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Background: Coreopsis tinctoria Nutt is an ethnomedicine widely used in Xinjiang, China. It is consumed as a
herbal tea by local Uyghur people to treat high blood pressure and diarrhea. Our previous study confirmed that the
ethyl acetate extract of Coreopsis tinctoria (AC) had a protective effect on diabetic nephropathy (DN) in an in vivo
experiment. Here we aim to elucidate the protective mechanism of AC and marein, the main ingredient in
Coreopisis tinctoria on renal fibrosis and inflammation in vitro under high glucose (HG) conditions.

Methods: A HG-induced barrier dysfunction model in rat mesangial cells (HBZY-1) was established. The cells were

exposed to AC and marein and/or HG for 24 h. Then, the renal protective effects of AC and marein via transforming
growth factor-B1 (TGF-B1)/Smads, AMP-activated kinase protein (AMPK), and nuclear factor kappa beta (NF-kB)

Results: Both AC and marein suppressed rat mesangial cell hyperplasia and significantly attenuated the expression
of HG-disrupted fibrotic and inflammatory proteins in HBZY-1 cells. It was also confirmed that AC and marein
remarkably attenuated HG-induced renal inflammation and fibrosis by regulating the AMPK, TGF-31/Smads, and

Conclusion: These results indicated that AC and marein may delay the progression of DN, at least in part, by
suppressing HG-induced renal inflammation and fibrosis. Marein may be one of the bioactive compounds in AC.

Keywords: Ethyl acetate extract of Coreopsis tinctoria, Anti-fibrosis and anti-inflammation, High glucose-treated

Background

Diabetic nephropathy (DN), is one of the most prevalent
and severe chronic microvascular complications of diabetes
mellitus (DM), accounting for 30-47% of the cases of
end-stage renal disease (ESRD) [1, 2] and is an important
intervention target of ESRD [3]. As predicted by World
Health Organization (WHO), due to the prevalence of dia-
betes and obesity, a rapid increase in DN is expected world-
wide [4-6]. Although strict control of the degree of
hyperglycemia, hyperlipidemia, and hypertension plays a
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vital role in the progression of DN, diabetic patients con-
tinue to develop nephropathy or other complications due
to potential drug side effects and risk factors [7, 8]. There-
fore, effective therapeutic approaches are needed.

The precise pathogenesis of DN is still not fully under-
stood. Researchers agree that uncontrolled hyperglycemia
in diabetic patients promotes renal inflammation, oxidative
stress response and fibrosis, stimulates numerous patho-
logic molecular pathways, causes extracellular matrix accu-
mulation, glomerular and tubular basement membrane
thickening, extracellular and mesangial expansion [9], and
contributes to renal fibrosis dysfunction [10]. Nuclear factor
kappa beta (NF-kB), a central factor in inflammation can be
triggered by hyperglycemia in vivo. Activated NF-kB
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translocates from the cytoplasm into the nucleus, and then
promotes the expression of its target genes such as
monocyte chemoattractant protein (MCP-1) and trans-
forming growth factor-f1 (TGF-B1), which are important
pro-inflammatory cytokines in DN progression [2, 11-13].
In addition, TGF-B1, a predominant pathogenic factor, reg-
ulates glomerular and tubulointerstitial fibrosis by the phos-
phorylation and activation of Smad2 and Smad3 as well as
the canonical signaling pathway [14]. It is also known that
AMP-activated kinase protein (AMPK) acts as a cellular
energy homeostasis mediator and contributes to mesangial
cell proliferation and fibrosis production [15].

Chinese herbal medicine (CHM), as an effective and safe
therapeutic option, has received global attention. Evidence
has confirmed that CHM can improve renal function by
activating multiple signaling pathways [16, 17].

Coreopsis tinctoria Nutt is an ethnomedicine widely
used in Xinjiang, China and in many other counties. It is
consumed by local Uyghur people as a herbal tea to treat
high blood pressure and diarrhea [18]. Previous studies
have indicated that the dried flowers of the plant have
anti-inflammatory, anti-antioxidant, anti-hyperlipidemic,
and glycemic regulation activities [18—-22].

In present study, the anti-inflammatory and
anti-fibrotic effects of AC and its main component mar-
ein were further investigated in high glucose-treated rat
glomerular mesangial cells. The multi-target mecha-
nisms of AC and marein in vitro were also determined.

Methods

Chemicals and materials

High glucose Dulbecco’s Modified Eagle’s Medium
(DMEM, Product code: 01-052-1), fetal bovine serum
(FBS, Product code: 04-400-1), penicillin and strepto-
mycin (Product code: 03-031-1) were purchased from
HyClone (Logan, UT, USA). The cell counting kit (CCKS)
was obtained from Boster (Wuhan, China; Product code:
CKO04). Marein was purchased from ChromDex (Irvine,
CA, USA; Product code: ASB-00013126-005), antibodies
against B-actin (Product code: ab8226), GAPDH (Product
code: ab8245), Collagen IV (Product code: ab6586), fibro-
nectin (FN, Product code: ab2413), TGF-p1 (Product code:
ab92486), MCP-1 (Product code: ab7202), Smad4 (Prod-
uct code: ab40759), NF-kB P-65 (Product code: ab16502),
and ammonium pyrrolidine dithiocarbamate (PDTC,
Product code: ab141406) were from Abcam (Cambridge,
MA, USA). AMPK (Product code: 5832T), p-AMPK
(Product code: 2535T), Smad2 (Product code: 8685T),
p-Smad2 (Product code: 8828 T), Smad3 (Product code:
9523T), p-Smad3 (Product code: 9520T), and
5-amino-4-imidazole carboxamide (AICAR) were from
Cell Signaling (Danvers, MA, USA, Product code: 9944P).
Dorsomorphin (Dor) was obtained from Sigma-Aldrich
(St. Louis, MO, USA, Product code: P5499).
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Preparation of AC

The preparation of AC followed the procedure outlined
in our previous study [23]. Briefly, flowers of Coreopsis
tinctoria were harvested from Minfeng county, Hetian
city, Xinjiang province of China. The species was identi-
fied by Professor Junping Hu, College of Pharmacy,
Xinjiang Medical University. A voucher specimen of the
plant material used in this study has been deposited in
the herbarium of Ethnomedicine Research Institution in
Urumugqi, Xinjiang province (No. 20120715278). The
dried flowers of Coreopsis tinctoria (160 g) were ground
to a powder and placed in 4L of 55% ethanol for reflux
extraction twice at 80°C for 2h. The extraction liquid
was filtered and then concentrated using a rotary evap-
orator (R-210; Buchi, Essen, Germany) into 1L of liquid
extract. An equal volume of ethyl acetate was added to
the liquid extract, which was then concentrated and
spray-dried, yielding 7.04 g of AC powder. Then 0.1 g of
AC powder was weighed and completely dissolved in 1
mL of dimethyl sulfoxide to prepare a 100 mg/mL stock
solution of AC. After sterilization, the stock solution was
diluted to different concentrations for use in the cell cul-
ture experiment [23].

Cell culture and treatment

Rat glomerular mesangial cells (HBZY-1) were obtained
from Boster (Wuhan, China, Product code: CX0130).
The cells were incubated at 37 °C, under a 5% CO, at-
mosphere and cultured in DMEM containing 10% FBS.
Cells in passage 6—12 were used in the experiments. To
determine the biological activity of AC and marein in
vitro, HBZY-1 cells were starved in serum-free medium
for 12h. Normal control (NC) cells were cultured in
DMEM medium containing 5.5 mM glucose. The model
cells were treated/or not with different concentrations of
AC and marein for 2 h, followed by exposure to 50 mM
glucose in DMEM medium for 24 h [24].

Cell viability assay

For the CCK8 assay, HBZY-1 cells were seeded in a
96-well plate at density of 1 x 10°/mL for 4-6h to ad-
here. The cells were starved in serum-free medium for
12 h. NC cells were incubated in DMEM medium con-
taining 5.5 mM glucose. Model cells were treated/or not
with different concentrations of AC and marein for 2 h,
followed by exposure to 50 mM glucose (high glucose;
HG) in DMEM medium for 24 h and grouped as follows:
the high glucose (HG), HG + AC 25 mg/mL, HG + AC
50 mg/mL, HG + AC 100 mg/mL, HG + AC 150 mg/mL,
HG + marein 100 uM, HG + marein 200 uM, HG + mar-
ein 300 uM, or HG + marein 400 uM groups. Three rep-
licates were included for each group. After treatment,
the liquid supernatant was removed and 10 pL. CCKS8 re-
agent was added to each group for 2 h. The absorbance
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values were detected at 450 nm using a microplate
reader (Thermo Fisher Multiskan FC, Waltham, MA,
USA) following the manufacturer’s instructions.

Western blotting

Cells were collected and extracted with RIPA (Thermo,
Rockford, IL, USA) lysis buffer containing a protease
and phosphatase inhibitor cocktail. The protein concen-
tration of the cell lysate was determined using the
bicinchoninic acid (BCA) protein assay kit (Thermo,
Rockford, Pierce, USA) according to the manufacturer’s
instructions. Protein lysate (30 ug) samples were electro-
phoresed on 10% sodium dodecyl sulfate polyacrylamide
gel and transblotted onto a PVDF transfer membrane
(Thermo, Rockford, Pierce, USA). The membranes were
blocked in Tris-buffered saline with Tween (TBST) and
5% (v/v) nonfat milk for 1h at room temperature,
washed three times with TBST, and then incubated in
rabbit anti-rat p-actin, GAPDH, collagen IV, EN,
TGE-B1, MCP-1, Smad4, NF-kB P-65, AMPK, p-AMPK,
Smad2, p-Smad2, Smad3, or p-Smad3 antibodies
(1:1000) overnight at 4°C. After washing three times
with TBST, the membranes were combined with second-
ary anti-rabbit antibody (Invitrogen, Carlsbad, CA, USA)
for 1h at 37°C. The protein bands were colored using
the BCIP/NBT Substrate Kit (Thermo, Rockford, Pierce,
USA) and the band densities were scanned and calcu-
lated with Quantity One v4.62 software [23].

Immunofluorescence staining

HBZY-1 cells were cultured in four chamber slides at a
density of 1 x 10*/mL for 4—6 h to adhere. After starvation
for 12h, the cells were divided into the NC group, HG
group, HG+AC 150 mg/mL group, and HG + marein
400 uM group and treated for 24 h. Three replicates were
included for each group. After treatment, the liquid super-
natant was removed and the cells were then fixed with 4%
paraformaldehyde for 30 min at room temperature followed
by permeabilization with 4% PBS containing 4% Triton
X-100 for 5min and then rinsed three times with PBS.
After blocking with 1% BSA or 30min at room
temperature, the cells were incubated with primary anti-
bodies of EN, collagen IV, and MCP-1 overnight at 4 °C and
subsequently incubated with secondary anti-rabbit antibody
labeled with Alexa Fluor 488 (1:200; Abcam Cambridge,
MA, USA). Cell nuclei were stained with DAPI (Sigma—Al-
drich), and the cells were scanned with a fluorescent micro-
scope (Leica SP8, Wetzlar, Germany) [24].

Statistical analysis

All experiments were repeated at least three times and
the data are presented as mean t error of the mean.
One-way analysis of variance was used to determine dif-
ferences between multiple groups followed by Duncan’s
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multiple range test using SPSS 16.0 software (Chicago,
IL, USA). Differences were considered statistically sig-
nificant if the p value was less than 0.05.

Results

Effect of AC and marein on cell viability in high glucose
(HG) treated HBZY-1 cells

We assessed whether HG induced rat mesangial cell prolif-
eration and whether AC and marein prevented cell prolifer-
ation. Compared with the NC group, cell proliferation
increased by 24% in HG conditions (Fig. 1a and b). How-
ever, both AC and marein dose-dependently reversed this
proliferation. In addition, AC at 100 and 150 mg/mL, and
marein at 400 pM significantly inhibited cell proliferation
and no cytotoxicity was observed, which indicated that AC
and marein suppressed hyperplasia in rat mesangial cells.
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Fig. 1 a Inhibitory effect of AC on cell proliferation in HG-treated
HBZY-1 cells by the CCK8 assay. b Inhibitory effect of marein on cell
proliferation in HG-treated HBZY-1 cells by the CCK8 assay. Note:
Values of cell proliferation among the groups were analyzed as
described previously in Materials and methods. Values were
expressed as the mean + SD, n=4. *P < 0.01 versus normal group;
"P < 0.05 versus control group; “P <001 versus control group
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AC and marein decreased the expression of fibrotic
proteins in HG-treated HBZY-1 cells

To assess the inhibitory effect of AC and marein on
HG-induced mesangial fibrosis, the protein expression
and distribution of fibrotic proteins such as collagen IV,
EN, and TGF-P1 in mesangial cells were determined by
western blots and immunofluorescence assays. HG sig-
nificantly increased collagen IV, FN, and TGF-p1 protein
expression and distribution in these cells (Figs. 2a-c and
3a-c). However, these increases were suppressed by both
AC at 50 and 150 pg/mL and marein at 200 and 400 pM.
These results suggested that AC and marein prevented
HG-induced mesangial cell fibrogenesis.

AC and marein regulated TGF-B/Smad signaling during
mesangial cell fibrogenesis

TGF-B/Smad signaling is highly activated in both experi-
mental and human DN [25-27]. Smad2 and Smad3 are
phosphorylated by TGE-P type I receptors, which bind to
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Smad4 to form oligomeric complexes, translocate into the
nucleus and regulate renal fibrogenesis [28, 29]. It was
confirmed that AC and marein can suppress TGF-p1 ex-
pression. To determine whether AC and marein inhibit
renal fibrosis via TGF-B/Smad signaling, phosphorylated
Smad2/3 and Smad4 were analyzed. Compared with the
HG group, phosphorylated Smad2/3 and Smad4 were
markedly decreased by AC and marein treatment (Fig. 4).
These results were in partial agreement with those from
our previous animal experiment [23].

AC and marein inhibited mesangial cell fibrogenesis by
regulating AMPK signaling in HG-treated HBZY-1 cells
AMPK signaling plays an important role in diabetic renal
fibrosis. A previous report indicated that AMPK inhibits
TGEF-B-induced matrix stimulation not by Smad2/3 phos-
phorylation but by inactivating Smad4 [30]. To determine
whether AC and marein suppress the expression of fi-
brotic markers in HG-treated rat mesangial cells via
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Fig. 2 a Inhibitory effect of AC and marein on collagen IV expression in HG-treated HBZY-1 cells by western blots. b Inhibitory effect of AC and
marein on FN expression in HG-treated HBZY-1 cells by western blots. ¢ Inhibitory effect of AC and marein on TGF-1 expression in HG-treated
HBZY-1 cells by western blots. Note: Values were expressed as the mean + SD, n=4. 'P < 0,01 versus normal group; P < 0.05 versus control
group; P < 0.01 versus control group
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Fig. 3 a Effect of AC and marein on collagen IV distribution in HG-treated HBZY-1 cells observed by immunofluorescence assay. b Effect of AC
and marein on FN distribution in HG-treated HBZY-1 cells observed by immunofluorescence assay. ¢ Effect of AC and marein on TGF-31
distribution in HG-treated HBZY-1 cells observed by immunofluorescence assay. Note: Values were expressed as the mean + SD, n=4. P < 001
versus normal group; P < 0.05 versus control group; P < 0.01 versus control group
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AMPK signaling and Smad4 signaling, the activated form
of AMPK, phosphorylated AMPK, was determined. Our
results indicated that AC and marein significantly in-
creased cellular phosphorylated AMPK expression
(Fig. 5a). Further experiments showed that AICAR, an
AMPK activator, increased the expression of phosphory-
lated AMPK, and decreased collagen IV, FN, and Smad4
expression. Dor, an AMPK inhibitor, reversed these
changes. These results were partially consistent with those
in a previous study [23]. The impact of AC and marein on
HG-induced AMPK signaling was then investigated. It
was observed that AC and marein reinforced the effect of
AICAR on the upregulation of phosphorylated AMPK
and downregulation of collagen IV, FN, and Smad4. In
addition, AC and marein also reversed the activity of Dor.
These results suggested that AC and marein decreased
collagen IV and FN expression partially via AMPK/Smad4
signaling.

AC and marein inhibited inflammation by regulating
NF-kB signaling in HG-treated HBZY-1 cells

The immune system and chronic inflammation are both
activated during the pathogenesis of DN [31]. MCP-1 is a
vital cytokine in the renal inflammatory response, which is
regulated by NF-kB signaling [32]. The present study re-
vealed that AC and marein downregulated NF-kB, NF-kB
P-65, and MCP-1 protein expression as well as the protein
distribution of MCP-1 in HG-treated cells (Fig. 6a, b). The
protein expressions of NF-kB P-65 and MCP-1 were fur-
ther examined following treatment with PDTC, a NF-kB
inhibitor, AC, and marein. The inhibitory effect of PDTC
on NF-«kB P-65 and MCP-1 protein expression was further
enhanced by AC and marein to a certain degree (Fig. 7).
Compared with PDTC treatment, marein at 400 uM de-
creased NF-kB P-65 and MCP-1 protein expression more,
which indicated that AC and marein inhibited inflamma-
tion via NF-«B signaling.
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Fig. 4 Effect of AC and marein on p-Smad2, p-Smad3 and Smad4 expressions in HG-treated HBZY-1 cells by western blots. Note: Values were
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AC and marein inhibited mesangial cell fibrogenesis by
regulating NF-kB signaling in HG-treated HBZY-1 cells

To further define whether AC and marein inhibited mesan-
gial cell fibrogenesis by regulating NF-kB signaling, we eval-
uated the inhibitory effect of AC and marein on the fibrosis
markers TGF-B1, collagen IV, and EN by blocking NF-«B
signaling. The results indicated that TGF-B1, collagen 1V,
and FN were reduced by PDTC treatment. Moreover, AC
and marein strengthened the inhibitory effect on TGF-$1,
collagen IV, and FN by PDTC. Compared with the PDTC
treatment group, marein at 400 pM decreased TGF-p1 pro-
tein expression to a greater level (Fig. 8). These results con-
firmed that AC and marein inhibited TGF-f1, collagen IV,
and EN protein expression via NF-kB signaling.

Discussion

Natural bioactive compounds from plants have recently
gained the attention of researchers due to their efficacy and
low toxicity. For example, the chloroform extract of Rumex
hastatus exhibited notable anti-tumor and anti-angiogenic
activities. All the solvent fractions of Rumex hastatus were
active against HeLa and NIH/3 T3 cell lines and most of
the bioactive compounds were in the chloroform fraction
[33, 34]. P-sitosterol isolated from Polygonum hydropiper
has shown potential in the management of memory deficit
disorders such as Alzheimer’s disease [35]. Despite the use
of numerous therapeutic and preventive options for DN,
the incidence of ESRD due to DN still remains high [36].
Conventional treatment is the main focus in controlling
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metabolic disorders and blood pressure; however, this treat-
ment can cause various side effects, which may lead to sec-
ondary kidney injury and other uncertain symptoms.
Nevertheless, CHM has advantages in preventing DN due
to its synergistic effects with multiple compounds and re-
duced toxicity [17]. In our previous studies, we found that
the ethyl acetate extract of Coreopsis tinctoria (AC), which
is rich in flavonoids, prevented renal injury in streptozoto-
cin (STZ)-induced diabetic rats. Moreover, we found that
AC improved renal dysfunction and ameliorated renal in-
flammation and fibrosis possibly via the AMPK and
TGEF-B/Smad signaling pathways [23]. Based on these

results, we observed that AC and the main flavonoid, mar-
ein, significantly inhibited the expression of fibrotic compo-
nents FN, collagen IV, TGF-p1, and the pro-inflammatory
cytokine MCP-1 in HG-treated rat mesangial cells. These
results, which showed that AC and marein have therapeutic
anti-fibrotic and anti-inflammatory effects in protecting
DN in vitro, are consistent with animal experiments. We
also attempted to define the molecular mechanism of AC
and marein in renal fibrosis and inflammation in
HG-treated rat mesangial cells. The data revealed that AC
and marein decreased fibrosis possibly via TGF-f/Smad
and AMPK signaling. In addition, renal inflammation was
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inhibited by AC and marein via NF-«B signaling. The rela-
tionship between inflammation and fibrosis was further de-
termined by blocking NF-kB signaling. We found that the
expression of fibrotic proteins was suppressed by blocking
NEF-kB signaling. These results were consistent with those
of a previous study where renal inflammation was closely
related to fibrosis [37]. Furthermore, AC and marein also
inhibited renal fibrosis via NF-«kB signaling.

TGE-B is known as a key pro-fibrotic regulator in driv-
ing renal fibrosis. The following three isoforms in the
TGF-B family have been identified in mammals:
TGE-B1, 2, and 3. Compared with other TGF-§ iso-
forms, TGF-B1 is produced in all types of renal cells
[38]. It has been demonstrated that TGF-pl1 is a
pro-fibrotic regulator in several ways. Firstly, TGF-p1
can independently induce fibrotic proteins such as FN

and collagen I, Secondly, TGF-fB1 extensively stimulates
the phosphorylation of Smad2 and Smad3, and then ac-
tivated Smad2 and Smad3 bond with Smad4 to form
oligomeric complexes. The oligomeric complexes trans-
locate into the nucleus, where they initiate the transcrip-
tion of target genes including FN, collagen I, and
Collagen IV [14, 39]. Therefore, TGF-B1 and Smads are
considered therapeutic targets for renal fibrosis. In the
present study, we showed that HG can increase TGF-1
and activate downstream Smad2, Smad3, and Smad4 in
rat mesangial cells. AC and marein reversed these ef-
fects. We speculated that AC and marein could inhibit
renal fibrosis via a TGF-/Smads-dependent or -inde-
pendent pathway.

AMPK is an energy sensor that acts as a cellular energy
homeostasis master switch by regulating multiple metabolic
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pathways [40]. AMPK is considered a crucial factor in tissues
involved in development of the metabolic syndrome and dia-
betes [41]. In animal experiments, activation of AMPK ame-
liorated insulin resistance by improving glucose and lipid
homeostasis. In addition, AMPK phosphorylates acetyl
CoA-carboxylase and hydroxymethylglutaryl CoA reductase,
which are the main downstream targets of AMPK. Phos-
phorylation of AMPK, which is involved in the rate-limiting
steps of lipid homeostasis, can also promote fatty acid oxida-
tion [42]. Recent studies have suggested that AMPK is ubi-
quitously and strongly expressed in the kidney and is
correlated with diverse physiological and pathologic pro-
cesses. It is well known that chronic exposure to glucose,
lipids, and proteins during diabetes leads to toxic effects in
various organs particularly the kidney [43]. This process in-
hibits AMPK activation which causes renal hypertrophy and
fibrosis in hyperglycemic and hyperlipidemic conditions by
regulating several pathways, and has been seen in both in
vitro and in vivo experiments. In contrast, activation of
AMPK suppressed both renal fibrosis and improved renal
function in both in vitro and in vivo experiments [15, 44].
Therefore, AMPK could provide a potential approach to alle-
viate diabetic renal damage [45]. Metformin, an indirect

activator of AMPK has been confirmed to improve renal
function by downregulating the expression of renal fibrotic
proteins [46, 47], which is in accordance with our previous
animal experiment. In the present study, AC and marein
promoted AMPK activation thereby preventing renal dys-
function. AICAR, an adenosine analogue which stimulates
activation of AMPK is widely used in AMPK signaling re-
search. AICAR targets genes associated with oxidative me-
tabolism, angiogenesis, cell autophagy and glucose sparing,
thereby improving diabetic kidney disease [48, 49]. Our re-
sults demonstrated that AICAR markedly suppressed the ex-
pression of renal fibrosis proteins and Smad4, and in turn
Dor, a specific AMPK inhibitor, accelerated this expression.
The finding that AMPK prevented renal fibrosis via Smad4
has been confirmed in a previous study [30]. Therefore, we
speculated that the inhibitory effect of AC and marein on
renal fibrosis is dependent on AMPK signaling via Smad4. In
addition, we found that the inhibitory effect of AC and mar-
ein on Smad4 was via AMPK and TGF-/Smads signaling.
In recent years, the role of inflammation in the progres-
sion of DN has been investigated. Activation of the immune
system and chronic inflammation both occur in the patho-
genesis of DN. Several studies have demonstrated that renal
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inflammation is regulated by the complex interaction of
various factors. Cytokines, chemokines, adhesion mole-
cules, nuclear factors as well as immune cells in both the
glomerulus and tubules all play vital roles in the develop-
ment of DN [50-52]. MCP-1 is an important chemokine in
the renal inflammatory response. During the development
of DN, the upregulation of MCP-1 increased the expression
of adhesion molecules, and other pro-inflammatory cyto-
kines by promoting monocyte and macrophage activation
and infiltration into the glomerulus which exacerbated
glomerular injury [53]. Various cell types can produce
MCP-1 such as mesangial cells, tubular cells, podocytes
and monocyte-macrophages [54]. MCP-1 expression can
be detected in renal biopsies and MCP-1 excretion in urin-
alysis in DN patients [55]. Animal experiments have indi-
cated that the deletion of MCP-1 reduced glomerular and
interstitial injury [56, 57]. Moreover, MCP-1 inhibitors such
as breviscapine and triptolide had a protective effect on DN
by blocking the MCP-1 receptor in animal experiments [2].
Taken together, these findings demonstrate that MCP-1
could be a potential therapeutic target for DN treatment.
Our results showed that both AC and marein significantly

decreased HG-induced MCP-1 expression in HBZY-1 cells,
which indicated that MCP-1 is an anti-inflammatory target
of AC and marein in DN prevention.

NE-«B is a transcription factor and is activated by a wide
variety of cellular responses to stimuli related to diabetes
mellitus (DM) and its complications. Evidence has shown
that NF-«xB plays an important role in the development of
DN [58]. Hyperglycemia, oxidative stress, and inflammation
stimulate the activation of NF-kB via various signaling mol-
ecules. Increased activation of NF-«B is observed in most
cell types in the kidney of diabetic patients and enters the
nucleus to promote pro-inflammatory genes and cytokines
such as MCP-1 and IL-6 (interleukin-6) and leads to renal
apoptosis. NF-kB also accelerates renal fibrosis by activating
cellular matrix accumulation of FN and collagen IV [26,
59]. In our experiments, AC and marein inhibited NF-kB
activation via NF-kB and NF-kB P-65 expression. Interest-
ingly, we found that suppression of NF-xkB decreased
MCP-1, EN and collagen IV expression, and both AC and
marein strengthened these suppressive effects. These results
indicated that the anti-inflammatory and anti-fibrotic ef-
fects of AC and marein were via NF-kB signaling.
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Further experiments on the anti-inflammatory and
anti-fibrotic mechanisms of AC and marein showed that
the mechanisms involved the TGF-f1/Smads, AMPK,
and NF-«B signaling pathways. Although marein is the
main constituent in AC, the activity of many other con-
stituents in AC still need to be determined in order to
identify which are the most effective fractions or com-
pounds. As Coreopsis tinctoria is rich in flavonoids, fur-
ther studies on the the molecular targets of purified
flavonoids from AC and their main constituents require
determination.

Conclusions

In summary, we conclude that AC from Coreopsis tinc-
toria has protective effects on DN, at least in part, by
suppressing HG-induced renal inflammation and fibro-
sis, and marein is an active compound in AC. The activ-
ities of purified flavonoids in the AC and other active
components merit further study.
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