many logic gate types have 
been developed for biological circuits, including ‘NAND’, 
‘NOT IF’ and ‘NOR’ [64].

Integrated approaches provide a better perspective 
for developing a specific biosensor designed to cata-
lyze the production and/or degradation of the desired 
compound. To achieve this, it is necessary to rewire the 
genetic circuits of bacteria using the above synthetic 
devices. Design of the engineered system should be based 
on strategies for building sensory regulation components 
that incorporate a target substrate-responsive TCRS in 
any desired host (Fig. 4). Introducing a sensory regulation 
device in a host cell enables it to sense the target com-
pound and trigger the genetic circuit, achieving real-time 
monitoring of the compound present and upregulation of 
the effector protein’s gene expression. Use of engineered 
TCRSs in bacteria would prevent the production of 

Fig. 4  Synthetic TCRS with integrated biosensing and bioremediating functions for the detection of the target compound and upregulation of the 
effector protein that allow real-time detection of controlled gene expression
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redundant proteins at the initial growth phase and avoid 
the use of toxic and costly chemical inducers.

Although a large number of accessible sensor parts are 
available for TCRSs, employing these sensors in a domain 
shuffling strategy can be challenging. To attach the sensor 
domain to the HK domain of the protein, structural and 
functional information on both proteins is needed [65]. 
When designing chimeric TCRS-based biosensors, great 
care is required in domain swapping to maximize the 
kinase activity of the chimeric protein. In the majority of 
the chimeric TCRS-based biosensors, monitoring of the 
extracellular targets and the response to these targets is 
achieved by producing a reporter protein [55–57]. More-
over, biosensors have also been modified with other syn-
thetic biology tools such as the bio-absorption of heavy 
metals with a cell surface display system and expression 
of an extracellular enzyme to degrade aromatic com-
pounds. Therefore, such a synthetic genetic circuit can 
be switched on when a signal is detected to remove cer-
tain pollutants, and after the input signal disappears, the 
microbes behave like normal bacteria.

Conclusions
In this review, we have discussed numerous TCRSs engi-
neered in different prokaryotic species that can sense 
inorganic and organic pollutants, and examined the 
recent developments in cellular biosensors coupled with 
bioremediation. The TCRS-based biosensor coupled with 
bioremediation approach has the potential to advance 
even further using the recent developments in bioengi-
neering in strain development. However, only a few stud-
ies on TCRS-based biosensors have been reported, and 
much effort is needed to obtain a complete picture of 
the TCRS-based control of downstream catabolic path-
ways. To achieve these goals, a thorough understanding 
of TCRS mechanisms is essential to engineer strains for 
use in efficient biosensor systems coupled with bio-deg-
radation or bio-adsorption functionality. Moreover, more 
studies are required to extend its use in food, pharmaceu-
tical and industrial biotechnology applications.
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