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Abstract

Background: Routine health information systems (RHISs) support resource allocation and management decisions at
all levels of the health system, as well as strategy development and policy-making in many low- and middle-
income countries (LMICs). Although RHIS data represent a rich source of information, such data are currently
underused for research purposes, largely due to concerns over data quality. Given that substantial investments have
been made in strengthening RHISs in LMICs in recent years, and that there is a growing demand for more real-time
data from researchers, this systematic review builds upon the existing literature to summarize the extent to which
RHIS data have been used in peer-reviewed research publications.

Methods: Using terms ‘routine health information system’, ‘health information system’, or 'health management
information system’ and a list of LMICs, four electronic peer-review literature databases were searched from
inception to February 202,019: PubMed, Scopus, EMBASE, and EconLit. Articles were assessed for inclusion based on
pre-determined eligibility criteria and study characteristics were extracted from included articles using a piloted
data extraction form.

Results: We identified 132 studies that met our inclusion criteria, originating in 37 different countries. Overall, the
majority of the studies identified were from Sub-Saharan Africa and were published within the last 5 years. Malaria
and maternal health were the most commonly studied health conditions, although a number of other health
conditions and health services were also explored.

Conclusions: Our study identified an increasing use of RHIS data for research purposes, with many studies applying
rigorous study designs and analytic methods to advance program evaluation, monitoring and assessing services,
and epidemiological studies in LMICs. RHIS data represent an underused source of data and should be made more
available and further embraced by the research community in LMIC health systems.
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Background

Routine health information systems (RHISs) collect and
provide information at regular intervals on services and
activities delivered in health facilities [1]. RHISs have
been implemented in many low and middle-income
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country (LMIC) health systems to support resource allo-
cation and day-to-day management decisions at facility,
district, provincial, and national levels, as well as to fa-
cilitate strategy development and policy-making [2, 3].
Despite the fact that RHISs are being implemented at
scale in many LMICs, and that they have been widely
recognized as an important component of health sys-
tems strengthening [4, 5], prior studies have suggested
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that researchers continue to prefer using intermittent
cross-sectional population-based surveys rather than
RHISs data to conduct studies, including the monitoring
of health programs and policy evaluations [6-8].

In order to improve health system performance, reli-
able, timely, and transparent data on health services are
crucial [9, 10]. RHISs collect such data and thus could
provide important insights into health system perform-
ance [4]. Substantial investments have been made in the
development and strengthening of RHISs in many LMICs
over the past two decades [5, 11], and interventions tar-
geting data collection, processing, analysis, and dissemin-
ation have increased the accessibility of RHIS data [5,
12]. While early RHISs were established using paper-
based health facility reports, newer web-based systems
have been adopted in many LMICs over the last decade
[13, 14]. The most common of these is the District
Health Information System 2 (DHIS 2) platform, which is
used as the foundation for the national health manage-
ment information systems (HMIS) in at least 46 countries
and has been piloted in at least another 21 countries [15].
Studies have shown that the implementation of newer in-
formation and communication technology systems, along
with supportive feedback mechanisms to encourage their
use in routine practice, can lead to substantial improve-
ments in RHIS reporting and data quality [5, 13, 16, 17].

Despite the documented improvements in data quality,
recent studies have shown a persistent underuse of RHIS
data for research purposes in LMICs [8, 18]. A number
of factors may contribute to the underuse of RHIS data.
Numerous studies and commentators have questioned
the usefulness of RHIS-sourced data to monitor and
evaluate health services due to data quality concerns,
such as incompleteness and inaccuracy [19-23]. Add-
itionally, RHIS data are often not publicly available for
secondary analyses, which further limits their use [24].
Due to these concerns, the research community has
shown a persistent preference to use data sourced from
intermittent cross-sectional population-based surveys ra-
ther than data sourced from RHISs to conduct research
on health service utilization and policy evaluation in
LMICs [8, 18, 25, 26]. However, population-based sur-
veys also have drawbacks, including the fact that they
may be costly [26] and are often unable to generate suf-
ficient data at the district or other subnational-levels
[27]. In addition, reliance on such data may encourage
the use of potentially weak evaluation designs [8] and
may make establishing an appropriate baseline challen-
ging when trying to evaluate specific programs [28].
Intermittent cross-sectional population-based surveys
themselves also suffer from a number of quality
concerns and thus should not be considered the gold
standard for estimating service coverage or other
population-based estimates [29].
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Given the potential of RHISs to play a greater role in
the evaluation of health policy and programs and to
monitor the performance of health systems, it is import-
ant to better understand the extent to which such data
are currently being used in research studies. To date,
there have been no systematic reviews of the use of
RHIS data for research purposes beyond studies that
were specific to malaria control [18], a gap this paper
seeks to address. Specifically, we systematically reviewed
the published literature to identify and describe the dif-
ferent ways in which RHIS data have been used in peer-
reviewed research, including the types of health
conditions studied. We also summarized the different
methodologies that have been used to analyze RHIS data
in research and the types of strategies that were applied
to circumvent common RHIS data issues, such as in-
complete or inaccurate data. It is our goal to provide
guidance to other researchers who may be interested in
using such data for research purposes by helping them
to gain a better understanding on how such data have
been successfully used in other contexts.

Methods

This systematic literature review followed the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. Peer-reviewed published
studies that used data from RHISs in LMICs were in-
cluded in this study, where RHISs were defined as data
systems designed to collect and generate information on
services provided by health facilities at regular intervals
of a year or less [1]. This included data systems that col-
lect information on clinical service delivery, pharmaceu-
ticals, or diagnostic service provision, as well as routine
administrative management. Conversely, systems that
collect individual-level data for clinical decision-making
purposes and pilot systems to test the implementation of
a new data collection component or method were not
considered to be RHISs.

Search strategy

Relevant studies were identified through an electronic
search of four databases of peer-reviewed literature:
PubMed, Scopus, EMBASE, and EconlLit -- from incep-
tion through February 20, 2019, the date we launched
the search. For each database, we identified studies that
contained any of the following free text terms in their ti-
tles or abstracts: ‘routine health information system’,
‘health information system’, or ‘health management in-
formation system’, and any LMIC, as defined by the
World Bank’s 2019 classifications (Appendix 1). Articles
were included in the study if they met the following cri-
teria: a) full-text article available in English, b) original
research, and c) used data from a RHIS in at least one
LMIC for research purposes. In order to be considered
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as having used data from a RHIS for research purposes,
studies had to involve an analysis, either descriptive or
analytical, of RHIS data, or applied RHIS data to inform
their study design. We excluded studies that: a) only de-
scribed RHISs, b) only described the administrative
decision-making process, c) only focused on RHIS data
collection issues, or d) only assessed RHIS data quality.

Selection of studies

Figure 1 shows the number of articles identified and
retained at each stage of the systematic review process.
After removing duplicates from the various database
searches, we identified 1459 potential articles. Two re-
viewers independently screened the search results by
title and abstract for inclusion eligibility. When there
was insufficient information to determine eligibility at
the title and abstract screening stage, the article was in-
cluded for full-text screening. Full texts of the potentially
eligible articles were then obtained and further screened
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for inclusion eligibility. At both stages, the reasons for
excluding individual articles were recorded. The full-
texts for all but one article were found. Disagreements at
each stage were resolved through discussion. Where an
agreement could not be reached, a third reviewer made
the final determination.

Data extraction and analysis

Two authors extracted data from all included studies
using a piloted data extraction form. For each included
article, data were extracted on study design, study ob-
jective, disease or health condition categories, study
sample, description of RHIS data used, use of other data
sources, analytic methods of RHIS data, strategies ap-
plied to circumvent data quality issues, and study find-
ings. Due to the heterogeneity of the studies in terms of
study design, study purpose, health conditions, and ana-
lysis methods, we thematically analyzed the studies ac-
cording to research purpose, types of diseases studied,
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S (n=2,310)
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=
5 PubMed (n =753)
S EMBASE (n = 220)
= Scopus (n=1,304)
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= (n=1,459)
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Q
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Unable to access full text (n = 1)
Article not in full text (n = 45)
—
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Full-text articles assessed for eligibility
= (n=396)
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o Full-text articles excluded, with reasons
(n=264)
e Case-Based HIS (n = 100)
No HMIS data use (n =78)
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- Not original research (n =2)
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c
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Fig. 1 PRISMA flowchart of study identification and screening process of publications use RHIS data
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analytic methods applied, impact factor of journals in
which the articles were published, and types of strategies
used to circumvent RHIS data quality issues.

Results

Of the 1459 unique articles retrieved from the database
search, 132 studies met the inclusion criteria after full-
text screening and were thus included in the review. The
characteristics of these studies are presented in Table 1.
Our review identified studies from 37 different countries.
Three quarters of the studies were from Sub-Saharan
African countries (74%), followed by South Asia (11%).
The vast majority of the studies were published in the
last decade, and more than half were published after
2014 (55%), suggesting an increase in the use of RHIS
data for research purposes over time. Most of the studies
included an analysis of RHIS data (97%), and a few used
RHIS data to inform the study but did not describe ana-
lysis of RHIS data. One study, for example, used infor-
mation from RHISs to justify for the selection of the
indicators to be used at the individual-level in their
study. Among the studies that analyzed RHIS data, most
utilized an ecological study design (79%). Of those, more
than half included statistical inferences (61%), while the
remaining studies only used RHIS data for descriptive
purposes (39%). Nearly a fifth of the studies were mixed
methods or case studies (18%), a third of which included
statistical analyses of RHIS data (33%). A quarter of
articles included a description of how they managed
missing data (25%), while only a small number of
studies described how they detected and dealt with
extreme values (14%).

Types of disease and research purpose

Figure 2 shows the different research purposes for which
RHIS data were used, along with the health topics inves-
tigated. The most common purpose of the studies was
program evaluation (51%). RHIS data have been used to
evaluate a wide range of interventions, ranging from
programs that targeted specific diseases to interventions
or policies that affected multiple types of diseases or
health services. These included: the effect of malaria
control strategies [30-36], user fee exemption policies
[37-40], health financing schemes [41-44], interventions
on health governance [45-53], the administration of
new vaccines and vaccination campaigns [54—56], as well
as community-level interventions such as approaches to
enhance community participation and improve referrals
from traditional birth attendants in increasing the de-
mand for maternal and child care [57-59].

Additionally, RHIS data were used to monitor or as-
sess service provision (23%) and to describe disease epi-
demiology (17%). Similar to the program evaluation
studies, these studies also investigated a diverse set of
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health services and the allocation of healthcare re-
sources. Some of these studies found large discrepancies
between RHIS data and an estimated disease burden in
populations or highlighted the lack of service provision.
A few studies also used RHIS data to describe specific
programs [60—64], conduct impact evaluations (non-
programmatic) [65-68], and estimate costs [69, 70].
Most of the studies investigated a communicable dis-
ease (95%), of which malaria was most studied health
condition (24%). A few studies focused on mental
health (2%), diabetes mellitus (1%), and permanent
tooth extraction (1%). Only two studies used RHIS
data to research the health workforce or the equity of
funding allocations [71, 72].

Analytic methods using RHIS data

Among articles that conducted statistical analyses using
RHIS data (n=68), time series analyses to test or ac-
count for trends were most commonly performed (25%),
followed by geostatistical analyses (16%), pre-post com-
parisons (15%), interrupted time series (ITS) (10%), and
difference-in-difference analyses (7%). Other longitudinal
analyses (13%), other cross-sectional analyses (12%), and
scenario analysis on cost effectiveness (2%) were also
conducted. Table 2 presents the range of methodologies
identified across studies using RHIS data, as well as the
corresponding articles.

Time series analysis

Time series analysis using RHIS data was most often ap-
plied to evaluate programs and identify disease epidemi-
ology, with one study assessing the impact of an
infectious disease outbreak on primary health service
utilization [82]. Studies analyzed indicators using large
quantities of monthly or yearly data to estimate change
(range of time units: 5-168). For instance, two-thirds of
the studies analyzed three or more years of monthly
data. Many of the studies utilized the highly disaggre-
gated nature of the data by using either facility or district
level data, with the exception of two studies which mod-
elled national trends [33, 116]. Studies commonly ap-
plied strategies to account for temporal autocorrelation
and the correlation between geographical units, includ-
ing generalized linear models [58], multi-level analysis
[77, 78], and ordinary least-squares regression with ad-
justment for seasonality and lag [34, 37, 117]. Among
studies that modelled multiple facilities or administrative
regions, random effects were commonly applied to ac-
count for heterogeneity.

In addition to RHIS data, a number of included studies
incorporated data from external sources in their models
based on geographical location such as district or region.
Studies of malaria, for example, commonly included cli-
mate data from satellites in their models to control for
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Table 1 Characteristics of research studies that used RHIS data

n Percent
Geographical region
East Asia and Pacific 8 6.1
Latin America and the Caribbean 9 6.8
Middle East and North Africa 2 1.5
South Asia 15 114
Sub-Saharan Africa 98 74.2
Year of publication
<2000 3 23
2000-2004 7 53
2005-2009 10 76
2010-2014 40 303
2015-2019 72 545
RHIS data as source or to inform study
Data source 128 970
Inform study 4 30
Types of study design
Ecological study - cross-sectional 13 9.8
Ecological study - longitudinal 51 386
Ecological study - descriptive 41 311
Case study 1 83
Mixed methods study 13 9.8
Cross-sectional study 1 0.8
Pre- and post-intervention study 1 0.8
Nested clustered randomized controlled trial 1 0.8
Data use purpose
Program evaluation 67 50.8
Epidemiology 23 174
Monitoring and assessment of service provisions 30 22.7
Program description 6 4.5
Impact evaluation 4 30
Cost estimation 2 1.5
Health conditions/service type
General (multiple aspects) 21 159
Secondary health utilization 2 1.5
General causes of death 1 0.8
Maternal and Child health/healthcare 12 9.1
Maternal health/healthcare 24 18.2
Child health/healthcare 11 83
Vaccine prevented childhood illnesses 10 76
Malaria 30 22.7
Malaria & HIV/AIDS 1 08
Malaria & other parasitic diseases 1 0.8
HIV and related diseases 8 6.1
Mental health/healthcare 3 23
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Table 1 Characteristics of research studies that used RHIS data

(Continued)
n Percent
Other diseases 5 38
Healthcare workforce and other resources 2 15
Data issue of RHIS: missingness
Described how missing data was managed 33 250
No description of how missing data was managed 99 75.0
Data issue of RHIS: outlier
Described how outlier was detected 19 144
No description of how outlier was detected 113 856

important temporal factors, for example precipitation,
humidity, and temperature [73, 117]. Other studies in-
corporated information from other national community
surveys, health facility surveys, and program data as co-
variates [34, 77]. While most studies controlled for po-
tential confounders by including covariates in analytic
models, one study on maternal health service applied
propensity score matching to further remove biases from
differences in covariate distribution [37].

Geostatistical analysis

Geostatistical analyses using RHIS data were predomin-
antly conducted for epidemiological purposes and the
monitoring and assessment of service provision by
exploiting geospatial information included in the RHIS
at the facility or district level. Three of the studies that
applied geostatistical analysis were cross-sectional, while
the remainder were spatial-temporal. About half of the
studies focused on malaria, of which three compared
and illustrated various kriging methods to provide a reli-
able estimate of malaria burden amid missing reporting
[105-107], and one study applied geostatistical modeling
to select the most relevant health facility indicators for
severe malaria outcomes [108]. Studies on other topics
investigated the spatial or spatial-temporal dynamics of
malaria in pregnancy [100], childhood diarrhea [101],
clustering of malaria and HIV [102], and meningitis
[118]. About half of the studies did not include data
from external sources, and others triangulated data
sourced from satellite data, Demographic and Health
Surveys, national Malaria Indicator Surveys, and Service
Delivery Indicator Surveys in their analyses. Studies that
included covariates in the geostatistical analysis applied
Bayesian hierarchical Poisson models or Bayesian geosta-
tistical negative binomial models [103, 108, 110].

Pre-post comparison analysis

Pre-post comparison was commonly applied among
studies that used RHIS data for program evaluation, and
several studies used simple descriptive statistics to
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compare the periods before and after interventions.
As pre-post comparison is subject to the limitation of
temporal confounders and secular trends, two of the
studies included contextual factors in regression mod-
elling [35, 119].

Interrupted time series analysis
Most of the studies that conducted ITS analysis used it
to evaluate interventions, and one assessed the impact of
an infectious disease outbreak on maternal and child
health service use [68]. The studies used large quantities
of monthly data to model trend and level change (range
of time unit: 44—132). RHIS data were minimally aggre-
gated in these studies, which mostly analyzed facility or
district level data, and similar to studies using time series
analysis, accounted for autocorrelation through incorp-
orating autoregressive structures or clustered standard
errors in their modelling.

As ITS analyses are generally unaffected by confound-
ing variables that do not change over time by design

[120], baseline characteristics were typically not included
in these models. Nonetheless, ITS analyses can be af-
fected by time-varying confounders that rapidly change
and some models included contextual factors from other
data sources, such as climate and program data. To
strengthen the quasi-experimental design, two studies
also included a contrast group of time series to control
for contextual changes that occurred at the same time as
the interventions [38, 45].

Difference-in-difference analysis

Five studies applied difference-in-difference techniques
using a wide range of time periods (range of time units:
4-48) and levels of geographical units (facility, district,
provincial). Only one study included contextual charac-
teristics from other data sources in its analysis. Analytic
methods varied from descriptive comparison between
and within intervention and control groups [41, 59, 87,
88], to ordinary least square regression with propensity
score matching [42].
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Data use Type of disease/service Range Level of Analytic methods Other information sources Reference
purpose studied of data  aggregation included
(unit)
Time series analysis
Child health, malaria, tooth 15 (year) Ward, Time series correlograms; GPS coordinates, Climate [73-76]
Epidemiology extraction - 120 municipal, ordinary least-squares regres- Hazards Group Infrared
(month)  district sions adjusted for seasonality Precipitation with Station Data,
and lag; non-linear time series  satellite data, meteorological
correlation and regressions department data, program
data
Program General, maternal and 5 (year)  Facility, Ordinary least squares Program data, program reports, [33, 34,
evaluation child health, maternal - 168 district, regression; negative binomial data from Bureau of Statistics 37, 40,
health, vaccine prevented ~ (month) region, generalized linear model; and Ministry of Health, Malaria 54, 55,
childhood illnesses, malaria nation random effects negative Indicator Survey, Demographic 58, 77—
binomial regressions; switching  Health Survey, Health Facility 81]
regression methods weighted ~ Survey, community survey,
by propensity scores satellite data, sentinel site case-
investigations/surveillance, ab-
straction from hospital
registries
Impact General 84 Facility Linear mixed-effect time-series  None [82]
evaluation months analysis with a segmented re-
(non- (month) gression parameterization
program)
Interrupted time series analysis
Program General, maternal and 53 Facility, Generalized least square model Meteorology Department data, [38, 45,
evaluation child health, maternal (month) intervention  with autoregressive structure; program data, facility survey 83-86]
health, malaria -132 vs. control generalized least square model
(month)  groups, with controls, with
district autoregressive process and
moving average process;
segmented linear regression
Impact Maternal and child health 44 District Segmented linear regression Demographic Health Survey [68]
evaluation (month) with district fixed effect and
(non- clustered standard error at
program) district level
Difference-in-difference analysis
Program General, child health, 4 (year)  Fadility, Ordinary least squares Verified data from [41, 42,
evaluation maternal health - 48 district, regression with and without Performance-Based Financing 59, 87,
(month)  province propensity score matching; system 88]
Wilcoxon rank-sum test on me-
dian difference-in-differences
between facilities; descriptive
comparison of means
Pre-post comparison analysis
Program Child health, maternal 2 (year)  Facility, Chi-square test; Pearson Bureau of Statistics data, [35, 39,
evaluation health, maternal and child - 48 district correlation; Wilcoxon signed- program reports, 48,57,
health, vaccine prevented  (month) rank test; paired sample t-test;  Meteorological Department 89-93]
childhood illnesses, linear regressions; Poisson re- data, entomological sentinel
malaria, HIV or related gression; negative binomial re-  surveys, Demographic and
diseases gression; logistic regression Health Survey, UN Interagency
Group for Childhood Mortality
Estimation(CME Info) database,
abstraction from facility
registers, community surveys,
vital registry, provincial
maternal death notification
register
Impact Child health 26 District Pearson chi-square test District hospital registers, Safe  [67]
evaluation (month) and dignified burials for all
(non- deaths database
program)

Other longitudinal analysis
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Table 2 Types of analytic methods applied among studies that analyzed RHIS data (Continued)
Data use Type of disease/service Range Level of Analytic methods Other information sources Reference
purpose studied of data  aggregation included
(unit)
Maternal health, malaria 12 (year) District Chi-square test; negative Review of hospital death [94, 95]
Epidemiology -16 binomial regression records
(year)
Monitoring HIV or related diseases 3 (year)  District Descriptive comparison over Surveys with health facility [96]
and time managers
assessment
of service
provision
Program Genera, child health, 3 (year) Facility, Poisson regression to explore Sentinel surveillance data, [47,52,
evaluation malaria, malaria and other - 24 district, association between program reports, national 66, 97—
parasitic diseases (month)  nation intervention coverage and facility and community survey, 99]
disease burden; Mann-Whitney Bureau of Statistics data,
U Test to compare prevalence  program data
in intervention and non-
intervention area; linear regres-
sion model; student t-test
Geostatistical analysis
Child health, malaria, 1 (year)  District Cluster analysis; cross- Malaria Indicator Survey, [100-104]
Epidemiology malaria and HIV/AIDS, - 520 correlations of different spatial ~ Demographic Health Survey,
meningococcal meningitis  (week) scales between time series of ~ program data
cases; Bayesian hierarchical
Poisson model and smoothed
model estimates plotted on dis-
trict maps
Monitoring Malaria, maternal health 1 (year)  Facility, Kriging (ordinary kriging, space- Service Delivery Indicator [105-109]
and -57 district time ordinary kriging, local Survey
assessment (month) space-time ordinary kriging);
of service Bayesian geostatistical negative
provision binomial model
Program Malaria 36 District Bayesian geostatistical models ~ Malaria Indicator Survey, [110]
evaluation (month) and Bayesian generalized linear malaria control program data,
models satellite data, Demographic
Health Survey, ACTWatch
household surveys
Other cross-sectional analysis
Maternal health Median  Province Linear regression model None [
Epidemiology of 24
months
Monitoring General, child health, 1 (year)  Facility, Descriptive statistics, Tobit Nutrition Service Delivery [112-115]
and maternal health, mental district, regression model, bivariate and  Assessment, abstraction from
assessment  health municipality, multivariate linear regression Integrated Nutrition Register,
of service state models, structured questionnaire with
provision district health officers, District-
level household and facility
surveys, National Register of
Health Service Providers, data
from Institute of Geography
and Statistics
Program HIV and related diseases 1 (year)  District Mixed-methods Register reviews and a series of [51]
evaluation patient folder (health record)

reviews

Impact of research using RHIS data

Most of the studies that conducted statistical analyses
using RHIS data were published in journals with impact
factors (88%, Fig. 3), two-thirds of which were two or
higher, and more than a fifth of which were greater than
three. Among those studies published in journals with

the highest impact factors, most of them focused on
program evaluation (53%), followed by monitoring
and assessment of service provision (20%), epidemi-
ology (20%) and impact evaluation (7%). These studies
encompassed a range of health topics commonly stud-
ied using RHIS data.
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Fig. 3 Distribution of impact factor of journals that published
research studies that conducted statistical analysis of RHIS
data (n =68)

Strategies to circumvent RHIS data quality issues
Data quality is commonly cited as a barrier to using
RHIS data in research, and slightly more than a quarter
of the included studies described the strategies that they
used to handle missing data and/or identify extreme
values (Table 3). These strategies consisted of exclusion,
imputation, interpolation, verification, and accounting
for missing data in modeling. Exclusion of missing data
was the most common practice, and among studies that
used this technique, they excluded facilities from the
analytic samples [38, 41, 45, 52, 65, 79, 83, 84, 87, 94, 96,
121], restricted the study period based on explicit cri-
teria [54, 122], or applied sensitivity analysis to compare
various exclusion criteria [41, 89, 90]. Imputation
methods varied from assigning specific values to the
missing observation [42, 87, 118, 123-125], to various
modeling strategies such as conditional autoregressive
model [110], generalized linear regression [124], and it-
erative singular value decomposition [124]. A sensitivity
analysis was also conducted to select a specific imput-
ation strategy [124]. Interpolation involves predicting
values at unsampled locations. Methods described in-
cluded the use of space-time kriging [105-107], and the
adjustment of results by calibrating with other relevant
information [52, 53, 55]. Some studies assumed data
were missing at random, which was accounted for in
specific modeling methods such as mixed-effect models
[65, 124]. When the source of data could be reached,
some studies also described verifying the missing infor-
mation using registries where the original data were re-
corded [39, 73, 97, 111, 122].

Slightly fewer articles described methods to identify
and handle extreme values in the RHIS data, of which
three types of strategies emerged: setting specific
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thresholds, visual inspection, and analytic assessment.
Thresholds were set based on the distribution of the
data, such as proportions or standard deviations from
univariate regression. Several studies used visual inspec-
tion of outliers [38, 107], while the use of jackknifing
analysis and the identification of influential points
through Cook’s distance statistics were also applied [112,
126]. Upon identification of extreme values, several
strategies were utilized: exclusion, replacement with the
average value, replacement with the missing value, verifi-
cation with a data source, or discounting the observation
in statistical estimation. However, studies that replaced
the extreme value with an explicit value potentially in-
troduced bias into their estimates. A few studies also de-
scribed the strategies applied to assess the reliability of
the RHIS data, some of which were routine processes
administered in the health systems [39, 97].

Discussion

In recent years, there have been increased investments
made to improve the quality of RHIS data in many
LMICs. Over the same time period, we found an in-
crease in published research using RHIS sourced data,
especially over the past 5 years, likely due to the in-
creased availability, accessibility, and quality of RHIS
data [18]. While these studies have made contributions
to the literature, we also found that the total number of
studies conducted (z = 132) remains a small part of the
overall literature base on health system evaluation and
performance in LMICs.

Malaria and maternal health conditions were the most
commonly studied health conditions, despite the fact
that RHISs collect data on a wide range of other diseases
and conditions. In particular, the use of RHIS data for
non-communicable diseases (NCDs) research was very
limited. As LMICs are undergoing an epidemiologic
transition and the importance of NCDs is increasing
[127], LMIC health systems face the increasing chal-
lenges of addressing the dual burden of communicable
and non-communicable diseases [128, 129]. In spite of
the limited implementation of non-communicable disea-
seinterventions [129], the few studies that used RHIS
data for non-communicable disease research mainly ana-
lyzed the gap in service provision and estimated disease
burden, highlighting the large unmet need for health
care in affected populations. A couple of the studies de-
scribed how their research was limited by data availabil-
ity and quality, such as the lack of diagnostic categories
of the investigated health conditions in the RHIS. Future
research should investigate how RHIS data on non-
communicable diseases could better help to provide
insights on its epidemiology and service provision to ad-
dress these health conditions.
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Table 3 Strategies applied in research articles to counter issues of RHIS data

Type of strategy

Description of strategy

Missing data

Exclusion

Imputation

Interpolation

Verification
Account in the modeling method

Identifying extreme values

Specific threshold

Visual

Analytic assessment

Handling of extreme values
Exclusion
Replacing extreme value with average
Replacing extreme value with missing

Verification with data source

Exclude facility data if a certain threshold was reached (e.g. more than two-thirds of months in
a year; more than a sixth of baseline data; facilities with any missing data)

Restrict analysis to a period with a low level of missing data

Sensitivity analysis to compare analysis of restricted period and full period
Assign missing observations with mean-value for the year

Assign missing observations with the average of precedent and subsequent data
Imputation using conditional autoregressive model

Missing value was replaced as positive (binary form) to prevent exaggeration of the
fade-out effect

Sensitivity analysis of imputation strategies: 1) single imputation using means, trimmed means,
and median, 2) Poisson generalized linear modeling, 3) iterative singular value decomposition
method

Interpolation using space-time kriging
Adjust results by dividing each indicator by the percentage of reports submitted

Adjust the data by calibrating to the total population using proportion reported in a household
survey to have occurred in health facilities

Manual verification of the missing data with register at the health facility

Missing data was assumed missing at random and accounted for in the mixed-effect models
using standard maximum likelihood estimation

Establishing a lower and upper limit based on proportion of the annual average or feasible value

Univariate regression on individual facility-level to identify deviation from the mean time trend
(e.g. if exceed 8 standard deviations)

Visual inspection of outliers
Jackknifing analysis to assess influence

Student residual higher than an absolute value of 2 and influence on the estimated coefficients
determined by high Cook's distance statistics

Extreme values were excluded from analyses
Extreme values were assigned the average value of the year; with exceptions of low average values
Outliers set to missing

Any drastic change in monthly data reported electronically were manually verified with register at
the health facility. Discrepancies were replaced with data in the register

Discount observation in estimation
coefficients

Assess reliability

Data validation process
and registers

Outliers were allocated a dummy coding to discount the observation in the calculation of

Randomly selected 10% of the total sample to check accuracy and reliability of data with reports

Verify data with another source (e.g. payroll)

Established routine data validation process by health information and records officer
(e.g. monthly data review meetings)

Our systematic review found that many of the studies
took advantage of some of the features of RHIS data, in
particular by exploiting the high frequency nature of
these data at the level of health facilities, as well as com-
bining external information to enhance estimations and
enable assessing new research questions. The triangula-
tion of  populational health  characteristics,

environmental factors, and service coverage strengthens
the analysis and the understanding of their influence
[130]. In addition, the overlay of different information in
analyses of RHIS data allows for the advancement of re-
search methods. For instance, a recent study demon-
strated how to assess the effects of facility readiness on
severe malaria outcomes through constructing a
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composite facility readiness index based on health facil-
ity characteristics and spatial data, and using RHIS data
as the outcome variable [108]. The detailed routine
nature of RHIS data and the ability to link with other
geographically based information, including data on
population, environmental, health behavior, and facility
characteristics, can generate high impact research and
advance our understanding of disease epidemiology and
health improvement efforts in LMICs.

Despite the increasing use of RHIS data for research
purposes, the quality of these data remains imperfect
and such issues should be identified and addressed in
order to limit estimation error and bias. RHIS data qual-
ity issues remain a particular concern in some settings
[131-133], however, other studies have shown that strat-
egies that have been implemented to improve RHIS data
across different international contexts can be successful
[5, 134]. Multiple strategies were discussed in the articles
we reviewed in our paper, including strategies to address
common data quality issues such as missingness and
data validity, for example the simple exclusion of miss-
ing data and various imputation and interpolation
methods. However, the majority of the studies that used
RHIS data did not describe the extent of the quality is-
sues or the steps they took to overcome them. The use
of sensitivity analyses in assessing the effect of specific
cut-offs or methods was scarce. Explicit descriptions of
the extent of the data quality issues and the reasons for
selecting a particular approach should be encouraged in
future research.

While our review used major databases and systematic
methods, it nevertheless has some limitations that are
worth noting. First, we included only peer-reviewed
studies that were published in English, and therefore
may have overlooked potentially relevant studies
published in the grey literature or written in other
languages. Additionally, given our focus on original re-
search, we did not search the broader body of literature
for books, reports, or grey literature. Our literature
search also identified phrases that described health infor-
mation systems in title and abstracts only, possibly
resulting in the exclusion of studies that only mentioned
RHIS data use in the full text. Finally, additional variants
on these search terms may have generated more articles
or a slightly different set of articles.

Conclusions

In this systematic review we summarized the use of data
collected from RHISs in LMICs. Overall, we found that
researchers are increasingly using data sourced from
RHISs to conduct health system planning and evaluation
studies in LMIC health systems, however these data
likely remain underutilized by the broader research com-
munity. As many of the studies included in this review
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were published in prominent journals and were able to
use strong quasi-experimental or geo-spatial methods,
we believe this makes the case for greater use of these
data for research purposes in the future, which will likely
happen as RHIS data become more openly available to
the research community. However, there is a need to
help build the case to use these data for a broader range
of health conditions and to develop more of a consensus
on methods to deal with data imperfections, given that
our findings underlined the limited use and comparison
of these methods. That said, our review clearly demon-
strates the feasibility of use RHIS data in conjunction
with rigorous study designs and analytic methods in
LMICs. We suggest that future program evaluations
should consider their use more broadly, to assess an in-
creased variety of health conditions in conjunction with,
or as a replacement for, household or facility survey
methods.
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