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Abstract

Background: Novel theranostic options for high-risk non-muscle invasive bladder cancer are urgently needed. This
requires a thorough evaluation of experimental approaches in animal models best possibly reflecting human disease
before entering clinical studies. Although several bladder cancer xenograft models were used in the literature, the
establishment of an orthotopic bladder cancer model in mice remains challenging.

Methods: Luciferase-transduced UM-UC-3""“K1 bladder cancer cells were instilled transurethrally via 24G permanent
venous catheters into athymic NMRI and BALB/c nude mice as well as into SCID-beige mice. Besides the mouse strain,
the pretreatment of the bladder wall (trypsin or poly-L-lysine), tumor cell count (0.5 x 10°~5.0 x 10°) and tumor cell
dwell time in the murine bladder (30 min - 2 h) were varied. Tumors were morphologically and functionally visualized
using bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and positron emission tomography (PET).

Results: Immunodeficiency of the mouse strains was the most important factor influencing cancer cell engraftment,
whereas modifying cell count and instillation time allowed fine-tuning of the BLI signal start and duration — both
representing the possible treatment period for the evaluation of new therapeutics. Best orthotopic tumor growth
was achieved by transurethral instillation of 1.0 x 10° UM-UC-3"Y“K1 bladder cancer cells into SCID-beige mice for
2 h after bladder pretreatment with poly-L-lysine. A pilot PET experiment using ®®*Ga-cetuximab as transurethrally
administered radiotracer revealed functional expression of epidermal growth factor receptor as representative
molecular characteristic of engrafted cancer cells in the bladder.
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Conclusions: With the optimized protocol in SCID-beige mice an applicable and reliable model of high-risk non-muscle
invasive bladder cancer for the development of novel theranostic approaches was established.

Keywords: Bioluminescence, Luciferase, Orthotopic xenograft models, Small animal multimodal imaging, Magnetic
resonance imaging, Optical imaging, Positron emission tomography, Transurethral instillation, UM-UC-3 cell line,

Urothelial carcinoma

Background

Worldwide, bladder cancer (BCa) is the 9th most common
cause of tumor-related death with estimated 429,000 new
cases and 165,000 deaths in the year 2012 [1]. In Germany,
about 30,000 people develop a BCa and approximately
6000 die of BCa each year [2]. Around 75% of newly diag-
nosed patients present with non-muscle invasive BCa
(NMIBC) that is confined to the mucosa (stage Ta and car-
cinoma in situ) or submucosa (stage T1). Standard therapy
for these patients is transurethral resection with adjuvant
intravesical chemo- or immunotherapy [3]. Despite these
therapies 21% of patients with high-risk NMIBC — for ex-
ample patients with tumor stage T1 and/or high grade (=
G3) tumors — progress to muscle invasive BCa and 14%
die of BCa mainly within 4 years [4]. Therefore, alternative
treatment options are needed which require thorough
evaluation in preclinical models — first in cell culture and
thereafter in animal models.

Most often mice are used in animal models because of
their relatively high genetic homology to humans, their
fast breeding cycle as well as the low costs for housing
and maintenance [5]. An orthotopic xenograft model in
which the human cancer is grown in the urinary bladder
of the animal reflects the human counterpart, facilitates
the evaluation of experimental therapeutics which re-
quire human cells (for example agents based on gene
silencing) and allows intravesical application of experi-
mental therapeutics which is the administration route
used in NMIBC patients. If cancer cells which carry a
bioluminescent or fluorescent reporter gene are used,
monitoring of tumor growth is possible by non-invasive
bioluminescence (BLI) or fluorescence imaging [6, 7]. A
suitable orthotopic BCa xenograft model should (i) have
a high rate of tumor cell engraftment, (ii) be reprodu-
cible and (iii) offer an appropriate treatment period with
a well-defined therapy start. The utilization of human
cancer cells requires the use of immunodeficient mice.
Therefore, it is not possible to evaluate immune re-
sponse of experimental therapeutics with such xenograft
models. For the successful engraftment of tumor cells in
the bladder it is essential to rupture the glycosaminogly-
can layer which lines the mucosa and protects it from ir-
ritants and bacteria in the urine. Different mechanical
(e.g. scraping with stylet or electrocautery) and chemical
approaches (e.g. instillation of acid, trypsin or poly-L-

lysine [PLL]) for overcoming the glycosaminoglycan
layer are described (summarized in [8, 9]). Further fac-
tors which influence tumor incidence are for example
the aggressiveness of the cancer cells, tumor cell count
and dwell time of the cancer cells in the bladder. Rates
of tumor engraftment increase with higher tumor cell
numbers and prolonged incubation time [9].

Although, several BCa xenograft models have been de-
scribed in literature, the establishment of an orthotopic
model in mice remains challenging and rates of tumor
cell engraftment vary from 67 to 80% if human BCa cells
were instilled transurethrally using 22-G or 24-G cathe-
ters [10-12]. In these studies, the bladder wall was
treated either with trypsin or PLL prior to tumor cell
instillation to improve adherence of cells. Bladder pre-
treatment with electrocautery caused tumor formation
in 80% of mice [13]. The implantation of cancer cells by
percutaneous injection under ultrasound guidance re-
vealed 100% tumor cell engraftment but all these cancers
grew invasively [14]. In our study, we aimed at generat-
ing an orthotopic mouse model with luciferase-
expressing human UM-UC-3 BCa cells as a model for
high-risk NMIBC and examined the use of different im-
munodeficient mouse strains as well as the modification
of tumor cell count, dwell time and pretreatment of
bladder wall. Dedicated small animal BLI and magnetic
resonance imaging (MRI) were performed in order to
visualize successful cancer cell engraftment. A pilot posi-
tron emission tomography (PET) experiment with radiola-
beled cetuximab was performed in order to characterize
epidermal growth factor receptor (EGFR) expression as
functional characteristic of engrafted UM-UC-3 tumors
[15]. In this regard, EGFR exemplarily reflects a potential
molecular target for (radio)immunotherapeutic treatment
of BCa. Staging and grading of the orthotopic tumors as
well as the formation of metastases were also determined.

Methods

Cell culture, viral transduction and generation of stable
cell lines

The human BCa cell line UM-UC-3 (ATCC CRL-1749;
ATCC, Rockville, MD, USA; bought in 2011) was cul-
tured in minimum essential medium with 10% fetal calf
serum and 1% non-essential amino acids (all from Life
Technologies, Karlsruhe, Germany). Cells were cultured
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at 37 °C in a humidified atmosphere containing 5% CO,.
To enable non-invasive visualization of tumor growth,
UM-UC-3 cells were transduced with a retroviral
pRevCMV-c-Luc vector containing the firefly luciferase
gene (LUC+) [16] and a hygromycin B resistance cas-
sette [17]. Packaging of viral particles and transductions
were performed as previously described [18]. Afterwards,
single UM-UC-3"YC cells were seeded into 96-well
plates, cultured and selected by adding 300 pg/ml hygro-
mycin B to the culture medium. Depending on the
growth and apoptosis pattern as well as on the strength
of the luminescence signal the UM-UC-3"Y“K1 clone
was chosen for experiments.

In vitro measurement of luciferase activity

For monitoring the cells, in vitro luciferase activity was
measured regularly with Luciferase Assay System ac-
cording to the manufacturer’s instructions (Promega,
Mannheim, Germany). Furthermore, luciferase activity
was measured after pouring different cell counts into a
96-well flat clear bottom black polystyrene TC-treated
microplate using the In-Vivo Xtreme imaging system
(Bruker BioSpin MRI GmbH, Ettlingen, Germany). In
doing so, at least 2 wells were left blank between the
measuring points. Five microliters D-luciferin (15 mg/ml
in PBS; PerkinElmer, Rodgau, Germany) were added to
200 pl cell solution directly before imaging.

Western blot analysis

Protein separation and subsequent Western blotting
were performed as described previously [19]. Mem-
branes were probed with primary antibodies against
EGFR (1:1000; EGF Receptor Antibody #2232; Cell
Signaling, Danvers, MA, USA) and p-actin (1:50,000;
clone AC-74; Sigma, St. Louis, Missouri, USA); the latter
served as a loading control. The secondary polyclonal
swine anti-rabbit immunoglobulin HRP-linked antibody
(1:1000; P0217; Dako Deutschland GmbH, Hamburg,
Germany) as well as the Enhanced Chemiluminescence
Kit (GE Healthcare, Freiburg, Germany) were used for
visualization.

Orthotopic xenograft model of human bladder cancer

The following immunocompromised mouse strains were
used in the study: athymic NMRI nude (NMRI-Foxnl™/
FoxnlI™; Charles River Laboratories, Sulzfeld, Germany),
BALB/c nude (BALB/cAnNRj-Foxnl™; Janvier Labs,
Saint-Berthevin Cedex, France) as well as SCID-beige
(CB17.Cg-Prkdc*“Lyst”¢”/Crl; Charles River Laborator-
ies). All three mouse strains lack T cells. In contrast to
the other two mouse strains, SCID-beige mice also lack
B cells, have impaired natural killer cell activity and are
not hairless. General anesthesia was induced with 10%
(v/v) and maintained with inhalation of 8% (v/V)
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desflurane (Suprane; Baxter, Unterschleissheim, Germany)
in 30/10% (v/v) oxygen/air. For tumor cell instillation, four-
teen weeks old female mice were used. Mouse bladders
were catheterized using 24G permanent venous catheters
(Becton Dickinson, Heidelberg, Germany) that were coated
with petroleum jelly (Bombastus-Werke AG, Freital,
Germany). To prevent bladder overexpansion residual
urine was removed by massaging the bladder with thumb
and trigger finger. UM-UC-3"Y“K1 BCa cells were har-
vested, resuspended in PBS and vital cell count was deter-
mined using the cell counting system CASY model TT
(Schaerfe System, Reutlingen, Germany). The desired cell
count was adjusted in a total volume of 100 pl and cells
were instilled into the urinary bladders. Pretreatment of
the bladder wall was performed by incubating either
100 pl of 0.1 mg/ml poly-L-lysine (PLL, Sigma-Aldrich,
Steinheim, Germany) for 20 min or 100 pl 0.5% trypsin
in 0.2% EDTA (Sigma-Aldrich) for 30 min. Detailed
conditions for the different experiments performed are
listed in Table 1. General condition of the mice was
determined every day and mouse weights twice a week.
Necropsy was performed in dependence on lumines-
cence intensity and occurrence of blood in urine as well
as at reduced general conditions. Whole bladders were
removed for histologic examinations. Additionally, kid-
neys, livers and lungs of all mice were removed in
experiment 6.

Histology

Tissues were fixed in 4% buffered formalin, embedded in
paraffin and cut in 3 pum sections which were stained
with haematoxylin and eosin (H&E) using standard tech-
niques. All slides were reviewed by an experienced path-
ologist. T stage was assessed according to 7th edition of
TNM Classification of Malignant Tumours [20].

Small animal imaging of tumor xenograft models

Multimodal imaging of tumor growth (BLI, MRI) and
functional characteristics (PET) was performed as pub-
lished elsewhere [21-24]. In brief, BLI (exposure times
1s, 10 s, and 60 s) of anesthetized mice in prone pos-
ition was performed using a dedicated small animal
multimodal imaging system (In-Vivo Xtreme) 10—
12 min after intraperitoneal injection of 200 pl of D-
luciferin (15 mg/ml). In parallel, an X-ray image was
taken from the same animals at the same position. MRI
of continuously anesthetized mice was performed using
a 7 T small animal imaging system BioSpin 70/30 (Bru-
ker). Motion artifacts were reduced using a respiratory
gating module (SA Instruments, Stony Brook, NY, USA).
T2-weighted image series were acquired using the
TRARE sequence with an echo time of 38 ms and a
repetition time of 4724.9 ms at a resolution of 0.2 x
0.2 x 0.6 mm and an intersection space of 0.8 mm. PET
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Table 1 Summary of series of experiments for establishment of an orthotopic bladder cancer model in mice

Experimental number

1 2 3 4 5 6
Mouse strain NMRI nude NMRI nude A: BALB/c nude A: BALB/c nude SCID-beige SCID-beige

B: SCID-beige B: SCID-beige

Mice used (n) 12 18 20 20 20 16
Anaesthesia-related deaths (n) 2 0 1 1 1 0
Mice per treatment arm (n) A5 A9 Al A: 10 A9 A8

B:5 B:9 B:9 B:9 B: 10 B: 8
Cell count 20x10° 20x10° 20x10° A:5.0x 10° A: 0.5x 10° 05x10°

B: 1.0x 10° B: 1.0x 10°

Dwell time 2h 2h 2h 2h Th 30 min
Pretreatment of bladder A: trypsin? A: PLL PLL PLL PLL A: PLL

B: PLL® B: PLL® B: PLL®

A: 2/5 (40%)
B: 2/5 (40%)

Tumor cell engraftment A: 2/9 (22%)

B: 3/9 (33%)

A: 7/10 (70%)
B: 9/9 (100%)

A: 9/10 (90%)
B: 9/9 (100%)

A: 9/9 (100%)
B: 10/10 (100%)

A: 7/8 (88%)
B: 8/8 (100%)

Signal start (d) 170+ 20 125+55 3304143 339+183 258+35 224429
75+45 19.7+£29 16.7+43 148+ 2.1 224+56 194+29
Signal duration (d) 180+20 120+1.0 140+ 40 106 +4.0 133+6.1 196+82
200+30 160+6.7 87+30 104+£14 115+46 18.1+£89

Bold statements highlight the parameters that were varied in the experiment. Signal start and signal duration are shown as mean + mean deviation

Abbreviation: PLL poly-L-lysine

2 Induction of lesions in the urothel by carefully scratching with the cannula of the permanent venous catheters
P To avoid air bubbles in the bladder the catheter was filled with cell suspension prior to catheterization

investigations were performed as a pilot experiment in two
SCID beige mice using a dedicated small animal PET/CT
system (NanoPET/CT, Mediso, Budapest, Hungary). For
targeting of EGFR as molecular characteristic of UM-UC-
3"YCK1 cells engrafted in the bladder the ®*Ga-radiolabeled
EGFR antibody cetuximab (27 MBq; antibody modified
with NOTA (1,4,7-triazacyclonane-1,4,7-triacetic acid) as
8Ga-chelator) was transurethrally injected. After 30 min
incubation and flushing with PBS (0.3 ml) for three
times static scan PET acquisition was done at 1 h
after administration. Afterwards, transmission CT was
acquired. Then the bed-fixed animal was positioned
in the MRI system and, in addition, registered T2-
weighted image was acquired to get high contrast be-
tween the urine with high intensity and the tumor
tissue with lower intensity.

Results

Bioluminescence characterization of UM-UC-3"Y“K1 in
vitro and in vivo

The luciferase expressing UM-UC-3"Y“K1 clone was
generated to enable non-invasive tumor detection in the
mouse bladders. Besides periodic measurement of lucif-
erase activity with the Luciferase Assay System, the in
vitro luminescence intensity was quantified after D-
luciferin incubation using the In-Vivo Xtreme imaging
system. A strong relationship of luminescence intensity
and cell count was observed with both measuring
methods (Fig. 1a). A representative in vivo measurement
series is shown in Fig. 1b. This SCID-beige mouse

displayed first luciferase signal 15 days after tumor cell
instillation. Tumor growth could be monitored for
10 days with steadily rising luminescence intensity. On
day 25 the mouse was sacrificed due to high tumor load
as indicated by the signal intensity.

Optimization of orthotopic bladder cancer growth

First, the period of time between harvesting the cells
and instillation into the mouse bladder was an important
factor for optimal tumor growth. Although >96% of
UM-UC-3"YK1 cells were vital 5 h after incubation in
culture media, PBS and urine, respectively, no in vivo
tumor growth was achieved in NMRI nude mice when
the time span between harvesting the cells and instilla-
tion was 2 h or longer.

Based on literature studies, NMRI nude mice were
selected for establishing an orthotopic UM-UC-3"Y“K1
BCa model. However, only 22-40% of NMRI nude mice
developed a bladder tumor, although, pretreatment of
the urinary bladders was performed before instillation of
2.0 x 10° tumor cells for 2 h in two independent experi-
ments (Table 1, No 1 and 2). There was no difference in
tumor cell engraftment comparing the bladder pretreat-
ment with trypsin and PLL (Table 1, No 1). The induc-
tion of lesions in the mucosa by carefully scratching
with the cannula of the permanent venous catheters did
not considerably improve tumor cell engraftment after
PLL pretreatment (Table 1, No 2). Therefore, PLL pretreat-
ment — without scratching with the cannula — was selected
for further experiments. Exemplarily, the development of



Huebner et al. BMC Cancer (2017) 17:790

-

1.0B+11 Luciferase Assay System
2.5E+06 1 ¢
8.0E+10 12.0E+06 Re=0998 *
o« 1.5E+06
E 1.0E+06 -
£ +10 J5.0E+05 -« A
& B.0E+10 {50E:05 5
] 0 30000 60000 R2?=0.9733
) B
f .
2.0E+10
*
0.0E+00 2 ‘ . . ,
0.0E+00 2.5E+05 5.0E+05 7.5E+05 1.0E+06
Cell count
B Days after tumor cell instillation Photons
Is Imm?
8 1" 15 18 22 25
3.0E+06
2.0E+06
1.0E+06
0.00
Fig. 1 Bioluminescence signal intensities of UM-UC-3"Y“K1 cells in vitro
in a 96-well plate (a) and in vivo after instillation into the bladder of a
SCID-beige mouse from experiment 3 (b) measured using In-Vivo
Xtreme imaging system. The insert in (@) shows luciferase signal
measured in vitro with the Luciferase Assay System (x-axis: cell
count, y-axis: relative light units)

BLI signal intensities of the four tumor-bearing NMRI
nude mice in experiment 1 is shown in Fig. 2.

A switch in the mouse strain to BALB/c nude and
SCID-beige mice increased tumor cell engraftment to
70% and 100%, respectively (Table 1, No 3). Since
BALB/c nude mice showed first BLI signal late — after
33 days on average — and with high variance, cell count
for tumor cell instillation was increased to 5.0 x 10° in
the next experiment. In contrast, tumor cell count was
decreased to 1.0 x 10° in SCID-beige mice because of

.0EH12 mmmmmmmm o mm oo
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Fig. 2 Increase of the luminescence intensity of UM-UC-3"YK1 cells
after transurethral instillation of 2.0 x 10° cells into NMRI nude mice
for 2 h (experiment 1). Bladder wall was treated with either trypsin
or poly-L-lysine before tumor cell inoculation
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the fast tumor growth that is reflected by the short
period of signal duration of 8.7 days on average (Table 1,
No 3). The signal duration represents the possible treat-
ment period in the evaluation of new therapeutics and
should be at least two weeks.

With the adjusted cell counts the mean time until oc-
currence of first BLI signal remained at days 33.9 + 18.3
(mean deviation) for BALB/c nude and at days 14.8 £ 2.1
for SCID-beige mice (Table 1, No 4). The differences in
BLI signal intensity development for the individual ani-
mals of both mouse strains are shown in Fig. 3a and b.
Due to this late onset of tumor growth with its high
variance in BALB/c nude mice, further optimization was
done using SCID-beige mice. To extend the short mean
signal duration of 10.4 days in experiment 4, cancer cell
count was further decreased.

Instillation of 1.0 x 10° and 0.5 x 10° cancer cells in
SCID-beige mice in combination with a decrease in
instillation time to 1 h caused a shift in the start of
tumor detection to days 25.8 and 22.4 (mean values),
respectively (Table 1, No 5). Exemplarily, BLI signal in-
tensities of mice after instillation of 1.0 x 10° UM-UC-
3"YUCK1 cells are shown in Fig. 3c. The average signal
duration remained below two weeks (Table 1, No 5).
Therefore, instillation time of UM-UC-3"Y“K1 BCa cells
was further decreased down to 30 min. In this manner,
the mean luminescence signal duration extended to 19.6
+ 8.2 days while the mean signal start remained un-
changed at 22.4 days (Table 1, No 6).

During catheterization of mice bladders an air bubble
was formed in the urinary bladder due to the air that
was present in the catheter (Fig. 4a). To analyze if this
air bubble influences tumor onset, an alternative instil-
lation method was conducted. In doing so, the catheter
itself was filled with tumor cell suspension prior to
catheterization of the murine bladders. This prevented
the air bubble formation (Fig. 4b). The comparison of
both instillation techniques showed no differences in
tumor formation in SCID-beige mice (Table 1, No 6).
Exemplarily, luminescence intensities of individual ani-
mals after instillation of 0.5 x 10° UM-UC-3"Y“K1 cells
without the air bubble in the bladder are shown in
Fig. 3d.

Examination of tumors by molecular imaging

Selected animals were analyzed by MRI and PET
(combined with CT). MRI measurements were carried
out every 2 to 4 days to visualize size, location and
growth of the tumor. Exemplarily, the MRI and BLI
images of a UM-UC-3"Y“K1 tumor in a BALB/c nude
mouse are shown (Fig. 5). Both imaging techniques
displayed the rapid tumor growth within the 6 days
shown. In these MRI images, the orthotopic tumor
was easily distinguishable in the bladder. Overall, MRI
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Fig. 3 Increase of the bioluminescence signal of UM-UC-3"YK1 cells after transurethral instillation (a) of 5.0 x 10° cells into BALB/c nude mice for
2 h (experiment 4A), (b) of 1.0 x 10° cells into SCID-beige mice for 2 h (experiment 4B), (c) of 1.0 x 10° cells into SCID-beige mice for 1 h (experiment
58) and (d) of 0.5 x 10° cells into SCID-beige mice for 30 min (experiment 6B). Bladder wall was treated with poly-L-lysine before tumor cell inoculation

of the urinary bladder of living mice is challenging
because of the movement of the bladder and the in-
testine. Blurring occured preventing the quantitative
evaluation in 8 of the 61 imaging series. In 5 cases
no tumor could be detected in MRI despite positive
BLI signals.

Western blot analyses proved presence of EGFR pro-
tein in UM-UC-3"Y“K1 cells (Fig. 6). The pilot PET
experiment with the transurethrally administered ®*Ga-
labelled EGFR antibody cetuximab was carried out on
two SCID beige mice (Fig. 7). The retaining activity
allowed imaging of the bound antibody both in the
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Fig. 4 Computed tomograms of BALB/c nude mice during transurethral instillation of tumor cells. Mice are in supine position. A sagittal plane is
shown. a The mouse was catheterized and tumor cells were injected after connecting the syringe. Because of the air present in the catheter an
air bubble is formed in the urinary bladder (visible as bright region). b The catheter was filled with tumor cell suspension prior to catheterization
and no air bubble is apparent in the bladder
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Fig. 5 Comparison of MRI and corresponding BLI images of a BALB/c nude mouse from experiment 3 at days 25, 29 and 31 after instillation of
2.0%10° UM UC 3"YK1 cells for 2 h. MRI images show a coronal plane. The urinary bladder is marked with a circle and the arrow points at

tumor and the bladder. The registration of the PET and
CT images showed the localization of most remaining
activity in the tumor region revealing targeting of EGFR-
expressing UM-UC-3"Y“K1 cells.

Histological characterization of orthotopic UM-UC-3"V°K1
xenografts and incidence of metastasis

After HE staining, sections of the UM-UC-3"Y“K1 tu-
mors were examined for staging and grading. Only slices
of tumors with association to the urothelium that
allowed TNM classification were included in the evalu-
ation. Of the 68 evaluable xenografts 53 (78%) and 11
(16%) displayed tumor stages T1 and Ta, respectively,

\/00
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Fig. 6 Detection of EGFR protein by Western blotting in UM-UC-3"YK1
BCa cells as well as in A431 epidermoid carcinoma cells that express high
levels of EGFR (positive control). Beta-actin was used for loading control

whereas 4 tumors (6%) already invaded the musculature
(pT2a) (Table 2). All muscle invasive tumors were
observed in SCID-beige mice. All evaluable tumors were
graded as high-grade. Representative histological images
are shown in Fig. 8. In 39 cases (57%) a single tumor
could be identified in the urinary bladder whereas in 29
cases two or more tumors grew (Table 2). Kidneys, livers
and lungs of all 16 mice in experiment 6 were examined
histopathologically to evaluate a possible metastasis for-
mation. Two mice with pathological BCa stage Ta and
T1, respectively, showed metastasis in the kidneys
whereas one of these mice also showed lung metastasis
(Fig. 9).

Discussion

The evaluation of novel anticancer agents requires suit-
able animal models to continue research after successful
cell culture experiments and before entering clinical tri-
als. Orthotopic animal models with xenogenic human
BCa cells closely mimic the natural microenvironment
of the human tumor and allow intravesical therapy
application as well as studying metastasis formation.
However, they do not enable immunological examina-
tions because of the necessity to use immunodeficient
animals. Mice are well suited for the establishment of an
orthotopic BCa xenograft since the structure and func-
tion of their lower urinary tract show great similarities
to humans [25]. Because of simple handling during blad-
der catheterization female mice should be used [25]. For
the reliability and reproducibility of the animal model a
high rate of tumor cell engraftment is necessary. Tumor
growth should be homogeneous in all animals and
should offer a suitable treatment period of at least two
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bladder

PET-CT
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zoomed

Fig. 7 Registered PET (after transurethracally administered *®Ga-
radiolabeled cetuximab), CT and MRI images (orthogonal sections)
of a representative SCID beige mouse. Arrows in the upper and
mid panels indicate urinary bladder region. Arrows in the lower
differentiate between urine and tumor

\

weeks. Multiple parameters can affect tumor cell en-
graftment and growth behavior. Most importantly, the
tumor cells have to be instilled as soon as possible after
harvesting. While UM-UC-3"YK1 engraftment rate de-
creased when cells were instilled =2 h after harvesting,
time periods shorter than 20 min and 1 h, respectively,
were recommended for breast and prostate cancer cells
[26, 27]. Interestingly, the formation of an air bubble in
the murine bladder — which occurred if the bladder was
catheterized with an empty catheter and tumor cells
were instilled thereafter — did not alter tumor cell
engraftment.

The immunologic characteristics of the mouse strain
have significant impact on tumor development. Orthoto-
pic UM-UC-3"Y“K1 tumor formation was observed in
22-40% of NMRI nude mice, 70-90% of BALB/c nude
and 88-100% of SCID-beige. While all three mouse

Table 2 Histopathological examination of UM-UC-3"YK1 xenografts
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strains lack T cells, SCID-beige mice also lack B cells
and have impaired natural killer cell activity. Therefore,
these mice were more susceptible for tumor engraft-
ment. Ye et al. examined the growth of a human adeno-
carcinoma alveolar basal epithelial cell line (A549) after
subcutaneous injection in six immunodeficient mouse
strains [28]. A NSI strain (NOD-scid-IL2Rg-/-) without
T, B and natural killer cells was most accessible for
tumor growth. Already 1.0 x 10* A549 cells induced a
subcutaneous tumor in these mice whereas 1.0 x 10°
cancer cells were necessary in SCID, NOD-SCID and
nude mice. A tumor engraftment index was developed
to quantify the immunodeficiency of the mouse strains
[28]. Such an index for all available immunodeficient
mouse strains would be very helpful for the expedient
selection of a suitable mouse strain for the establishment
of heterotopic as well as orthotopic xenograft models.
Van der Horst et al. instilled UM-UC-3"Y<? cells into
BALB/c nude mice and achieved 73% orthotopic tumor
cell engraftment which is comparable to our study [11].
The firefly luciferase 2 (LUC2) gene used in the study of
van der Horst et al. is codon optimized to improve gene
expression in mammalian cells [29]. Its enzyme activity
is ten times higher than that of the luciferase LUC+ used
in this study. With the use of LUC2, the start of lumi-
nescence intensity detection in the present study might
have been earlier but it would not have influenced can-
cer cell engraftment. The research on luciferase genes
and substrates is ongoing and will continuously improve
BLIL current developments are recently reviewed in [30].

Next, the tumorigenic potential of the cell line is of
importance. As we aimed at generating an orthotopic
model for high-risk NMIBC and as successful tumor
growth was reported for UM-UC-3 cells previously [31]
this cell line was chosen for our experiments. However,
not all cancer cell lines will form a tumor after implant-
ation in mice. For example, UM-UC-3 cells — but not
5637, 253 ] and TCCSUP BCa cells — grew orthotopi-
cally in BALB/c nude mice [31]. Furthermore, of 10 cell
lines derived from malignant urinary tract neoplasms,
two were not tumorigenic in athymic nude mice whereas
five cell lines (UM-UC-1, UM-UC-3, UM-UC-6, UM-

Exp No No of evaluable tumors TNM classification Grading No of tumors in urinary bladder
(total no of tumors) oTa o7 oT2a ] o

2 NMRI nude: 3 (5) 0 (0%) 3 (100%) 0 (0%) high grade 1 (33%) 2 (67%)

3 BALB/c nude: 7 (7) 1 (14%) 6 (86%) 0 (0%) high grade 4 (57%) 3 (43%)
SCID-beige: 9 (9) 1(11%) 7 (78%) 1 (11%) high grade 2 (22%) 7 (78%)

4 BALB/c nude: 9 (9) 2 (22%) 7 (78%) 0 (0%) high grade 9 (100%) 0 (0%)
SCID-beige: 8 (9) 3 (38%) 3 (38%) 2 (25%) high grade 3 (38%) 5 (62%)

5 SCID-beige: 18 (19) 2 (11%) 16 (89%) 0 (0%) high grade 13 (72%) 5 (28%)

6 SCID-beige: 14 (15) 2 (14%) 11 (79%) 1 (7%) high grade 7 (50%) 7 (50%)
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(@ and b: pTa, c and d: pT1, e and f: pT2a). An overview
of the bladder and the enlarged section of the box are shown. Arrows point at adjacent tumor tissue. 1 =muscle; 2 =lamina propria; 3 = tumor

atd]

Fig. 9 Histological images of renal (a, b) and pulmonary (c, d) metastasis of orthotopic UM-UC-3Y1 xenografts in SCID-beige mice. An overview of
the tissue and the enlarged section of the box are shown. Arrows point at the tumor tissue
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UC-9 and UM-UC-14) produced subcutaneous tumors
with a diameter of 1.0-1.5 cm already on days 9 to 19
after injection of 1.0 x 10” cells [32]. Experiments using
KU-7 cells — a popular cell line isolated from a patient
with low grade papillary BCa in 1980 which was used in
numerous studies for instillation into the bladder -
should be considered in the knowledge that these cells
were cross contaminated with the cervical carcinoma
cell line HeLa before 1984 at the source institution [33].
Therefore, a careful selection of cell lines is necessary.

To facilitate orthotopic tumor formation it is neces-
sary to overcome the glycosaminoglycan layer of the
bladder mucosa either mechanically or chemically
(reviewed in [8, 9]). Briefly, initial approaches using
open surgical procedures as well as bladder pretreat-
ment with hydrochloric acid or silver nitrate resulted in
health complications for the animals. Pretreatment with
either trypsin (a serine protease) or PLL (a cationic
polypeptide enhancing the electrostatic interaction be-
tween the bladder mucosa and the cancer cells),
respectively, represent more gentle procedures and
were therefore applied in the present study. The rup-
ture of the mucosa with a stylet can facilitate tumor
engraftment as it was shown in orthotopic homo- and
xenograft BCa models in mice [34]. However, there is
the danger of bladder perforation by the cannula. Since
we observed no difference in tumor cell engraftment
after trypsin or PLL pretreatment and scratching with
the cannula of the permanent venous catheters did not
significantly enhance tumor engraftment, the gentlest
pretreatment — PLL without scratching — was chosen
for further optimization.

In previous studies, cell count for transurethral instil-
lation of xenogenic BCa cells varied between 2.0 x 10°
and 1.0 x 107 cells in an injection volume of 35-100 pl
[10-13, 31, 34]. Generally, the dwell time of tumor cells
in the murine bladder has been two to three hours and
tumor engraftment rates of 67-100% have been achieved
after mechanical or chemical bladder pretreatment [10—
13, 31, 34]. In none of these studies a variation of any
parameter that might influence tumor growth has been
reported. For orthotopic growing UM-UC-3"Y“K1 cells
in BALB/c nude mice an enhancement of the tumor en-
graftment rate was achieved in our study by increasing
cell count. Furthermore, the luminescence signal
duration — which characterizes the possible treatment
period — could be modified by changing the tumor cell
dwell time in SCID-beige mice. The most reliable UM-
UC-3"Y“K1 xenograft model was achieved after bladder
pretreatment with PLL and instillation of 1.0 x 10° cells
for 2 h in SCID-beige mice. In doing so a high rate of
tumor engraftment of 100% and an appropriate start of
luminescence intensity detection in the bladder — approxi-
mately 15 days after tumor cell instillation — were
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observed. All these xenografts grew comparable. A minor
disadvantage of this model is the fast tumor growth with a
mean luminescence signal duration of 10.4 days only
which offers a treatment period <2 weeks.

In individual cases, transurethrally instilled UM-UC-
3"UCK1 grew invasively into the bladder muscle (4 of 68
mice) or formed distant metastasis (2 of 16 SCID-beige
mice; NMRI nude and BALB/c nude mice were not ana-
lyzed for metastasis). This is in accordance with the
findings on UM-UC-3"Y“? cells in Balb/c nude mice in
the study of van der Horst et al, whereas there is no
information regarding the frequency of occurrence in
their study [11]. It has to be noted that in our study
muscle invasive UM-UC-3"Y“K1 xenografts were found
only in the SCID-beige mouse strain which exhibits the
highest level of immunodeficiency. Since the SCID-beige
mouse with renal and pulmonary metastases had a BCa
with tumor stage Ta — which usually does not metastasize
— it can not be excluded that metastasis formation is
caused as a result of the instillation technique meaning
that the instillation volume of 100 pl may have induced an
overdistension of the bladder and in consequence a vesi-
corenal reflux as discussed by Hadaschik et al. [35]. Ap-
parently, cancer cells have been distributed from the
kidneys to the lungs via the bloodstream. Therefore, this
mouse rather has a pT3 tumor of the kidney than a renal
metastasis of the Ta tumor. However, van der Horst et al.
observed lung metastasis even after instillation of UM-
UC-3"Y cells in a small suspension volume of 35 pl —
whereby the dwell time was 3 h. Further evaluation of the
metastasis formation of transurethrally injected UM-UC-3
cells is necessary. In doing so, the instillation volume and
dwell time should be as low as possible.

BLI is a sensitive, easy handling and relatively high
throughput, fast and inexpensive technique for non-
invasive monitoring of intravesical growth of luciferase-
expressing cancer cells [6]. MRI enables high spatial reso-
lution, but has low sensitivity and throughput as well as
high costs [6]. Because of the movement of the intestine,
MRI of the bladder of living mice is challenging. However,
a distinct linear relationship (R* = 0.929) between lumines-
cence intensity and tumor volume has been shown by MRI
on explanted bladders which is not compromised by mo-
tion artifacts [35]. In our study both imaging techniques
were used to complement each other. While BLI was best
for routine measurements, MRI gave information regarding
tumor size and location. Attention has to be paid if the tu-
mors evolve large hypoxic and necrotic areas because this
reduces luminescence intensities [36]. In MRI flat tumors
might be overlooked especially if the bladder is stretched
because of high filling. Therefore, a combination of differ-
ent imaging methods such as BLI plus MRI or BLI plus
high resolution ultrasound plus photo-acoustic imaging
might give a more complete picture of orthotopic BCa
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growth [37]. The pilot experiment with **Ga-radiolabeled
cetuximab allowed for identification of engrafted EGFR-
expressing tumor cells in the bladder, and, furthermore,
demonstrated the principal usability of radioimmunologic
diagnostics of such tumors in the bladder. Functional
characterization of EGFR expression in BCa, on the other
hand, is a prerequisite for personalized targeted local treat-
ment with radionuclide-based [38, 39] or immunologic [21]
approaches.

Conclusions

With the optimized protocol in SCID-beige mice — blad-
der pretreatment with poly-L-lysine, transurethral instilla-
tion of 1.0 x 10° UM-UC-3"Y“K1 bladder cancer cells for
2 h - an applicable and reliable model for high-risk non-
muscle invasive bladder cancer was achieved. The model
will be used for the development of theranostic ap-
proaches, particularly, by local application in the bladder
using PET, radioimmunologic and retargeting strategies.
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