Wood et al. BMC Cancer (2018) 18:414

https://doi.org/10.1186/512885-018-4325-6 B M C C ancer

TECHNICAL ADVANCE Open Access

Population-level distribution and putative ® e
immunogenicity of cancer neoepitopes

Mary A. Wood ', Mayur Paralkar'~, Mihir P. Paralkar'?, Austin Nguyen'”, Adam J. Struck', Kyle Ellrott'”,
Adam Margolinw's, Abhinav Nellore'>® and Reid F. Thompson]'5'7'8*

Abstract

Background: Tumor neoantigens are drivers of cancer immunotherapy response; however, current prediction tools
produce many candidates requiring further prioritization. Additional filtration criteria and population-level
understanding may assist with prioritization. Herein, we show neoepitope immunogenicity is related to measures of
peptide novelty and report population-level behavior of these and other metrics.

Methods: We propose four peptide novelty metrics to refine predicted neoantigenicity: tumor vs. paired normal
peptide binding affinity difference, tumor vs. paired normal peptide sequence similarity, tumor vs. closest human
peptide sequence similarity, and tumor vs. closest microbial peptide sequence similarity. We apply these metrics to
neoepitopes predicted from somatic missense mutations in The Cancer Genome Atlas (TCGA) and a cohort of
melanoma patients, and to a group of peptides with neoepitope-specific immune response data using an
extension of pVAC-Seq (Hundal et al, pVAC-Seq: a genome-guided in silico approach to identifying tumor
neoantigens. Genome Med 8:11, 2016).

Results: We show neoepitope burden varies across TCGA diseases and HLA alleles, with surprisingly low repetition
of neoepitope sequences across patients or neoepitope preferences among sets of HLA alleles. Only 20.3% of
predicted neoepitopes across TCGA patients displayed novel binding change based on our binding affinity
difference criteria. Similarity of amino acid sequence was typically high between paired tumor-normal epitopes, but
in 24.6% of cases, neoepitopes were more similar to other human peptides, or bacterial (56.8% of cases) or viral
peptides (15.5% of cases), than their paired normal counterparts. Applied to peptides with neoepitope-specific
immune response, a linear model incorporating neoepitope binding affinity, protein sequence similarity between
neoepitopes and their closest viral peptides, and paired binding affinity difference was able to predict
immunogenicity (AUROC = 0.66).

Conclusions: Our proposed prioritization criteria emphasize neoepitope novelty and refine patient neoepitope
predictions for focus on biologically meaningful candidate neoantigens. We have demonstrated that neoepitopes
should be considered not only with respect to their paired normal epitope, but to the entire human proteome, and
bacterial and viral peptides, with potential implications for neoepitope immunogenicity and personalized vaccines
for cancer treatment. We conclude that putative neoantigens are highly variable across individuals as a function of
cancer genetics and personalized HLA repertoire, while the overall behavior of filtration criteria reflects predictable
patterns.
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Background

Neoepitopes are novel peptides that correspond to
tumor-specific mutations, are presented on the surface
of tumor cells, and have the potential to elicit an
immune response (denoting a “neoantigen”). When tar-
geted by cytotoxic T-cells, tumor-associated neoantigens
may be associated with increased survival among some
cancer patients (e.g. melanoma, cholangiocarcinoma) [1,
2], and tumor neoepitope burden seems to correlate
with patient survival [3-5]. Increasingly, immune check-
point inhibitor therapies have been successful at stimu-
lating anti-tumor immune responses in several cancer
types [6]. However, this ability to leverage the immune
system against tumors remains predicated on the im-
mune system’s ability to recognize tumor neoepitopes as
“non-self” [7]. Increased tumor neoepitope burden is as-
sociated with response to immune checkpoint inhibitor
therapies [8, 9], and recent attempts to treat melanoma
with personalized neoantigen vaccines have shown pre-
liminary success [10, 11].

Importantly, not all tumor mutations produce neoepi-
topes. First, the mutation must result in a change in the
amino acid sequence of the tumor peptide relative to the
normal peptide. The resulting peptide must also be
expressed within cancer cells and bind with high affinity to
one or more of the patient’s major histocompatibility com-
plexes (MHC) [7], the polyprotein complexes predominantly
encoded by the polymorphic Human Leukocyte Antigen
(HLA) loci, which are responsible for presenting peptides to
the surface of both normal and cancer cells for detection by
the immune system in a patient-specific manner [12-14].
With little variation, these are the criteria applied by all
computational tools for neoepitope prediction from tumor
genomic sequencing data, including Epi-Seq [15], Epi-
ToolKit [16], pVAC-Seq [17], INTEGRATE-neo [18],
TSNAD [19], MuPeXI [20], and CloudNeo [21].

Our central assertion is that the immunogenicity of a
neoepitope is directly related to its novelty: that is, the
extent to which it or a closely matching peptide has pre-
viously been presented to the immune system. There is
emerging evidence that at least four such novelty criteria
may be important to incorporate when identifying and
filtering candidate neoepitopes:

1) A neoepitope with strong affinity for MHC (< 500 nM
[22]) may be a more robust neoantigen candidate if the
paired normal epitope has a poor affinity for MHC
(>500 nM). This concept was already implemented in
the CloudNeo tool, but the effects of filtering epitope
calls in this fashion were not addressed [21]. A greater
difference in MHC binding affinity between tumor and
normal epitopes can increase neoepitope
immunogenicity, as shown by Duan et al. using a
“differential agretopicity index” [16].
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2) While a tumor neoepitope may bind differently from
its paired normal epitope, decreased peptide-peptide
similarity of the pair at non-MHC-anchoring residues
(e.g. amino acid positions 2 and 9 for a 9mer peptide
[23]) is likely to increase neoepitope immunogenicity,
per the criterion of continuity hypothesis proposed
by Pradeu and Carosella, which suggests that epitopes
discontinuous with those that the immune system
normally encounters are more likely to trigger an
immune response [24]. In fact, Yadav et al. found that
neoepitopes with amino acid changes at solvent-
exposed positions elicited strong T-cell responses [25].

3) Though most approaches only consider the paired
normal epitope as a counterpart to its neoepitope,
the tumor neoepitope may actually be highly similar
to other normal peptides; this emphasizes the
importance of considering sequence homology of a
neoepitope not just to its normal counterpart, but
to all normal peptides that the immune system may
encounter in the body. This idea has been
previously addressed by the tool MuPeXI [20], but
only by searching for exact sequence matches of
neoepitopes to the reference proteome. Others have
investigated the importance of neoepitope sequence
similarity to known antigen sequences in predicting
response to immunotherapy [26].

4) It is important to consider the sequence
homology of candidate neoepitopes to bacteria
and viruses, as a) immunotherapy response has
shown dependence upon commensal bacteria
[27-29], b) peptides of bacterial and viral
pathogens can be cross-reactive with tumor
peptides and recognized by the same tumor-
specific T cells [30], and c) virus-derived
oncoproteins from virus-associated cancers such
as head and neck cancer [31], cervical cancer
[32], and Merkel cell carcinoma (MCC) [33] have
been shown to elicit T-cell responses [34].

Based on the above data and phenomena, we propose
to incorporate the following four biologically significant
metrics, summarized in Fig. 1, as an extension of
pVAC-Seq, with potential for use with other neoepitope
calling tools:

1) Tumor vs. paired normal peptide binding affinity
difference: the degree to which the change in
predicted MHC binding affinity between tumor and
normal epitopes may be immunogenic.

2) Tumor vs. paired normal peptide sequence
similarity: the similarity between paired tumor and
normal epitopes, based on protein sequence
similarity measures as computed from a
BLOSUMSG62 matrix [35].
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Fig. 1 lllustration of proposed neoepitope prioritization metrics. a. Tumor vs. paired normal peptide binding affinity difference addresses the
difference in MHC Class | binding affinity between the paired tumor and normal epitopes, and a novel binding change occurs when a tumor epitope
binds readily to a patient’s HLA allele while its paired normal epitope does not. Examples are shown of a neoepitope which displayed a novel binding
change (left) and a neoepitope which did not (right). Mutated residues are shown in blue underline. b. Tumor vs. paired normal peptide sequence
similarity addresses the similarity in sequence between the paired tumor-normal epitopes at non-anchor residues based on a BLOSUM62 matrix,
normalized by the tumor epitope’s similarity with itself. Examples are shown of a neoepitope with low similarity to its paired normal epitope (left) and a
neoepitope with high similarity to its paired normal epitope (right). Anchor residue positions are shown faded, and mutated residues are shown in blue and
underlined. ¢. Tumor vs. closest human peptide sequence similarity addresses how similar the neoepitope is to all human proteins based on a blastp search.
Examples are shown of a neoepitope which matched to a peptide from a gene other than its gene of origin (left) and a neoepitope which matched to a
peptide from its gene of origin (right). Anchor residue positions are shown faded, and mutated residues are shown in blue and underlined. d. Tumor vs. closest
microbial peptide sequence similarity addresses how similar the neoepitope is to all bacterial and viral proteins based on a blastp search. Examples are shown of
a neoepitope that matches closer to a microbial peptide than any human peptide (left) and a neoepitope which matches closer to a human peptide than any
microbial peptide (right). Anchor residue positions are shown faded, and mutated residues are shown in blue and underlined

3) Tumor vs. closest human peptide sequence and known bacterial and viral peptides (from
similarity: the similarity between the neoepitope commensals or other infectious pathogens).
and other normal, unrelated human peptides.

4) Tumor vs. closest microbial peptide sequence Herein, we apply these metrics to neoepitopes pre-

similarity: the similarity between the neoepitope dicted for somatic mutations identified in a cohort of
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melanoma patients and across 18 diseases in The Cancer
Genome Atlas (TCGA), with the aim of understanding
how these metrics influence and stratify neoepitope pre-
dictions, both for an individual and at a population level.
To our knowledge, our analysis of neoepitope predic-
tions from TCGA represents the broadest study of
this kind to date, describing variation across not only
a large patient cohort, but across HLA alleles encom-
passing 99% of the variation in the population at
these loci. We also apply our metrics to a small co-
hort of individual peptides to assess their efficacy of
immunogenicity prediction.

Methods

pVAC-Seq analysis of the cancer genome atlas patients
For our analyses, we used somatic mutations identified
with MuTect [36] from Mutation Annotation Format
(MAF) files for 18 cancer types (see Additional file 1:
Table S1) in TCGA, retrieved using gdc-scan (v1.0.0)
[37]. The MAF files were then converted to tumor-
normal pair variant call format (VCF) files using the
maf2vcf tool in the vcf2maf software package [38], with
the GRCh38/hg38 genome build available from the
Broad Institute resource bundle [39] used as the refer-
ence genome. Because these VCFs still contained data
for both tumor and normal samples, they were then ma-
nipulated to remove data from the paired normal sam-
ple, leaving final, tumor-only VCF files for compatibility
with pVAC-Seq, which accepts only single-sample VCFs.
Each disease type consisted of a variable number of
patients (see Additional file 1: Figure S1).

We then annotated these VCF files using Variant Effect
Predictor (VEP, v88) [40]. VEP was run according to
pVAC-Seq’s recommendations [41] with the Down-
stream and Wildtype VEP plugins [42] used, gene sym-
bols added to output where available, and mutation
consequence terms based on Sequence Ontology anno-
tation guidelines [43]. We also used VEP’s GRCh38 an-
notation cache (rather than querying remotely) for
efficiency.

As the TCGA data we obtained did not allow us to cal-
culate patient-specific HLA types, we assumed each tumor
could occur in the setting of any HLA allele type, allowing
us to explore neoepitope distributions among a broader
theoretical population. To do this, we generated a list of
HLA alleles to use for subsequent analysis based on allele
frequencies originating from the Allele Frequency Net
Database [44] and summarized for use in the software
POLYSOLVER (v1.0) [45]. The average frequencies across
races (Asian, Black, and Caucasian) of alleles for each
HLA gene (HLA-A, HLA-B, and HLA-C) were calculated
and normalized to sum to 100%. We then selected the top
145 average-frequency HLA alleles for subsequent analysis
(see Additional file 1: Tables S2 — S4), encompassing all
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HLA alleles among 99% of individuals in the general
population.

pVAC-Seq (v4.0.8) was run for each patient and allele
combination using 9mer epitopes generated from 17-
mer peptides surrounding each missense mutation, and
using MHC binding predictions generated by NetMHC-
pan (v2.8) [46]. For each resulting neoepitope from
pVAC-Seq, additional metrics were applied as described
below. Note that for the purposes of this study, only
epitopes resulting from missense mutations were consid-
ered for further analysis, and all peptides were consid-
ered to be expressed at equal levels. Note also that
neoepitopes from breast cancer (BRCA), cervical cancer
(CESC) and melanoma (SKCM) were not assessed for
protein sequence similarity against peptides other than
their paired normal epitopes.

To assess the degree to which HLA alleles might have
overlapping preference for putatively novel binding
neoepitopes predicted for mutations across TCGA (see
Neoepitope Prioritization Metrics), 1000 random sets of
six of the previously described set of HLA alleles (two
HLA-A, two HLA-B, and two HLA-C alleles) were
chosen using the random.sample function (without re-
placement) from the random module in Python 2.7.13
[47] (the combinations tested are available in
Additional file 2: Table S5). All unique amino acid se-
quences of neoepitopes that bound to one or more al-
leles within each random allele set were counted;
separate counts were kept for neoepitopes that bound to
one, two, three, four, five, or six of the six alleles (i.e. in-
creasing levels of overlap). The script for randomly sam-
pling allele sets and determining overlap is available in
our GitHub repository [48].

For comparison, we assessed recurrence rates among
2,813,809 simulated neoepitopes (9mers) mirroring the
size of the TCGA data set. These neoepitopes were
drawn randomly from the GRCh38 peptidome, with
subsequent introduction of a random single amino acid
substitution at a random position along each 9mer.
These simulated peptides were labeled by patient and
disease site to produce a random set of peptides for each
patient equivalent in size to that patient’s predicted
neoepitope repertoire. We repeated this process again
for a smaller set of 1000 simulated neoepitopes to assess
trends in peptide similarity scores. The gene of origin of the
random peptide and the gene corresponding to its closest
peptide match in the human proteome were retained for
protein sequence similarity analysis (see “Tumor vs. closest
human peptide sequence similarity” below).

Analysis of neoepitopes in melanoma patients

We identified patient-specific neoepitopes in whole ex-
ome sequencing data from 12 patients selected from a
study exploring genomic features of response to
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immunotherapy in melanoma patients [49]. Reads were
aligned against the GRCh37d5 reference genome using
the Sanger cgpmap workflow [50]. This workflow uses
bwa-mem (v0.7.15-1140) [51] and biobambam?2 (v2.0.
69) [52] to generate genome coordinate-sorted align-
ments with duplicates marked. Realignment around
indels and base recalibration were performed using Gen-
ome Analysis Toolkit (v3.6) [53]. Variants were called
using VarScan (v2.3.9) [54] in accordance with the
methods outlined in the workflow [50]. VCF files were
annotated using VEP (v88) [40] as described above. For
all missense single nucleotide variants identified, the
tumor and normal protein epitopes of 8, 9, 10, and 11
amino acids in length were produced by reconstructing
the nucleotide sequence surrounding the mutation using
its coordinates from the VCF file and the CDS in the
hgl9 gene transfer format file [55], and translating this
sequence into amino acids. Each patient’s HLA type was
determined from FASTQ files using Optitype (v1.3.1)
[56], and the binding affinity of all predicted tumor and
normal epitopes was predicted with NetMHCpan (v2.8)
[46] for each epitope and patient-specific HLA allele
combination. Additional prioritization metrics were ap-
plied as described below.

Neoepitope prioritization metrics

All neoepitope novelty metrics are summarized in Fig. 1,
and scripts for calculating these metrics are available on
our GitHub repository [48].

Tumor vs. paired normal binding affinity difference

The difference in MHC binding affinity was calculated
using NetMHCpan (described above) as the tumor pep-
tide binding affinity subtracted from the normal peptide
binding affinity. A novel binding change was defined as a
case in which the tumor neoepitope had an MHC binding
affinity below 500 nM (tighter association), while the cor-
responding normal epitope had at least a 5-fold weaker
MHC binding affinity (minimum 500 nM). Note that if an
unrelated human peptide was found to be similar to the
neoepitope (see “Tumor vs. closest human peptide se-
quence similarity” below), binding affinity difference was
also calculated using this peptide’s sequence.

Tumor vs. paired normal peptide sequence similarity

Using a BLOSUM62 matrix, the amino acids at each
position along the paired tumor and normal epitopes
were given an aggregate similarity score, with higher
scores indicating higher similarity. We modified the
process described by Henikoff and Henikoff [35] to re-
move known MHC anchor residues (the second residue
and last residue of each 9mer epitope) from scoring in
order to remove redundancy with the binding affinity
difference metrics, and to place emphasis upon residues
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that may be more accessible for recognition by T-cells
[57]. However, because these scores vary depending on
amino acid composition of the proteins tested, we per-
formed a normalization: we divided the similarity score
for a neoepitope compared to another peptide by the
similarity score of the neoepitope tested against itself to
produce percent similarity scores. Note that if an unre-
lated human, bacterial, or viral peptide was found to be
similar to the neoepitope (see “Tumor vs. closest human
peptide sequence similarity” and “Tumor vs. closest mi-
crobial peptide sequence similarity” below), paired se-
quence similarity was also calculated using this peptide’s
sequence instead of the paired normal epitope.

Tumor vs. closest human peptide sequence similarity

Using BLAST+ [58], a protein-protein, local, ungapped
alignment search of all known human proteins was per-
formed to find the closest matching peptide to each
tumor peptide. This was performed using blastp (v2.4.0
+) and a peptide database constructed with makeblastdb
(v2.4.0+) using Ensembl’s set of all GRCh38 peptides
[59]. The BLOSUMS62 scoring matrix, ungapped align-
ments, and an E value cap of 200,000 (to capture blast
hits for as many epitopes as possible) were applied, and
composition-based statistics were turned off. The top
scoring alignment (i.e. lowest E value) with an alignment
length of 9 was used as the best match for each neoepi-
tope. If more than one alignment shared the top score,
the names of all matching peptides were retained. If a
top match was the neoepitope’s normal counterpart, a
status of “matching” was assigned to the neoepitope,
otherwise a status of “nonmatching” was assigned.

Tumor vs. closest microbial peptide sequence similarity

Using BLAST+ [58], a protein-protein, local, ungapped
alignment search of all known bacterial and viral pep-
tides was performed to find the closest matching bacter-
ial and viral peptides to each tumor peptide. This was
performed using blastp (v2.4.0+) and peptide databases
made using makeblastdb (v2.4.0+). The bacterial data-
base was assembled using the National Center for Bio-
technology Information (NCBI)’s nonredundant bacterial
FASTA releases from RefSeq [60], while the viral data-
base was assembled using NCBI's nonredundant viral
FASTA releases from RefSeq [61]. The BLOSUM®62 scor-
ing matrix, ungapped alignments, and an E value cap of
200,000 were applied, and composition-based statistics
were turned off. The top scoring alignment (i.e. lowest E
value) with an alignment length of 9 was used as the
best match for each neoepitope for both the bacterial
and viral alignments. If more than one alignment shared
the top score, the names of all matching peptides were
retained for both the bacterial and viral alignments.
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Features associated with immunogenicity

To assess how well our prioritization metrics reflect a
neoepitope’s ability to elicit an immune response, we
applied our criteria to predicted neoepitopes from six
studies in which peptide-specific immune responses
were measured [3, 11, 20, 62—64]. For data from all stud-
ies, we used only peptides which had complete informa-
tion regarding the neoepitope and its paired normal
peptide, as well as complete data regarding epitope-level
immune response, providing a total cohort of 419 pep-
tides. Because only binary immune response data was
available from Ott et al. [11] and Bjerregaard et al. [20],
we generated binary response data from the Carreno et
al. [62] dataset for compatibility: a neoepitope was con-
sidered to have elicited an immune response if it had a
percent neoantigen-specific T-cell in lymph+/CD8+
gated cells of greater than 10%. Of the seven peptides
from the Le et al. [64] dataset that were tested for clonal
T cell expansion, the three peptides that demonstrated
clonal T-cell expansion were considered to have elicited
an immune response, while those that only demon-
strated immune reactivity in an ELISpot assay were con-
sidered not to have elicited an immune response.
Among peptides evaluated in co-culture experiments
from Tran et al. [3] and Gros et al. [63], those that were
T-cell reactive were considered to have elicited an im-
mune response. We produced a linear model to deter-
mine the relationship between our neoepitope novelty
criteria and peptide-specific immune response (see “Stat-
istical analysis” below). Using Scikit-learn for Python
[65], SVM and Random Forest models were also trained
with 10 fold cross validation for comparison.

Statistical analysis

Statistical analysis was performed using R (v3.3.2) in
RStudio. To test the relationship between per-allele
neoepitope burden and neoepitope frequency across the
TCGA dataset, we obtained the Pearson’s product-
moment correlation and associated p-value using a two-
sided test. To determine whether a difference in tumor
vs. paired normal peptide binding affinity difference ex-
ists between epitopes with and without an amino acid
change at an anchor position, we applied a Wilcoxon
rank sum test. We also used the Wilcox test to compare
tumor vs. paired normal peptide sequence similarity
scores between epitopes with novel vs. non-novel bind-
ing changes, and to compare the difference in tumor vs.
paired normal peptide sequence similarity scores for the
neoepitope with its paired normal epitope and its closest
matching human peptide from BLAST for matching ver-
sus non-matching genes. A Welch’s two sample t-test
was used to compare the similarity of neoepitopes to
bacterial vs. viral peptides. We used the package pROC
[66] to obtain AUROC scores and the Im function to

Page 6 of 15

determine the relationship between our continuous pre-
dictors and observed peptide-specific immune response
data. Our analyses are available as an R script on our
GitHub repository [48].

Results

Neoepitope frequencies

Consistent with prior analyses of TCGA data [4, 67], we
demonstrate a varied spectrum of neoepitope burden
across diseases, with skin cutaneous melanoma and
pheochromocytoma/paraganglioma having the highest
and lowest median neoepitope burdens, respectively (see
Fig. 2a). These differences are likely due to known differ-
ences in somatic mutation burden as a function of dis-
ease type, as the ratio of neoepitopes to somatic
missense mutations per patient was relatively constant
across diseases with strong correlation between both
metrics (Pearson’s product-moment correlation of 0.99;
p<22x107 % see Additional file 1: Figure S2). Across
disease types, an average of 36.8% (sd=0.7%) of all
predicted neoepitopes were from HLA-A alleles, 42.4%
(sd = 14.8%) from HLA-B alleles, and 21.0% (sd =0.7%)
from HLA-C alleles.

We next sought to explore the repertoire of shared
neoepitopes across TCGA as a function of HLA sub-
types. Among the ten HLA alleles with the greatest
number of high-affinity epitopes, there was surprisingly
little repetition of epitopes binding to that allele across
TCGA (mean 1.06 epitopes repeated); however, each al-
lele had at least one epitope encountered multiple times
across patients and diseases (31-168 occurrences). The
most frequently repeated neoepitope for HLA-B*15:03,
KQMNDARHG, was found most often in breast carcin-
oma patients. In all cases, this neoepitope originated
from a H1047R substitution caused by a single nucleo-
tide variant in the gene PIK3CA, a known driver muta-
tion [68]. Two other recurrent epitopes, LSKITEQEK
and STRDPLSKI, were identified 168 times for HLA-
A*30:01 and HLA-B*15:17, respectively, with both ori-
ginating from the same oncogenic mutation in PIK3CA
(E542K substitutions) [68], and were found exclusively
in breast carcinoma, cervical squamous cell carcinoma,
and prostate adenocarcinoma patients. There were 5175
other occurrences of PIK3CA neoepitopes, as well as
7139 TP53 (a known cancer driver gene [69]) neoepi-
topes, and 35,872 occurrences of neoepitopes originating
from MUCI6, the gene encoding the CA-125 cancer
biomarker [70]. On average, 4.7% of patient epitopes
were repeated across patients within their own disease
site and 7.9% of patient epitopes were repeated across all
of TCGA, a rate significantly higher than that antici-
pated by random chance alone (see Additional file 1:
Figure S3 and Additional file 1: Table S6), and likely at-
tributable to common cancer mutations. It is, finally,
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Fig. 2 Neoepitope predictions in TCGA across disease sites and HLA alleles. a. Number of total and putatively novel-binding predicted neoepitopes in
each disease group from TCGA. The total number of neoepitopes (gray) for each patient in each disease group, shown in order of decreasing median
neoepitope burden, was determined using pVAC-Seq. Novel binding (red) are the subset of neoepitopes which displayed a putatively novel binding
change (see Methods). Vertical lines separate TCGA disease sites. Outliers have been removed for clarity. On average, 20.3% of a patient’s neoepitopes
were novel-binding. A TCGA disease abbreviation key is available in Additional file 1: Table S1. b. Putatively novel binding predicted neoepitopes across
HLA alleles in TCGA. Top: number of neoepitopes with a novel binding change in TCGA for each HLA allele studied, colored green, blue, and yellow
according to HLA allele types (A, B, and C, respectively). Bottom: average population frequency for each HLA allele studied, colored as per Top pane.
Alleles with > 10% frequency in the population are labeled. There was no relationship between allele frequency and number of putatively novel
binding neoepitopes (Pearson’s product-moment correlation of 0.1, p=0.1)

Allele

important to note that the true number of shared neoe-
pitopes among cancers is likely to be smaller due to the
random assortment of actual HLA alleles across the
population.

We were also interested in the degree to which an
overlap of neoepitope preferences existed between the
HLA alleles studied, as an epitope that binds strongly to
more than one of a patient’s suite of HLA alleles would
likely be a better candidate for applications such as pep-
tide vaccines. For 1000 randomly sampled sets of six
HLA alleles (see Methods), on average, 3.1% of neoepi-
topes across TCGA had affinity for at least one of the six
alleles in each set, emphasizing the importance of a
patient’s unique HLA repertoire in neoepitope presenta-
tion. Of these epitopes, the majority (87.5% on average)

only had affinity for one allele, and 11.0% on average
had affinity for two alleles, but there were some cases
where epitopes had affinity for all six alleles (0.0007% of
epitopes on average, and up to 0.2% of epitopes for one
allele set; see Additional file 1: Figure S4).

Tumor vs. paired normal peptide binding affinity
difference

We then examined the distribution of paired tumor and
normal epitope binding affinities across a cohort of mel-
anoma patients to understand the landscape of differen-
tial HLA-specific binding affinities [49] (see Fig. 3a).
While most mutations did not have a large effect on epi-
tope binding affinity (median 71.1 nM binding affinity
difference), we were particularly interested in those
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mutations that changed the binding affinity significantly in
favor of the neoepitope (>5-fold increased affinity, see
Fig. 3a). We applied these criteria to identify neoepitopes
with putatively novel binding changes (see Methods), and
noted only a small fraction of qualifying neoepitopes from
each patient (0.09% on average, see Fig. 3b). This dramatic
refinement in neoepitopes led us to consider how these
criteria might affect neoepitope distribution across a larger
cancer cohort from TCGA (see Additional file 1: Table S1)
and among a broad population of HLA types.

We next assessed novelty of MHC tumor vs. paired
normal binding affinity change across TCGA, noting
that a minority of neoepitopes (20.3% on average) met
this criterion, with a similar distribution across all

TCGA cohorts (average proportion per patient of 18.0—
24.7%, see Fig. 2a). This finding was dependent upon
HLA type, with a median 5.6-fold difference in the num-
ber of neoepitopes with novel binding changes between
the 25th and 75th percentile HLA alleles among diseases
(see Fig. 2b). All diseases had the greatest number of
neoepitopes associated with the allele HLA-B*15:03;
however, there was no statistical association between
HLA allele frequency in the general population and that
allele’s corresponding number of novel binding change
neoepitopes (Pearson’s product-moment correlation of
0.1; p=0.1; see Fig. 2b).

Importantly, we note that the mutation of amino acid
residues at MHC anchor positions (i.e. the second
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residue and last residue of each 9mer epitope) tends to
result in more dramatic predicted binding affinity differ-
ences between the tumor and paired normal peptides
compared to mutation of non-anchor residues (median
of 2935.1 nM vs. 28.1 nM, respectively; p < 2.2 x 10~ %;
see Additional file 1: Figure S5).

Tumor vs. paired normal peptide sequence similarity
While anchor residue mutations may influence differential
peptide binding, anchor residues are anticipated to be more
directly engaged with the MHC complex and thus less ac-
cessible for T-cell recognition [57]. We therefore sought to
investigate the differences in peptide sequence between
tumor neoepitopes with mutations in T-cell exposed (i.e.
non-anchor) residues and paired normal epitopes. The aver-
age protein sequence similarity score (see Methods) between
paired epitopes with single nucleotide variants at non-anchor
positions across all diseases was 83.5% (ranging from 60.0%
to 98.1%, sd=6.3%). When we assessed these similarity
scores in conjunction with our novel binding criteria (see
Methods), we observed that neoepitopes which displayed a
putatively novel binding change tended to have lower similar-
ity to their paired normal counterpart than those without
such a binding affinity change (mean 81.5% vs. 83.7%, re-
spectively; p<22x107'%). This level of significance held
even when controlling for tumor neoepitope binding affinity
(see Additional file 1: Table S7).

Tumor vs. closest human peptide sequence similarity

We reasoned that regardless of how similar or dissimilar
a neoepitope may be to its paired normal epitope, it may
closely mimic a different normal epitope present within
the human proteome (see Fig. 1c). Comprehensive blastp
analysis of all neoepitopes from all disease types generated
human proteome matches for more than 99.9% of peptide
queries, with an average protein sequence similarity score
of 84.3% (sd = 10.7%). The majority of neoepitopes (77.3%
on average) mapped most closely to one or more normal
peptides from the same gene (see Figs. 4a and b). How-
ever, 22.7% of neoepitopes matched more closely to one
or more unrelated human peptides; in 3.5% of these cases,
the unrelated human peptide was an exact match to the
tumor neoepitope across all 9 amino acid positions. This
phenomenon is likely stochastic in nature, as 24.9% of
simulated neoepitopes (see Methods) matched most
closely to unrelated human peptides, with an average
protein sequence similarity score of 81.9% (sd=10.6%),
significantly different from that of the TCGA neoepitopes
(p =4.927 x 10~ '3, Welch Two Sample t-test).

Tumor vs. closest microbial peptide sequence similarity

Next, we assessed neoepitope sequence homology with
peptides from pathogenic and commensal microorgan-
isms. Almost all neoepitopes were found to have at least
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one matching bacterial or viral peptide by blastp (87.6%
and > 99.9%, respectively). Overall, tumor neoepitopes
were more similar to bacterial peptides compared to
viral peptides (mean percent peptide sequence similarity
score of 91.4% (sd=6.6%) and 76.7% (sd=9.1%),
respectively, (p <2.2 x 107'°)). Interestingly, in 56.9% of
cases where a neoepitope had a bacterial blastp hit, the
bacterial peptide was more similar to the neoepitope
than either its normal counterpart or its most similar
normal protein as determined by blastp; this was only
true for 15.8% of the viral peptide matches for
neoepitopes (see Fig. 1d for example). More strikingly,
when considering protein sequence similarity scores
across all residues, 59.6% of neoepitopes with bacterial
blastp hits had higher similarity to these peptides than
to either of their normal peptide matches; only 5.8% of
viral epitopes showed this phenomenon. This was true
despite the fact that neoepitopes had significantly more
mismatches in sequence with bacterial peptides than
they did with either their paired normal epitopes (mean
15 vs 1; p<22x10 ') or their closest matching
peptides from blastp (mean 1.5 vs 1.4; p<2.2x 107 '),
However, in terms of total amino acid length, the
bacterial peptide data base was 577.5 times larger than
the human peptide database, and the viral peptide data
base was only 2.0 times larger, so these phenomena may
be in part reflective of these differences.

Additional file 1: Figure S6 shows the distribution of
protein percent similarity scores for bacterial and viral
hits for each TCGA disease site and for 1000 randomly
simulated neoepitopes (see Methods) across non-anchor
residues. Predicted TCGA neoepitopes were significantly
more similar than random peptides to their closest match-
ing bacterial peptide (mean 91.4% vs. 82.3%, p < 2.2 x 10~ ',
Welch Two Sample t-test) and their closest matching
viral peptide (mean 76.7% vs. 58.7%, p<2.2x107'¢,
Welch Two Sample t-test), indicating that this
phenomenon of sequence similarity to microorganism
peptides may be specific to cancer neoepitopes. We
determined the top 10 most frequently occurring bac-
terial genera in cases where a bacterial peptide was a
closer match to a neoepitope than either of its human
peptide counterparts (see Fig. 5), which includes, of
particular interest, frequently pathogenic genera such as
Clostridium [71], Mycobacterium [72, 73], and Vibrio [74],
and the frequently commensal genus Lactobacillus [75].

Features associated with immunogenicity

Finally, we applied our criteria to a cohort of neoepi-
topes with paired immune response data. Applying any
single criterion to predict immune response to a neoepi-
tope in a linear model did not lead to significant predic-
tion in any case, except for the percent protein sequence
similarity between a neoepitope and its closest viral
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peptide (p =0.046; see Table 1, Figs. 6a-f). We also ob-
served how well immune response was predicted by
neoepitope binding affinity, paired normal epitope bind-
ing affinity, and the number of mismatches in amino
acid sequence between the neoepitope and its paired
normal epitope. Only the number of mismatches was
alone able to predict neoepitope immunogenicity, favor-
ing those neoepitopes with multiple amino acid changes
(p=0.03; see Table 1). Our putatively novel binding
change criteria alone was able to predict true immuno-
genicity with an AUROC of 0.53 (see Additional file 1:
Figure S7). A linear model incorporating 1) neoepitope
binding affinity, 2) putatively novel binding change sta-
tus of the neoepitope, 3) binding affinity difference be-
tween the neoepitope and both its paired normal
epitope and 4) its closest BLAST peptide match, 5)
number of amino acid sequence mismatches between

the neoepitope and its paired normal epitope, and 6)
percent protein sequence similarity between the neoepi-
tope and its paired normal epitope, 7) its closest human
peptide match, 8) its closest bacterial peptide match, and
9) its closest viral peptide match was able to significantly
predict immune response to neoepitopes (p=0.02).
However, only three individual predictors contributed
significantly to the model: neoepitope binding affinity
(p=0.003), percent protein sequence similarity of the
neoepitope to its closest viral peptide match (p = 0.048),
and binding affinity difference between the neoepitope
and its closest human peptide match (p =0.002). The
contribution of the number of amino acid sequence
mismatches between the neoepitope and its paired
normal epitope approached significance (p =0.075). A
reduced, multiplicative version of our linear model in-
corporating only these four predictors was able to
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predict immune response to neoepitopes with greater
significance (p = 3.3 x 10~ % AUROC = 0.66; see Fig. 6g;
mathematical representation available in supplementary
materials). For comparison, we also trained SVM and
Random Forest models to predict peptide-specific immune
response; however, the simpler linear model remained the
best predictor (see Additional file 1: Figure S8).

Discussion

In this study, we have explored the frequency and distri-
bution of neoepitopes among patients across diverse
TCGA disease types using a broad set of HLA alleles. We
have further described and evaluated multiple neoepitope
prioritization criteria that can significantly refine patient

neoepitope predictions to enrich for biologically meaning-
ful candidate neoantigens. In particular, we proposed four
metrics that emphasize neoepitope novelty: tumor vs.
paired normal peptide binding affinity difference, tumor
vs. paired normal peptide sequence similarity, tumor vs.
closest human peptide sequence similarity, and tumor vs.
closest microbial peptide sequence similarity. By applying
these metrics to predicted neoepitopes from 572,170 com-
binations of patients and HLA alleles, we estimated the
behavior of these metrics in the general cancer population.
We have shown that tumor-normal MHC binding affinity
differences and non-anchor peptide sequence similarity
are independent metrics, and can be used to dramatically
refine a list of neoepitopes for further consideration.

Table 1 Significance of prioritization metrics in predicting immune response. Based on a linear model, each prioritization metric,
along with tumor and paired normal epitope binding affinities and the number of sequence mismatches between neoepitopes and
paired normal epitopes, were tested for the ability to predict immune response to a predicted neoepitope

Predictor of immune response

Adjusted R? Significance (p value)

Neoepitope binding affinity
Paired normal epitope binding affinity

Difference in binding affinity between neoepitope and paired normal epitope

Difference in binding affinity between neoepitope and closest human protein

Number of mismatches between neoepitope and paired normal epitope

Percent protein sequence similarity between neoepitope and paired normal epitope
Percent protein sequence similarity between neoepitope and closest human protein
Percent protein sequence similarity between neoepitope and closest bacterial protein

Percent protein sequence similarity between neoepitope and closest viral protein

-0.002 0.7
—-0.002 0.7
-0.002 0.7
-0.002 0.3
0.01 0.03
0.004 0.09
—-0.001 0.5
—-0.002 08
0.007 0.046
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Applying our criteria to a cohort of neoepitopes with
paired immune response data reaffirmed the importance
of neoepitope MHC binding affinity in eliciting an im-
mune response. We also demonstrated the significance of
novel MHC binding of neoepitopes relative to human pro-
teins, and the degree of sequence similarity of neoepitopes
to viral peptide sequences.

To our knowledge, this is the first study to analyze neoepi-
tope predictions broadly across the population by investigat-
ing candidate neoantigens among a large cohort of patients
within TCGA and across an extensive set of HLA alleles
encompassing 99% of the variation in the population at each

HLA locus. The approach detailed here also represents the
first systematic comparison of neoepitopes to unrelated pep-
tides, demonstrating that a neoepitope may be more similar
to other human, commensal, or pathogenic peptides than its
paired normal epitope. This approach also builds upon
pVAC-Seq in several significant ways, and could in theory
be applied as a post-processing step in any neoantigen pre-
diction pipeline. Although the peptide immune response
data we analyzed was limited in size and scope, it represents
the largest such cohort published to date. We expect further
refinement of neoepitope prioritization with additional data
and emerging biological insights.
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Our study also has several limitations which must be
considered when interpreting these results or applying a
similar approach prospectively. For simplicity’s sake, we did
not consider expression levels or variant allele frequencies
of the neoepitopes analyzed, which are important and well-
established criteria for prioritizing predicted neoepitopes
which are robustly present in the tumor of interest. We also
did not enrich a priori the subset of microorganisms most
closely associated with human health and disease, thus
broadening the peptide search space to include likely unin-
formative sequences (e.g. non-human viruses) while exclud-
ing some potentially relevant species (e.g. yeasts).
Additionally, as we did not have HLA typing information
for the TCGA cohort, we were unable to explicitly address
combinatorial overlap of epitope preference for HLA alleles
on a per-patient basis. Lastly, this analysis only considers
single nucleotide missense mutations.

In the future, we aim to include more complex variants
such as small insertions and deletions, as these have the
potential to produce highly novel, immunogenic neoanti-
gens [67] and are currently omitted from consideration by
all but a few neoepitope prediction tools (e.g. MuPeXI
[20] and TSNAD [19]). Further, we believe that the in-
corporation of tumor neoepitope sequence similarity into
studies of the microbiome in cancer patients could be im-
portant for better understanding patient response to im-
munotherapy treatment. Incorporating the criteria
proposed here into the development of neoepitope vac-
cines may help refine the vaccine production process and
potentially improve the success of cancer treatments.

Conclusions

In our exploration of neoepitopes across broad popula-
tions and sets of HLA alleles, we have evaluated multiple
neoepitope prioritization criteria that emphasize peptide
novelty, concluding that neoepitopes should be considered
not only with respect to their paired normal epitope, but
with respect to the entire human proteome, as well as bac-
terial and viral peptides, with potential implications for
neoepitope immunogenicity and personalized vaccines for
cancer treatment. We further conclude that the sequences
of putative neoantigens are highly variable across individ-
uals as a function of both cancer genetics and personal-
ized HLA repertoire, while the overall behavior of
filtration criteria reflects more predictable patterns.

Additional files

Additional file 1: Supplementary Information. Contains Supplementary
Figures S1-S8 and Supplementary Tables S1-54, S6-S7, and the
mathematical representation of our linear model predicting
neoepitope-specific immune response. (DOCX 623 kb)
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Additional file 2: Table S5. Contains allele sets tested and associated
epitope counts from analysis on overlap of epitope preference among
HLA alleles. (XLSX 65 kb)
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