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Improving incidence estimation in
practice-based sentinel surveillance
networks using spatial variation in
general practitioner density
Cécile Souty1* and Pierre-Yves Boëlle1,2

Abstract

Background: In surveillance networks based on voluntary participation of health-care professionals, there is little
choice regarding the selection of participants’ characteristics. External information about participants, for example
local physician density, can help reduce bias in incidence estimates reported by the surveillance network.

Methods: There is an inverse association between the number of reported influenza-like illness (ILI) cases and local
general practitioners (GP) density. We formulated and compared estimates of ILI incidence using this relationship.
To compare estimates, we simulated epidemics using a spatially explicit disease model and their observation by
surveillance networks with different characteristics: random, maximum coverage, largest cities, etc.

Results: In the French practice-based surveillance network – the “Sentinelles” network – GPs reported 3.6%
(95% CI [3;4]) less ILI cases as local GP density increased by 1 GP per 10,000 inhabitants. Incidence estimates
varied markedly depending on scenarios for participant selection in surveillance. Yet accounting for change in
GP density for participants allowed reducing bias. Applied on data from the Sentinelles network, changes in
overall incidence ranged between 1.6 and 9.9%.

Conclusions: Local GP density is a simple measure that provides a way to reduce bias in estimating disease
incidence in general practice. It can contribute to improving disease monitoring when it is not possible to
choose the characteristics of participants.

Keywords: Surveillance, Incidence estimation, General practitioners, Influenza-like illness, Surveillance networks,
Epidemiological surveillance, GP density

Background
Surveillance networks for common acute conditions
often rely on a sample of healthcare professionals who
report disease cases seen in their practice [1, 2]. Various
methods aim at optimizing the choice of these data pro-
viders and improving incidence estimates. For example,
the locations of participating health professionals can be
chosen to maximize population coverage [3, 4]. Another

possibility is to make the monitored population repre-
sentative in terms of age, sex or socio-economic status
[5, 6]. It may also be possible to select participants so
that estimates from the surveillance network are as
close as possible to a reference epidemiologic signal, for
example influenza-like hospitalizations when monitoring
flu in the community [7].
Yet these a priori methods for selection implicitly as-

sume that all health professionals or organizations would
be willing to participate in surveillance upon proposal
and not subject to turnover once recruited. These as-
sumptions may indeed be reasonable in hospital or labora-
tory based surveillance networks, but not in surveillance
networks based on general practitioners (GPs) in primary
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care. Indeed, in our experience, only a few percent of prac-
ticing GPs agree to participate in surveillance networks [8]
and their participation is most of the times for a couple of
years only [9].
More subtly, it has not been considered that physician

density (physician per population ratio) changes the
number and motives for medical consultations [10–12]:
typically, in areas of low GP density, GPs see more cases
of acute diseases because the population served is larger
and a higher percentage of consultations is for treating
acute diseases. On the contrary, in areas of high GP
density, the number of acute disease cases seen by a GP
is smaller, not so much as a result of less activity, but be-
cause fewer consultations are for treating acute diseases
[13]. Accounting for local variation in physician density
will be important when computing disease incidence in-
dicators in health systems where patients are not regis-
tered to a unique GP practice, as is the case in most
European countries [1, 14, 15].
To examine further the effects of GPs selection in pri-

mary care surveillance networks, we use a simulation ap-
proach and compare incidence estimates for various
surveillance network structures similar to the French GP-
based Sentinelles network [16]. Our goal is to explore how
the spatial sampling of data providers affects the estimates
of incidence and to propose improved estimators. We fi-
nally report an empirical comparison of incidence estima-
tion based on influenza-like illness (ILI) in France.

Methods
The French Sentinelles network
The French general practitioners Sentinelles network [17]
is a real-time epidemiologic surveillance system based on
approximately 500 GPs, corresponding to 1% of all French
GPs located all over the country [18]. Sentinel general
practitioners (SGPs) are recruited and participate in sur-
veillance on a voluntary basis. Differences between partici-
pating and non-participating GPs have been reported
elsewhere [8, 19]. They report cases observed in their
practice population, such as ILI cases, using a web inter-
face or a dedicated software [20]. Incidences are
calculated in real-time from their reports [19] allowing to
detect outbreaks [21].
Here, we included the 301 SGPs participating to the

French Sentinelles network during the 2012/13 influenza
season. In addition to data provided by SGPs, we also
obtained data on consultation volumes for all practicing
French GPs and separately for SGPs from the national
health insurance system [19, 22].

Incidence estimation from cases reported by
participating GPs
Incidence in the general population is computed from
the number of patients with a specific combination of

symptoms reported by the sample of participating SGPs
[19, 23]. We present below estimators to compute inci-
dence based on post-stratification. For most of the
cases, incidence is first estimated by region (NUTS2 –
Nomenclature of Territorial Units for Statistics level 2
[24]) and summed to estimate national incidence. Inci-
dences estimates per population are computed as a ratio
of estimated incidences divided by the area population
(census data – National Institute of Statistics and Eco-
nomics Studies [25]). A supplementary file contains all
computational details (see Additional file 1).

Horvitz-Thompson estimator: proportion of SGPs
among GPs
A typical approach to reduce bias in non-representative
samples is to use a Horvitz-Thompson estimator [26],
where sampling weights correspond to the inverse of the
inclusion probability. In the French Sentinelles network,
these weights are computed as the percentage of SGPs
participating in surveillance by region [19]. Indeed, the
inclusion probability for SGP k is πk = nSGPR/nGPR,
where nSGPR is the number of SGPs and nGPR the total
number of GPs in the region R where the SGP k prac-
tices. Thus, the national incidence estimator in period t
is:

Î π tð Þ ¼
X

k
π
k
−1 ⋅cases k; tð Þ

where k runs over participating SGPs and cases(k,t) is
the number of cases reported by the SGP k during
period t.

Incidence estimator taking into account local GP density
All calculations are detailed in Additional file 1.

Direct estimate using local GP density
Assume that the number of cases seen by a GP decreases
with increasing local GP density m (number of GPs per
population in the district or LAU1 - Local Administra-
tive Units level 1 [24]) as E(cases) = λ/m, where λ is the
incidence per population. The national incidence estima-
tor is:

Î DmðtÞ ¼
X

k

mk

mD;k
⋅π−1

k ⋅casesðk; tÞ

where mD,k = nGPD(k)/popD(k) is the GP density at the
departmental level (NUTS3 [24]) in SGP k’s department
of practice.

Calibrated estimate using local GP density
Calibration is a generic method to improve estimation
when auxiliary information associated with measure-
ments is available [27]. We use here the inverse of local
GP density (LAU1) 1/m as auxiliary information for

Souty and Boëlle BMC Medical Research Methodology  (2016) 16:156 Page 2 of 8



reported cases. The well-known ‘ratio-estimator’ [27] ob-
tained with this approach has expression:

Î Cm tð Þ ¼
X

k

hR;k
mR;k

⋅πk−1 ⋅cases k; tð Þ

where mR;k is the GP density in the region of practice of
SGP k (=nGPR/popR) and hR;k is the harmonic mean of
GP densities among SGPs in the region R where SGP k
practices, i.e. hR;k ¼ nSGPR=

P
i�R

1=mið Þ where i runs
over participating SGPs in R.

Direct and calibrated estimates using local GP density
and consultation volume
In a previous work [19], we found a positive association
between the number of cases reported by SGPs and the
number of consultations. Assuming joint proportionality
of reported cases to GP density and consultation vol-
ume, a direct estimator of incidence is:

Î Dmc tð Þ ¼
X

k

mk

mD;k
⋅

1
ρR;kðtÞ

⋅cases j; tð Þ

where ρR,k(t) = cSGPR(t)/cGPR(t) is the percentage of con-
sultations by SGPs (cSGPR(t)) among all consultations
(cGPR(t)) in region R where SGP k practices, during
period t.
Using calibration proposed by Deville and Särndal [27],

the incidence estimator calibrated on both local GP density
and consultations is defined as follows:

Î Cmc tð Þ ¼
X
k

�
πk−1 ⋅cases k; tð Þ þ tx−t̂ xπ

� �
′⋅T−1⋅πk−1 ⋅xk ′

⋅cases k; tð Þ
�

with T ¼ P
k πk�1xkxk ′ where the auxiliary information

xk = (1/mk, ρR,k), tx is the population total of x, and t xπ
denote the Horvitz-Thompson estimator for the x-
vector.

Investigating the relationship between GP density and
reported cases by SGPs
We analysed the number of cases reported to the Senti-
nelles network during an epidemic by a SGP using Pois-
son regression with dependant variable the local GP
density (district level – LAU1). We used the data over
the last five seasons (2010/11 to 2014/15) for each SGP.

Influenza epidemics simulations
Influenza epidemics were simulated using a spatially ex-
plicit age-structured model including population and
commuting data in France [16]. Simulations were per-
formed at the district level (LAU1 - 3708 districts in
France) and yielded weekly incidence data. Influenza
cases in the 98 districts with no GPs were allocated to
the neighbouring districts.

In each district, the average number of cases seen by a
GP in 1 week was computed as the ratio of number of
new cases in the district divided by the number of GPs
in that district. We assumed that the actual number of
cases reported by a GP had a Poisson distribution about
this average.

Evaluation of sample weights for incidence estimation
Simulated GPs networks
To investigate the impact of geographical location of
GPs participating to surveillance, we simulated networks
by choosing data providers from the 60,000 practicing
French GPs. Network sizes was limited to 300 to be
similar to the existing French Sentinelles network.
We first investigated 1000 “random networks” including

300 GPs chosen at random from all GPs. Next, we se-
lected a network including one GP taken in each of the
districts of the administrative centres at the NUTS3 level
(n = 96 departments in France). We also selected low GP
density network, with GPs from the three districts with
the lowest GP density in each department, and high GP
density network where GPs were taken from the three dis-
tricts with the highest GP density. Finally, we used the
maximum coverage algorithm proposed by Polgreen et al.
[3] to maximize the population covered by participat-
ing GPs using 300 GPs and a distance of 14 kilometres
(8.7 miles – the average diameter of a district).

Comparing estimated incidence to real incidence
To compare incidence estimates based on the various
surveillance networks, we computed the weekly average
relative difference in percent and the root mean squared
error (RMSE) between estimated and simulated incidence.
Estimates were computed using the Horvitz-Thompson
estimator Îπ and the estimators taking into account local
GP density ÎDmand ÎCm. To account for variability in num-
ber of reported cases by participating GPs (Poisson distri-
bution), we replicated estimations 100 times and reported
the average.

Empirical assessment: subsampling SGPs in the Sentinelles
network
To investigate empirically the characteristics of the esti-
mators on real data, we used a subsampling approach.
We estimated incidence using 75% of all participating
SGPs only, and varied randomly the 75% selected. We
computed the three estimators Îπ, ÎDmand ÎCm as defined
above (Horvitz-Thompson and both defined with local
GP density) during the 2012/13 influenza epidemic
(2012 week 51th to 2013 week 11th). Using results from
subsampling, we estimated the standard deviation of es-
timated incidence and the coefficient of variation.
Finally, we applied all estimators to estimate ILI inci-

dence over the 5 years period from 2009 week 32th to
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2014 week 31th. Comparisons between estimators were
done during epidemic periods as defined by the Sentinelles
network [17, 21].

Results
Spatial distribution of GPs according to population in
France
Overall, the average GP density in France was 96 GPs
per 100,000 inhabitants, ranging from 12 to 526 GP per
100,000 inhabitants (except in 98 districts (2.6%) without
a GP) (Fig. 1). The 301 SGPs of the Sentinelles network
came from 260 districts all over the country. In the dis-
tricts of practice of the SGPs, the average GP density
was slightly lower than in overall France (94 GPs per
100,000 inhabitants).

Number of cases per SGP and GP density using data from
the French Sentinelles network
SGPs practicing in places with high GP density, reported
fewer ILI cases over the duration of an epidemic (Fig. 2).
On average, the number of cases was reduced by 3.6%
(95% CI [3; 4]) as GP density increased by 10 GP per
100,000 inhabitants (p < 2.10−16). In other words, during
a typical flu epidemic, a GP practicing in a district with

75 GP/100,000 inhabitants (first quartile of GP density
in SGPs) reported 42 cases while a GP practicing in a
district with 125 GP/100,000 (third quartile of GP density
in SGPs) reported only 34.

Incidence estimates using simulated GPs networks
The geographical location of GPs included in the simu-
lated surveillance networks did not show specific spatial
patterns (Fig. 3) except for fewer GPs included in the
administrative centres network (96 instead of 300). Visu-
ally, the actual Sentinelles network looked patchier than the
maximum coverage, high/low GP density and administra-
tive centres networks but similar to random networks.
For the same simulated epidemic, estimated incidence

was highly dependent on data provider selection using
the Horvitz-Thompson estimator Îπ (Fig. 4). In random
networks, incidence was estimated almost without bias
(+4%; RMSE = 59 cases per 100,000 inhabitants) but with
substantial variation from one network to the next. With
the administrative centres network, incidence was
underestimated by an average of 24% (RMSE = 306). The
largest underestimates were obtained for the high GP
density network, where incidence was one third less than
the actual values (−37%; RMSE = 467). Conversely, the

Fig. 1 General practitioners (GP) density by district (LAU1) in France (number of GPs per 100,000 inhabitants) in 2012. Dark grey lines represented
boundaries of the 22 French regions (NUTS2)
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low GP density network led to the largest overestimates,
with estimated incidence more than one and half the ac-
tual incidence (+164%; RMSE = 2370). The maximal
coverage network, while covering 79% of the French
population with 300 GPs, overestimated incidence by one
third (+33%; RMSE = 425). Finally, in the network corre-
sponding to the actual Sentinelles network, incidences
estimates were on average 10% higher than expected
(RMSE = 133).

Introducing local GP density in incidence estimators
Taking into account local GP density allowed substantial
bias reduction in all simulated networks: estimates were
always closer to the actual incidence by comparison with
the Horvitz-Thompson estimator. In random networks,
the ratio estimator ÎCm and the direct estimator ÎDm per-
formed similarly (RMSE = 26). For other network choices,
the situations were contrasted: the ratio estimator ÎCm per-
formed better for low GP density and maximum coverage
networks and the direct estimator ÎDm for administrative
centres and high GP density networks (Fig. 5).

Subsampling SGPs from the French Sentinelles network
We next compared estimators Îπ, ÎDm and ÎCm on the
Sentinelles data for 2012/13 influenza epidemic. The

average standard deviation decreased from 24 cases per
100,000 inhabitants for Îπ to 19 for ÎDm and ÎCm. Like-
wise, the coefficients of variation were 5.2% when using
ÎDm and 5.3% with ÎCm, less than with Îπ (5.9%).
In general, modifications of the original Îπ led to lower

incidences estimates, as expected given the average GP
density was slightly lower for the Sentinelles network
than for overall France. Using the Horvitz-Thompson es-
timator as a reference with whole SGPs’ data, the esti-
mated incidence was on average 1.6% less for the direct
estimator ÎDm, 8.4% less for the ratio estimator ÎCm.

Finally, calibration on both local GP density and consult-
ation volume led to similar performance compared with
calibration on local GP density alone, with a reduction
by 9.9% using ÎCmc and by 4.7% using ÎDmc.

Discussion
Reducing bias in disease incidence estimates from GP
surveillance networks is a challenge when participants
are volunteers rather than carefully chosen by adminis-
trators. Here, we showed that bias due to variations in
local GP density around participants could be reduced
using weighted estimators, and supported this conclu-
sion with empirical evidence. This approach could be
used to introduce more flexibility for developing algo-
rithms to identify the best placement of data providers
[3–7].
We found that local GP density changed the reports of

GPs to surveillance systems, with less ILI cases reported
as local GP density increased. This was also true with
acute diarrhea and chickenpox, two other diseases moni-
tored by the Sentinelles network. For example, the number
of acute diarrhea cases reported by SGPs during the epi-
demic was reduced by 3.4% (95% CI [2.9;3.9] (p < 0.0001)
and the number of yearly chickenpox cases was reduced
by 6.4% (95% CI [5.9;6.8]) (p < 0.0001) when the GP dens-
ity increase by 10 GP per 100,000 inhabitants. There is in-
deed a known effect of GP density on their activity which
reflects competition between physicians [11]. While the
number of consultations may be slightly reduced with in-
creasing GP density, it is mostly the nature of consulta-
tions that changes [13]. More consultations are for
prevention, or follow-up of chronic diseases in high GP
density areas, leading to fewer acute disease cases per GP
and possible bias in incidence estimation.
Surveillance networks in general practice must satisfy

a number of constraints: sensitivity to change in inci-
dence; large spatial coverage; robustness regarding dy-
namic changes in the network composition; and efficient
use of resources. In this last respect, seemingly reason-
able solutions may have undesirable features: we found
here that selecting one GP in each of the 100 largest
French towns would lead to large underestimation of in-
cidence. Several approaches have been described to the

Fig. 2 Average cumulative numbers of influenza-like illness (ILI) cases
reported by French sentinel general practitioners during the 2012/13
influenza epidemic versus general practitioners (GP) density (number
of GPs per 100,000 inhabitants) by district (LAU1), France
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Fig. 3 Spatial spread of general practitioners (GPs) involved in the simulated practice-based surveillance networks, France; number of GPs involved in
each network is reported in brackets

Fig. 4 Influenza-like illness incidence rates from simulations (real) and estimated by Horvitz-Thompson estimator using various general practitioners
(GPs) networks in France. Number of GPs involved in each network was reported in brackets
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optimal selection of data providers in surveillance, taking
into account spatial coverage or representativeness of
monitored population [3–7]. In our experience, the ef-
fective use of such approaches in GP based surveillance
is difficult as it is not possible to have a stable roster of
GPs who want to participate in surveillance [8]. The
interest of a priori computations to identify an optimal
set of providers is further reduced if candidates can re-
fuse participation. Furthermore, turnover of participants,
which is common [1], may jeopardize carefully arranged
providers sets. Interestingly, we found that in France, the
maximum coverage algorithm proposed by Polgreen
et al. [3] ended up selecting places with slightly below
average GP density, leading to upward biased incidences.
It may be possible to alter this coverage algorithm so
that the only GPs proposed for inclusion are those prac-
ticing in areas with average GP density, at the price of
reducing coverage. Unexpectedly, the self-selection of
GPs in the Sentinelles network led to an average GP
density in the monitored regions that was close to the
average national GP density. This suggests that partici-
pation to surveillance is indeed independent from local
GP density, a feature that is required in the estimators
described above.
When a priori optimal selection of data providers for

surveillance is not carried out, post-hoc stratification can
address the issue. This requires identifying characteris-
tics associated with the estimated quantity, as local GP
density with the number of cases reported by SGPs. At
worst, calibration with an irrelevant characteristic in-
creases variance but not bias [28]. A feature of practical

importance is that local GP density is in most situations
easy to obtain, when other candidate characteristics to re-
duce bias, like consultation numbers [19], is more difficult
to obtain. Additionally, GP density is easily recomputed
when a GP joins or stops surveillance. Post-stratification
may furthermore be used in all kinds of GP selection
schemes, including the algorithmic approaches described
above.
We used a simulation approach to investigate the im-

pact of spatial sampling of providers on incidence esti-
mates. The model for ILI simulations [16] was previously
shown to reproduce the major characteristics of flu epi-
demics. The various observation networks that we com-
pared corresponded with plausible choices, for example
large cities (similar to the 122 cities mortality system of
CDC [29]) or maximum coverage. That there is bias asso-
ciated with these choices is important to stress, as these
may be considered in setting up surveillance networks. As
with all surveillance network data, empirical validation is
difficult as the real incidence is unknown. The perform-
ance of estimators is often assessed by bias2 + variance.
Since improved estimates do not increase bias, reducing
variance provides good evidence of improved performance
in our situation.

Conclusions
Bias in incidence estimated through epidemiological data
from voluntary surveillance networks could be reduced
by using sampling weights based on local GP density. It
can contribute to improving disease monitoring when
the selection of participants is not controllable.

Fig. 5 Root mean square error of incidence estimates based on estimators accounting for local GP density compared to real incidences in the
various simulated networks
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