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Abstract

Background: In recent years, genome wide association studies have identified many genetic variants that are
consistently associated with common complex diseases, but the amount of heritability explained by these risk
alleles is still low. Part of the missing heritability may be due to genetic heterogeneity and small sample sizes,

but non-optimal study designs in many genome wide association studies may also have contributed to the failure
of identifying gene variants causing a predisposition to disease. The normally used odds ratio from a classical
case-control study measures the association between genotype and being diseased. In comparison, under incidence
density sampling, the incidence rate ratio measures the association between genotype and becoming diseased.

We estimate the differences between the odds ratio and the incidence rate ratio under the presence of events
precluding the disease of interest. Such events may arise due to pleiotropy and are known as competing events. In
addition, we investigate how these differences impact the association test.

Methods: We simulate life spans of individuals whose gene variants are subject to competing events. To estimate the
association between genotype and disease, we applied classical case-control studies and incidence density sampling.
Results: We find significant numerical differences between the odds ratio and the incidence rate ratio when the fact
that gene variant may be associated with competing events, e.g. lifetime, is ignored. The only scenario showing little or
no difference is an association with a rare disease and no other present associations. Furthermore, we find that p-values
for association tests differed between the two study designs.

Conclusions: If the interest is on the aetiology of the disease, a design based on incidence density sampling provides

the preferred interpretation of the estimate. Under a classical case-control design and in the presence of competing
events, the change in p-values in the association test may lead to false positive findings and, more importantly, false
negative findings. The ranking of the SNPs according to p-values may differ between the two study designs.

Keywords: Genome wide association study, Study design, Matched case-control study, Competing risk, Logistic
regression, Conditional logistic regression, Rare disease assumption

Background

The genome wide association study (GWAS) is a powerful
tool to associate genetic variation with disease, and thou-
sands of associations have been established and replicated
[1]. Through the development of new methodology, the
results from the GWAS's have been useful in other set-
tings. One example is in health-related epidemiology
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studies (e.g. Ligthart et. al. [2] and Simonson et. al [3]).
Here, the estimated odds ratio from the GWAS was used
as a proxy for genetic variation through the polygenic
score [4, 5]. The estimated value of the odds ratio is most
often based on a number of unrelated cases and controls,
and estimates the association between genetic variation
and the prevalence of disease.

However, events precluding the disease of interest may
play an undesired and crucial role when sampling cases
and controls for a GWAS. If some of the genotyped
SNPs are correlated with a disease but also with other
events precluding this e.g. early death, a carefully chosen
study design is needed to identify true associations with
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the aetiology of the disease. Precluding events may arise
due to pleiotropy and are often referred to as competing
events [6, 7]. These possible (and most often hidden) as-
sociations can be taken into account using incidence
density sampling matching on age. This design measures
the association between SNPs and acquisition of the dis-
ease and the effect size is expressed as the incidence rate
ratio. Whether or not to take competing events into ac-
count in a GWAS depends on the scientific question.
The classical case-control study provides a measure of
the association between genotype and being diseased,
whereas the incidence density sampled study associates
genotype with becoming diseased.

In this paper, we explain two widely used measures of
association: the odds ratio (OR) and the incidence rate
ratio (IRR) [8]. We explain, using an analogy with leaves
falling from a tree, the different interpretations of the
prevalence and the incidence rate, and how competing
events can affect the interpretation of disease associa-
tions. In order to understand and quantify in detail the
difference between the OR and the IRR of disease we
consider two sampling methods for controls: incidence
density sampling (or matching) and unrelated case-
control sampling. We use simulations to quantify the dif-
ference between the association estimates from the two
study designs under different effects of competing events.

We find considerable numerical differences between
the OR and the IRR. The differences are reflected in a
change in the p-values of the association tests. Our find-
ings have significant implications for GWASs, since they
point out the risk of serious false negative associations
caused by competing events.

Methods

Prevalence vs. Incidence rate

To illustrate the prevalence, the incidence rate, and the
effect of competing events, one may imagine a large tree
in a park. The tree has two kinds of leaves: heavy leaves
and light leaves. Consider a dominant model, corre-
sponding to a population of individuals with two levels
of one exposure (presence or absence of risk allele).
When leaves fall from the tree they can either fall onto
the sticky soil or onto the non-sticky concrete. Leaves
falling on the concrete will eventually move to the soil.
Falling onto the soil will decompose the leaf, corre-
sponding to dying, and falling onto the concrete corre-
sponds to becoming sick. The healthy leaves are still
hanging on the tree. The heavy leaves will not be carried
by the wind as easily as the light leaves, and therefore
the heavy leaves have a tendency to fall on the soil under
the tree more often than the light leaves, and the light
leaves have a tendency to fall onto the concrete. Among
leaves falling on the concrete, the heavy leaves have a
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tendency to stay longer on the concrete, before they are
blown onto the soil, than the light leaves.

The number of leaves falling from the tree onto the
concrete per time unit corresponds to the incidence rate
of disease i.e., the light leaves have a higher incidence
rate than the heavy leaves. The number of leaves falling
onto the soil per time unit corresponds to the incidence
rate of death i.e. the light leaves have a smaller incidence
rate of death than the heavy leaves. The prevalence of
disease is the fraction of leaves on the concrete at a
given time period compared to the total number of
leaves on the tree and on the concrete. The odds of dis-
ease is the number of leaves on the concrete at a given
time point compared to the number of leaves on the tree
at the same time, i.e. the prevalence of disease divided
by one minus the prevalence of disease.

The OR, normally calculated in a GWAS, is a function
of the prevalence. It is the ratio between the odds of dis-
ease for light leaves compared to the odds of disease for
heavy leaves. It measures the association between the ex-
posure and being diseased. The IRR is the fraction of the
incidence rate for light leaves vs. the incidence rate for
heavy leaves, and it measures the association between
the exposure and becoming diseased. The OR depends
on the incidence rate of leaves falling onto the concrete
and the incidence rate of leaves moving onto the soil
both from the tree and from the concrete. Because of
these dependencies SNPs may be associated with a disease
through the OR, but not through the IRR and vice versa.

Measures of association

When the exposure or the outcome is not available for
all individuals in a population, it is impossible to set up
a full cohort study, and different types of sampling are
used. Most often the measure of disease occurrence is
calculated as the number of cases divided by the number
of controls, maybe for different exposure groups. The
measure of association between exposure and disease is
then calculated as the ratio between the measures of disease
occurrence in two different groups of the exposure [9].

When using a case-control sample to estimate the as-
sociation between an exposure and a disease of interest,
the interpretation of the association depends on the pro-
cedure used to select controls. Two different methods
are normally used to select controls according to the on-
set of disease: the unrelated case-control sampling and
the incidence density sampling.

The two sampling methods are displayed in Fig. 1.
Each horizontal line in the figure corresponds to a life-
span of an individual. The individual is born when the
line starts and dies when the line ends. A black diamond
marks time of onset of the disease of interest. The green
hatched area corresponds to a sampling period for cap-
turing cases and controls for a classical case-control
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Fig. 1 Longitudinal data. Each horizontal line indicates an individual's lifespan. The black filled diamonds indicate that the given individuals
become diseased. The green hatched area indicates the sampling period of the case-control study. The green dots indicate all possible controls
in a classical case-control study (design 1). The red dots indicate all possible controls for incidence density sampling matched to the selected case

Time

study. The green and red dots mark individuals, who are
eligible controls for the two different sampling methods
described below.

1) In the classical case-control study all cases are
chosen within a certain time period. The sampling
time is specified by the investigators. The controls
are chosen uniformly at random among those who
have not experienced the event after the sampling
period (green dots in Fig. 1). The number of cases
proportional to the number of controls estimates the
odds of disease, and the OR is estimated as the
fraction between two odds. The measure of disease
occurrence in this setup is the odds, which is a function
of the prevalence [10].

2) Using incidence density sampling controls are
sampled longitudinally in time. The controls are
chosen uniformly at random among persons at risk
of developing the disease at the time when a case
appears (red dots in Fig. 1), i.e., each person who
develops the disease of interest during the sampling
period has their own set of potential controls. This
is also called time-matching [11]. The measure of
disease can be interpreted as the probability of
becoming diseased in the next time increment, i.e.,
the incidence rate of disease. The IRR is the association

measure [12]. If the data support an assumption of
constant instantaneous probability of disease in small
intervals of time, then the controls may instead be
chosen within a small time window (and not at specific
time points). Contrary to the OR, the IRR is not
dependent on the prevalence of the disease.

Simulation study

To quantify the differences between the OR and the IRR,
if any, we simulate a longitudinal study with one exposure
and two events; disease and death. The longitudinal study
includes 10,000 individuals. From this study we generate
two different case-control studies using the sampling de-
signs described above to collect controls: the classical
case-control study and the matched case-control study
using incidence density sampling. In detail we do the
following:

For all 10,000 individuals in the simulated data we
generate the number of minor alleles under the assump-
tion of Hardy-Weinberg equilibrium and a minor allele
frequency (MAF) of 0.1, 0.25 and 0.5.

In order to generate a longitudinal data source with one
exposure, we use the algorithm discussed by Beyersmann
et al. [13] using two events: disease and death. An individ-
ual’s waiting time to any event is generated as a function
of the total incidence rate of the two events over time. At
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the given time point of an event, the probability of disease
is the proportion between the incidence rate of disease
and the total incidence rate. Individuals still alive at age 90
are censored.

We use a Cox proportional hazard model where the
baseline hazards follow a Gompertz distribution [14] for
both events. The baseline for the incidence of dying fol-
lows a Gompertz distribution with mode 85 and shape
parameter 0.0004. The densities for different effects of
the number of minor alleles on the IRR of death are
shown in Fig. 2. Two different parameter settings are
used for the baseline of disease: one with mode 25 and
shape parameter 0.95, and one with mode 50 and shape
parameter 0.1. Figure 2 shows the densities for the two
parameter settings for different effects of the number of
minor alleles on the IRR. The black lines in Fig. 2 cor-
respond to the overall baseline density. We multiply the
incidence rate of disease by a constant (less than 1) in
order to scale the life-time risk of disease [15]. Different
values of the constant are used to consider common ver-
sus rare diseases; the smaller the constant the rarer the
disease. We assume a log linear proportional effect of
the number of minor alleles on the incidence rate of
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disease and death, with different incidence rate ratios of
0.5, 1.0, 1.1, 1.2, 1.5, 1.7, 2.0 and 3.0 for disease and 0.5,
0.75, 0.9, 1.0, 1.1, 1.2, 1.5, 1.7, 2.0, and 3.0 for death.

From the simulated longitudinal data we generate two
epidemiological study designs to estimate the association
between the number of minor alleles and disease. For
the incidence density sampling, we choose 5 individuals
uniformly at random among the persons not diseased
and not dead at the age when an individual becomes dis-
eased. This result in a 1: 5 individually time matched
nested case-control study, where cases and controls are
matched on age. The association between the number of
minor alleles and disease is estimated using conditional
logistic regression (see chapter 7 in [16]).

The cases in the unrelated case-control sampling are
individuals diseased before the age of 90. The controls
are chosen among all persons not diseased before the
age of 90, that is, the sampling period is from birth to
age 90 (see Fig. 1). If the number of possible controls is
larger than five times the number of cases, the controls
are chosen uniformly at random at a 1:5 ratio between
cases and controls. We estimate the association between
the number of minor alleles and disease in the case-
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Fig. 2 The density of the three outcomes. The densities of the three types of outcome; death and two different diseases. The black solid line in
subfigure A is the density function of a Gompertz distribution with density mode at age 85 and a shape parameter of 0.0004, i.e. the overall
baseline. This is the likelihood of dying given an individual's age. The black solid line in subfigures for Disease 1 and Disease 2 is the density
function of a Gompertz distribution with density mode at age 25 and a shape parameter of 0.95 and mode at age 55 and shape parameter 0.1
respectively. This is the likelihood of getting diseased given an individual's age. The coloured lines correspond to the likelihood of dying or
developing the disease for different genotypes and different associations between the SNP and death
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control sample using logistic regression (see chapter 6 in
[16]). Additionally, we simulate an age covariate for each
individual in the classical case-control study. For con-
trols, the age is sampled from a uniform distribution on
the interval form birth to end of follow-up. For cases the
covariate is the age at which the individual is diagnosed.
We then estimate the association between the number
of minor alleles and disease adjusted for a linear age
trend in the classical case-control study.

In total we generate 1000 longitudinal data sources for
each configuration of MAE, IRR of disease, IRR of death,
the rarity of the disease and the two parameter settings of
the baseline rate of disease. The measure of association in
a given analysis is estimated as the average of the 1000
replications. The null hypothesis is no association between
the number of minor alleles and disease prevalence in the
classical case-control study, and is no association between
minor alleles and disease incidence in the incidence dens-
ity sampled study. The p-value of this hypothesis is esti-
mated as 2 times the proportion of estimates less than 0 if
the measure of association is larger than 0, and it is esti-
mated as 2 times 1 minus the proportion of estimates less
than 0 if the measure of association is less than or equal to
0. The proportion less than 0 are calculated based on the
1000 replicates (see Additional file 1: R code for program-
ming details).

Results
The estimate from the incidence density sampling of con-
trols is not numerically different from the true IRR deter-
mined by the simulation study irrespective of the baseline
of disease, the IRR of death and the MAF (results not
shown).

For the classical case-control study, Fig. 3 shows the es-
timated associations between the disease and the number
of minor alleles for each parameter setting of the baseline
rate of disease and for a common and a rare disease (the
IRR for death equals 0.5, 1.0 and 3.0. The remaining re-
sults are given in the online Additional file 2: Figure S2,
including corresponding figures for the age-adjusted
model in Figure S1 and Figure S3). In each subfigure one
estimate is shown for different settings of the true IRR of
disease, the IRR of death and the MAF. The probability of
disease at age 90, i.e. the cumulative incidence at age 90, is
approximately 22 % for the common disease and 2.5 % for
the rare disease (see the legend of Fig. 3). The black solid
diagonal line indicates no numerical differences between
the estimated OR and the true IRR, whereas the black
solid horizontal line at 1 indicates no association accord-
ing to the estimated OR.

Figure 4 shows the p-values for the null hypothesis of
no association for the two different sampling methods
and for different values of the true IRR of disease and
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the IRR of death. The three identical colour-symbol
combinations correspond to the different MAF. The sce-
narios and symbols in Fig. 4 are similar to those in Fig. 3.
The p-values from the matched case-control study are
plotted on the horizontal axis and the p-values from the
classical case-control study are plotted on the vertical
axis. For each subfigure we see false positive findings
below the diagonal and false negative findings above the
diagonal. Scenarios where both p-values equal zero are
not plotted.

If the number of minor alleles is associated with lon-
gevity, i.e. the IRR for death is less than 1, then the esti-
mated OR is larger than the true IRR of disease,
irrespective of the rarity of the disease, the baseline rate
of disease and the MAF. The differences become larger
when the value of the true IRR for disease is large, and
the differences are larger for common diseases than for
rare diseases (see blue symbols in Fig. 3). The larger esti-
mates are reflected in false positive findings. In the case
of no true association (the true IRR for disease equals 1)
the estimated OR is significantly different from 1 for
common diseases (see blue symbols in Fig. 4). Generally,
the p-values from the classical case-control study are
smaller than the p-values from the matched case-control
study.

When there is no association between the number of
minor alleles and lifetime, i.e. the IRR of death is 1, the
estimated OR is larger than the true IRR for common
diseases when the true IRR for disease is larger than 1
(green symbols in Fig. 3a and c). For the rare diseases,
there is no difference between the estimated OR and the
true IRR of disease (green symbols in Fig. 3b and d).
The p-values from the classical case-control study and
from the matched case-control study are similar, thus all
green symbols in Fig. 4 follow the solid black line.

When the true IRR for death is larger than 1, the esti-
mated OR is smaller than the true IRR for disease (red
symbols in Fig. 3). In Fig. 3a the estimated OR is larger
than the true IRR for death, for large true values. The
smaller estimated OR gives rise to false positive associa-
tions (see + in Fig. 4a and d). False negative associations
occurred when the estimated OR is close to 1 and the
true IRR is larger than 1, e.g. when the IRR of the true
association with disease is 1.7 (see in Fig. 3 and 4c or d).
If the true IRR equals 1.1 (x) Fig. 4c reveals a positive
test for association. The same symbols, x, on Fig. 3c
shows the estimated OR is significantly smaller than 1,
whereas the true association is an increase in the inci-
dence rate of disease (the true IRR equals 1.1).

Including age in the model introduces slightly smaller
differences for the estimates in scenario A and B in Fig. 3
(see Additional file 2: Figure S1). For scenario C there
are smaller differences when the IRR for death is larger
than 1, but a slightly larger difference if the IRR for
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Fig. 3 The estimated associations. Four scenarios are displayed: two different diseases (one rare and one common) and two different parameter
settings for the likelihood of developing the disease. The probability of being diseased at age 90, i.e. the cumulative incidence rate of disease, is
as follows for the four figures. a: 21.8 %, b: 2.3 %, ¢: 22.9 % and d: 2.6 %. Each subfigure presents the estimated association between the number

horizontal line at OR of disease = 1 indicates no association

of minor alleles and disease for different values of the IRR of death and the MAF. The different colours indicate different values of the IRR of
death and the different line types indicate the different values of the MAF. The sloped, black solid identity line indicates no bias and the

death is smaller than or equal to 1. The largest effect of
the adjustment is seen in scenario D, where the introduc-
tion of age as a covariate considerably reduce the differ-
ences irrespective of the value of the IRR of death.The
differences between the estimated OR and the true IRR
for disease, for different values of the MAF and the IRR
for death, are displayed in Additional figure 2: Figure S4
and Figure S5 (age adjusted). The relative differences be-
tween the two are displayed in Additional figure 2: Figure
S6 and Figure S7 (age adjusted).

For scenario D in Figs. 3 and 4, Fig. 5 displays the com-
parison of the p-values for all simulated results where the
IRR for disease is 1.0, 1.1 and 1.7 (scenarios A, B and C
are displayed in the online Additional file 2: Figure S8, S9
and S10). The —log transformed p-values above the black
horizontal line represent the classical case-control study,

whereas those below the horizontal line originate from the
matched case-control study. The dashed lines indicate a
genome-wide significance level of 5-107%. For clarity, all
p-values lower than 107'® are truncated. For large and
small values of the IRR for death and for the IRR for death
equal to 1.0 and 1.1, the p-values from the classical case-
control study are lower than those from the incidence
density sampled study, to the extent of genome-wide
significance. When the IRR for disease equals 1.7, the
p-values from the case-control study decrease more
rapidly than those from the incidence density sampled
study. It falls below the genome-wide significance level.

Discussion
For each configuration of the rarity of the disease, the
parameter setting of the baseline rate of disease, the
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MAF, and the IRR of disease and death, we simulated
1000 estimates of the odds ratio of disease. For each
configuration, the standardized estimates of the OR for
disease are, according to the central limit theorem (e.g.
[17]), standard normal distributed.

There is no difference between the estimated and true
association of disease and the number of minor alleles
using incidence density sampling. In the classical case-
control study we observe differences between the esti-
mated OR and the true IRR in both directions, depending
on the IRR for death. We find a larger estimated OR if
there is an association between the number of minor
alleles and longevity, ie., the IRR for death is less than 1.
If the association between the number of minor alleles
and death is larger than 1, the estimated OR is smaller.
However, these differences are small when the effect of

the competing association is small. Small effects of com-
peting events (below 1.3) are expected in a GWAS, since
no evidence of large effects is found so far. When there is
no association between the number of minor alleles and
competing events we find a larger estimated OR if the dis-
ease is common, whereas there are no differences if the
disease is rare. Others find similar results, e.g. Fradin et al.
[18] and Wang et al. [19].

The fact that we do not find any differences if the SNP is
not associated with death and the disease is rare, is known
as the “rare disease assumption”, i.e. the OR is asymptotic-
ally equal to the IRR if the disease is rare [9, 20]. Notice that
the “rare disease assumption” is compromised if there is an
association between the SNP and competing events. An
inference on the probability of disease may be biased due to
competing events, even in a longitudinal study. Fine and
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Gray [21] developed a method allowing association testing
of the effect of a SNP on the probability of disease.

From Fig. 5 we identify differences in the p-values
both towards false positive hypothesis and false negative
hypothesis. These differences are due partly to the larger
or smaller estimated OR and to the effect of the total
number of cases on the statistical power of the studies.
P-value differences may introduce different rankings of
SNPs between the two study designs. The ranking of the
SNPs in a GWAS using a classical case-control study
gives a list of SNPs most associated with the prevalence
of disease, whereas the incidence density sampled study
ranks SNPs according to the impact of the SNP on the
aetiology of the disease. If the aim of the association
study is to identify genetic markers involved in the genetic
aetiology of the disease, then incidence density sampling
allows for the correct interpretation of the estimates.

When a summary of the OR estimates from a classical
case-control study is used as a proxy for genetic vari-
ation, e.g. in the polygenic score, the differences between
the estimated OR and the IRR are aggregated into one
measure. It is unknown if and to what extent this

aggregation affects the validity of the approximation.
The possible change in rankings can lead to summary
statistics based on false positive SNPs. The approxima-
tion may be affected more, though, by the exclusion of
false negative SNPs. The impact of ignoring the false
negative SNPs is unknown and request further research.

In studies using a well-documented dichotomous con-
founder, the incidence density sampled study has higher
power than the classical case-control study [22, 23].
However, in practice this may not always be the case. If
a predefined incidence density sampled study cannot
collect all needed information on both cases and con-
trols the matching may be broken. In a 1:1 matched
design this means a loss of both the case and the control
in the analysis, reducing the power due to loss of infor-
mation [24]. In the classical case-control study, loss of
information for a single subject will not imply a loss of
information for other subjects in the study.

The presence of competing events will decrease the
number of cases observed, and will decrease the number
of available matched sets in the incidence density sam-
pling. The power of a matched study depends on the
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number of sets, and therefore the power is dependent
on the effect of the competing event. The decreasing
number of cases will also affect the power of a classical
case-control study. This effect is, however, assumed to
be smaller than under incidence density sampling [25].
The literature in this field of research is sparse, and many
questions are still to be answered, especially when includ-
ing quantitative measures and more complex models.

Planning an incidence density sampled study requires
information on established confounders, and these are
not always present. Under incidence density sampling,
matching on non-informative confounders may in some
situations introduce data overfitting, and thereby bias on
both the estimated IRR and on the standard error [25].
Even matching on an established confounder introduces
bias, if this confounder is correlated with one of the
unmatched confounders in the study.

When matching on age, the birthdays of all individuals,
and the date or period of which the case become diag-
nosed are particularly important. This information may be
hard to retrieve using surveys or other self-reporting sam-
pling techniques. Hence, the incidence density sampled
study is difficult to implement in countries without access
to nationwide population-based registers.

The simulations in this study are a simplified example
of a GWAS only including one time scale and one gen-
etic marker. Since risk of death increases with increasing
age, age is an important factor to consider for matching.
In other diseases, calendar time has a major effect due
to changes in diagnostic systems, changes in politics etc.
In such cases, one should consider which of the two
time-scales is the most important if the possibility of using
both is limited. One should also consider other factors for
matching that have a large impact on the risk of disease,
e.g. gender, place of birth or work environment.

When selecting controls in the incidence density sam-
pling, the controls should be chosen at random among
persons still at risk at the time of disease onset of the
case. The controls are a random sample of the popula-
tion at that specific time point. Leaving out controls that
later become cases or never experience other diseases,
will cause bias to the estimated IRR [11, 26].

In comparison with the analogy of the tree, this study
does not take into account the association between leaf
type and the likelihood of falling onto the soil, among
the leaves on the concrete. Including this association will
make the interpretation of the estimated OR and the ef-
fect on the p-values more complex, since this association
will be reflected in the estimated OR. This association
will however most likely be present in any population.
For simplicity, we have also chosen to consider death
as the only competing event. One should keep in mind
that other events exist, such as emigration, which, for
some age groups, are more likely than death [27]. The
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difference between the OR and the IRR is affected by an
aggregation of all possible competing events. We urge the
genetic community to carefully consider the specific
research question and hence the sampling for any GWAS.

Conclusions

Competing events are universally related to human life
precluding individuals from specific outcomes. For the
identification of aetiological factors related to disease, inter-
est is in the risk of becoming diseased. Using a classical
case-control study to estimate the association between risk
of becoming diseased and genetic variants may bias the
association estimate and the p-value of the association test.
The incidence density sampled study will provide the
correct interpretation of the estimated association and the
proper ranking of SNPs for further analysis.
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