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Background: Frequently occurring drought stress negatively affects the production of maize worldwide. Numerous
efforts have been made to develop drought-tolerant maize lines and to explore drought tolerant mechanisms in
maize. However, there is a lack of comparative studies on transcriptomic changes between drought-tolerant and

Results: In the present study, we have developed a drought-tolerant maize mutant (C7-2t) by irradiating the seeds
of maize inbred line ChangC7-2 (C7-2) with ®°Co-y. Compared to its wild type C7-2, C7-2t exhibited a significantly
delayed wilting and higher drought tolerance under both the controlled and field conditions, indicating its high
water-holding ability. Transcriptomic profiling was performed to identify differentially expressed genes (DEGs)
between C7-2 and C7-2t during drought. As a result, a total of 4552 DEGs were implied in drought tolerance of
C7-2 and C7-2t. In particular, the expression of photosynthesis-related genes in C7-2 was inhibited, whereas these
genes in C7-2t were almost unaffected under drought. Moreover, a specific set of the DEGs were involved in
phenylpropanoid biosynthesis and taurine (hypotaurine) metabolism in C7-2t; these DEGs were enriched in cell
components associated with membrane systems and cell wall biosynthesis.

Conclusions: The drought tolerance of C7-2t was largely due to its high water-holding ability, stable
photosynthesis (for supporting osmoregulation) and strengthened biosynthesis of cell walls under drought
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Background

Frequently occurring drought stress negatively affects
the production of maize worldwide [1, 2]. Enhancing
maize resistance to drought is an effective way to ad-
dress the problem of yield loss caused by drought stress
[3, 4]. Breeders and agronomists are interested in
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developing drought-tolerant lines and uncovering their
drought-tolerant characteristics [5]. Therefore, it is of
considerable significance to clarify the mechanisms of
maize response to drought stress and adaptation to meet
the increasing food demands [6].

The drought tolerance in plants is usually evaluated
according to differences in phenotypes and physiological
and biochemical responses [7, 8]. Drought-tolerant
plants can maintain stable morphological structures
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during prolonged periods of drought stress by high
water-holding ability [9, 10]. On the one hand, drought-
tolerant lines need to enhance the ability of their roots
to absorb water from soil [9]. By reducing the number
and increasing the volume of individual cortical cells in
maize, the root system can reduce its exploration of the
surface soil and grow into deeper soil, which allows
maize to obtain more water from soil [11, 12]. On the
other hand, drought tolerance can be enhanced by redu-
cing the density and controlling the opening of stomata
in leaves [13, 14]. Moreover, plants can synthesize pro-
line and soluble sugars to reduce the water potential in
cells and maintain cell homeostasis by osmoregulation
under drought conditions [15, 16]. Drought stress also
activates the peroxide-scavenging enzyme system to re-
move excess reactive oxygen species (ROS) induced by
drought, which can damage the cell membrane systems
and eventually cause cell death [17, 18]. The activity of
the antioxidant (enzymatic and nonenzymatic) system
represents an effective index to evaluate drought toler-
ance in maize [19, 20]. Drought-tolerant maize lines
have been identified by comparing physiological and bio-
chemical changes among hybrids, inbred lines and trans-
genic lines [21-23]. However, these changes could not
fully explain the drought tolerance in maize due to varia-
tions in genetic backgrounds. It has been well docu-
mented that drought response of plants involves a
complex regulatory network; therefore, omic studies are
particularly required for functional characterization of
key drought-response genes to improve drought-tolerant
traits in crop plants [24].

To date only a few drought-tolerant genes such as
ZmVPPI and ZmPP2C in maize were identified by trad-
itional sequencing methods and functionally character-
ized [22, 25, 26]. Many key genes were implied in
drought tolerance in maize [22, 26—29]; however, a rela-
tive long period was required to clarify the functions of
these drought-response genes [25].

With the advantages of low cost, high throughput and
high sensitivity, RNA-seq is a powerful tool for the
large-scale identification of drought-responsive genes
and can facilitate the mining of key drought tolerance
genes in plants, e.g., maize [30—37]. For example, RNA-
seq studies have shown that the upregulation of cell wall
biosynthesis/aquaporin-related genes allows maize re-
combinant inbred lines to gain drought adaptability
under drought conditions [27]; the genes related to cell
wall remodeling are involved in drought-response pro-
cesses in a drought-tolerant maize line, and the synthe-
ses of amino acids and carbohydrates are related to
drought tolerance [36].

In the present study, we created a drought-tolerant
line (C7-2t) by irradiating seeds of maize inbred line
Chang7-2 (C7-2). To explore the mechanisms of
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drought resistance of C7-2t, we have compared physio-
logical, biochemical and transcriptomic changes between
C7-2 and C7-2t. Our results would highlight the
drought tolerance signatures of C7-2t and contribute to
the identification and functional studies of novel drought
tolerance genes in maize.

Results

Creation and screening of drought-tolerant maize
mutants

The *°Co-y radiated maize seeds at 200 Gy for 1h were
used for screening of drought-tolerant lines because the
fatality rate of mutagenesis was 50%, i.e. about half of
the treated seeds lost their germination abilities. Then,
the promising drought-tolerant mutants were obtained
by continuous self-crossing for five years. The laboratory
study further verified that one of the mutants (C7-2t)
showed an excellent drought-tolerant performance at
the early seedling stage (Fig. la; Fig. 1b). The drought-
tolerance index of the mutant C7-2t was significantly
higher compared to its wild-type C7-2 (Fig. Sla).
Clearly, the leaves of the 35-day-old C7-2 plants curled
earlier than those of C7-2t plants, which maintained the
normal leaf morphology under water defect conditions
in the field (Fig. 1c; Fig. 1d). Moreover, the anthesis-silk
interval (ASI) of C7-2t was significantly shorter than
that of C7-2 (Fig. S1b; Fig. Slc). In addition, there was
no significant difference in plant height, ear height and
biomass in the fields between both lines (Fig. S2). There-
fore, drought-tolerant C7-2t showed an improved per-
formance in the field. Next, physiological, biochemical
and transcriptomic analyses were performed to explore
the mechanisms underlying the drought tolerance in
C7-2t.

Differential drought responses between both maize lines
Under the normal conditions, there was no significant
difference in relative water content (RWC), proline con-
tent, malondialdehyde (MDA) content, or chlorophyll
(Chl) fluorescence parameters between C7-2t and C7-2,
whereas the catalase (CAT) activity and soluble sugar
content (SSC), in the leaves of C7-2t was higher than
that of C7-2 (Fig. 2).

During a 7-day drought treatment, C7-2 showed an
increasingly severe wilting, whereas C7-2t did not show
any signs of wilting (Fig. 1b); RWC of both lines de-
creased, with a more significant reduction in C7-2 than
C7-2t (Fig. 2a), and the MDA content in leaves under
drought was lower in C7-2t than C7-2 (Fig. 2b), sug-
gesting C7-2t suffered less damage that C7-2 under
drought stress. Moreover, the contents of SSC and pro-
line, and the activity of CAT in C7-2t were significantly
higher than those in C7-2 (Fig. 2¢, d, e), implying that
C7-2t was likely to enhance drought tolerance by
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Fig. 1 Evaluation of drought tolerance of C7-2 and C7-2t. a Normal watering conditions (control), 16-day-old seedlings. b Water withheld for 8
days (drought), 16-day-old seedlings. ¢ and d, seedlings in the field at 35 days after sowing

J

modulation the contents of SSC and proline, and the ac-
tivity of CAT.

Under drought total Chl content in the leaves of both
lines decreased. It needs to note that Chl content in C7-
2t was also lower than that of C7-2 under normal con-
ditions (Fig. 2f). Clearly, the mutation has affected the
Chl synthesis in the C7-2t. However, the maximum
photochemical quantum vyield (F,/F,) and effective
photochemical quantum yield (Y(II)) of photosystem II
(PS 1I) in C7-2t were all significantly higher than those
in C7-2 under drought stress (Fig. 2g, h).

Gene sequence assembly, annotation and categorization

For a comparison of the transcript profiles of C7-2 and
C7-2t under drought stress, 12 samples from three inde-
pendent biological repeats were collected for RNA-seq
analysis. Raw reads of 142,060,004, 140,113,794, 134,927,
492 and 141,943,752 were generated from plants in C7-
2 control (CC), C7-2 drought treatment (CD), C7-2t
control (TC) and C7-2t drought treatment (TD), re-
spectively. After removal of the adapters, low-quality se-
quences and ambiguous reads, 138,139,372 (CC), 135,

923,246 (CD), 131,095,380 (TC), and 138,366,112 (TD)
clean paired-end reads were obtained, respectively
(Table 1). The expression levels of the genes were evalu-
ated using FPKM (fragments per kilobase of exon model
per million reads mapped) values. The percentage of
genes with FPKM =1 in the 12 samples ranged from
56.19 to 59.91%. There were fewer genes with FPKM > 1
in C7-2t than in C7-2. The percentage of genes with
FPKM 2100 in the 12 samples ranged from 2.09 to
2.38% (Table S1).

Five public databases (NCBInr, NCBInt, UniProtKB,
KEGG, and COG) were referred for the annotation of all
the detected genes. Approximately 98.78% of detected
sequences (31,536) had at least one significant match
(E<1e”°) in one of the five databases. One or more gene
ontology (GO) terms were assigned to 23,231 genes
(72.77%), with 7178 identified GO items belonging to
biological process, cellular component and molecular
function categories (Table S1). In the biological process
category, 7.97, 5.23, and 2.26% of the detected genes
were annotated to DNA-templated transcription (GO:
0006351), regulation of DNA-templated transcription
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(GO:0006355) and defense response (GO:0006952), re-
spectively. In the cellular component category, 17.48,
14.88, and 9.75% of genes were annotated as nucleus
(GO:0005634), integral component of membrane (GO:
0016021), and cytoplasm (GO:0005737), respectively. In
the molecular function category, ATP binding (GO:

0005524; 11.75%), metal ion binding (GO:0046872;
7.51%) and DNA binding (GO:0003677; 6.11%) ranked
highest in GO terms of the detected genes.

GO classification of the detected genes in both lines
under drought stress displayed a notably high degree of
similarity (Fig. 3). In the biological process group, the
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Table 1 Overview of the RNA sequencing results

Sample cC1 cc2 cc3 CD 1 D2 D3 TC1 TC 2 TC3 TD 1 D 2 TD 3
Raw Reads 49,088, 47,002, 45,969, 46,547, 47,791, 45,774, 47,070, 45,172, 42,684, 47,715, 46,324, 47,903,
Number 148 534 322 122 948 724 676 694 122 762 412 578
Clean Reads 47,579, 45,624, 44,936, 45,324, 46,358, 44,239, 45444, 44,010, 41,640, 46,491, 45,179, 46,694,
Number 140 176 056 662 612 972 044 808 528 316 856 940
Clean Reads 96.93 97.07 97.75 97.37 97 96.65 96.54 9743 97.56 9743 97.53 9748
Rate (%)
Raw Bases 7,363, 7,050, 6,895, 6,982, 7,168, 6,366, 7,060, 6,775, 6,402, 7157, 6,948, 7,185,
Number 222200 380,100 398300 068300 792200 208600 601400 904,100 618300 364300 661,800 536,700
Clean Bases 7,136, 6,843, 6,740, 6,798, 6,953, 6,635, 6,816, 6,601, 6,246, 6,973, 6,776, 7,004,
Number 871,000 626400 408400 699300 791,800 995800 606600 621,200 079200 697400 978400 241,000
Mapped Reads 40,747, 41,595, 39,823, 43,134, 41,366, 40,666, 42,238, 40,830, 42451, 41,556, 40,124, 37,767,
260 903 188 590 533 278 391 809 246 156 518 450

Mapping Rate  0.899 0.8973 0.9002 0.9066 0.9067 0.905 0.9085 0.9037 0.9091 0.9144 09117 0.907

Note: CC: Chang7-2 under control; CD: Chang7-2 under drought stress; TC: Chang7-2 t under control; TD: Chang7-2 t under drought stress. Raw reads number:
the total number of original sequences; clean reads number: the total number of high-quality filtered sequences; clean reads rate (%): the percentage of the
number of high quality sequences after filtering to the number of original sequences; raw bases number: the total number of bases in the original off-line
sequence; clean bases number: the total number of bases of the filtered high quality sequence; mapped reads: the number of sequences match to the genome;
mapping rate: the percentage of sequences match to the genome

top three GO categories were cellular process, metabolic ~ vs TC), respectively (Fig. 4; Table S2). Among the
process and biological regulation. In the cellular compo- DEGs in C7-2, 2214 were upregulated and 2139
nent group, a large number of genes were enriched in  were downregulated. C7-2t, 634 DEGs were upregu-
cell part, organelle, and membrane. In the molecular lated, and 400 were downregulated. A total of 835
function group, the top three GO categories were bind- genes were shared by the two comparisons (CD vs

ing, catalytic activity, and transporter activity. CC and TD vs TC), including 520 upregulated genes
and 315 downregulated genes (Table S3). These
Identification of differentially expressed genes (DEGs) DEGs mainly respond to water stress-related stimuli

In total, 4353 and 1034 drought-responsive DEGs dramatically changed, e.g., the upregulated DEGs
were identified in C7-2 (CD vs CC) and C7-2t (TD dehydrins (DHNI1, Zm00001d037894; COR410,

a Up-regulated Down-regulated b Up-regulated Down-regulated
Cellular process Cellular process
Metabolic process Metabolic process
Biological regulation Response to stimulus
Response to stimulus Biological regulation
Localization Biological process Cellular component organization or biog_ene_sis Biological process

Developmental process Localization
Cellular component organization or biogenesis Developmental process
Multicellular organismal process Reproductive process
Reproductive process Multicellular organismal process
Multi-organism process Multi-organism process
Cell part Cell part
Organelle Organelle
Membrane Membrane part
Membrane part Membrane
Organelle part Organelle part

Macromolecular complex Cellular component Extracellular region Cellular component
Extracellular region Macromolecular complex
Cell junction Cell junction
Extracellular region part Extracellular region part
Supramolecular complex Supramolecular complex
Binding Catalytic activity
Catalytic activity Binding
Transporter activity Transporter activity
Transcription regulator activity Transcription regulator activity
Signal transducer activity Antioxidant activity

Molecular function regul‘at_or Molecular function Signal transc_lucer activity Molecular function

Structural molecule activity Molecular function regulator
Molecular transducer activity Structural molecule activity
Antioxidant activity Molecular transducer activity
Nutrient reservoir activity Nutrient reservoir activity

Q Q)QQ »{T/QQ \%QQ q,“@ ,bo& Q & r&o {b@ VQQ @Q Q)QQ

Fig. 3 GO functional classification of the DEGs in C7-2 and C7-2t regarding biological processes, cellular components and molecular function.
The abscissa stands for the number of genes annotated into GO terms, and the ordinate stands for the GO classification
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Fig. 4 A Venn diagram showing the expression patterns of the DEGs
in C7-2 and C7-2t. Red and blue numbers indicate the numbers of
the up- and down-regulated genes, respectively

Zm00001d017547, Zm00001d051420) and wuniversal
stress protein A (Zm00001d034027).

After excluding the shared DEGs, 3518 and 199 DEGs
were detected in C7-2 and C7-2t, respectively (Fig. 4;
Table S4), suggesting differential drought-responsive
pathways between the two lines. Among the 199 DEGs
specific to C7-2t, 114 were upregulated and 85 down-
regulated, which may be related to the drought tolerance
of C7-2t. Among the 3518 DEGs specific to C7-2, 1694
were upregulated, and 1824 genes were downregulated.
Clearly, more gene expressions were affected by drought
stress in C7-2 than in C7-2t. Consequently, the growth
of C7-2 plants was significantly inhibited by drought
stress compared to C7-2t, suggesting that C7-2t had an
active drought adaptation strategy.

GO and KEGG enrichment of the DEGs

GO enrichment analysis was conducted to investigate
the variability in biological processes under drought
stress. A total of 182 and 90 GO terms were found as
overrepresentations (FDR < 0.05) under drought in C7-2
and C7-2t, respectively (Table S5).

These altered genes in C7-2 primarily affect chloroplast
part (GO:0044434) and photosynthesis. The DEGs related
to the photosynthetic membrane (GO:0034357) and
chloroplast thylakoid membrane (GO:0009535) were sig-
nificantly enriched. Under drought stress, Zinc transporter
4 (Zm00001d036965) and ATP-dependent zinc metallopro-
tease FTSH 6 (Zm00001d037232) were upregulated; Photo-
system II reaction center PSB28 protein (Zm00001d000409),
photosynthetic NDH subunit of Ilumenal location 2
(Zm00001d016943), and photosynthetic NDH subunit of lu-
menal location 3 (Zm00001d018623) were downregulated.
Moreover, the genes associated with chlorophyll binding
(GO:0016168) were significantly suppressed, e.g. chlorophyil
a/b binding protein (Zm00001d044401; Zm00001d044402;
Zm00001d005814; Zm00001d048998) which mainly take
part in light harvesting (GO:0009765). Furthermore, the
electron transfer processes of photosynthesis were affected
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(GO:0009773, GO:0009767). Downregulation of these
genes mentioned above could explain the decline in photo-
synthetic efficiency in C7-2 under drought stress (Fig. 2).

With respect to the drought-induced responses in C7-
2t, 90 biological processes were enriched under drought
(Table S5), much less compared with C7-2, suggesting
that C7-2t was relatively less affected by drought stress.
It is noteworthy that GO terms related to cell wall were
significantly enriched, including plant-type secondary
cell wall biogenesis (GO:0009834), plant-type cell wall
organization or biogenesis (GO:0071669), cell wall
organization or biogenesis (GO:0071554) and plant-type
cell wall biogenesis (GO:0009832). Many of the genes in-
volved in these processes were specifically detected in
C7-2t, such as expansin-like A2 (Zm00001d029783),
xyloglucan  glycosyltransferase (Zm00001d038676,
Zm00001d020560). In addition, GO terms related to sec-
ondary metabolism were also significantly enriched in
C7-2t under drought stress, e.g., flavonoid 3,5 -hydrox-
ylase activity (GO:0033772) and tyrosine ammonia-lyase
activity (GO:0052883), which were required in cell wall
synthesis.

A KEGG enrichment analysis was performed to
compare the effects of drought on metabolic pro-
cesses between C7-2t and C7-2 via calculations of
the g-value. In C7-2t, seven pathways were signifi-
cantly enriched (Fig. 5; Table S6): plant hormone sig-
nal transduction (26 genes), phenylpropanoid
biosynthesis (19), phenylalanine metabolism (6), starch
and sucrose metabolism (15), taurine and hypotaurine
metabolism (4), benzoxazinoid biosynthesis (5), and
inositol phosphate metabolism (9). In C7-2, 24 path-
ways were significantly enriched (Fig. 4; Table S6), of
which the top five pathways significantly enriched
were starch and  sucrose metabolism  (50),
photosynthesis-antenna proteins (13), benzoxazinoid
biosynthesis (14), plant hormone signal transduction
(66), and amino sugar and nucleotide sugar metabol-
ism (41). Compared with C7-2, phenylpropanoid bio-
synthesis and taurine and hypotaurine metabolism
were particularly enriched pathways in C7-2t, with
eight upregulated and 11 downregulated DEGs in-
volved in the phenylpropanoid biosynthesis pathway
and four upregulated genes involved in the taurine
and hypotaurine metabolism pathway.

Cell wall biosynthesis under drought

GO analysis showed that the cell wall (GO:0005618)
genes in C7-2t were significantly enriched under
drought stress. A total of 23 DEGs in C7-2t were
enriched into the entry of plant type cell wall
organization or biogenesis (GO:0071669) in the bio-
logical process classification, including five downregu-
lated and 18 wupregulated. Particularly, the genes
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encoding expansin proteins participating in cell wall
biosynthesis were significantly upregulated, e.g., expan-
sin-like A2, expansin-like Al, expansin-B4, expansin-
B11, expansin-B12, with log2 fold change from 1.1 to
3.29. In addition, the genes (Zm00001d020531;
Zm00001d005775; Zm00001d032776; Zm00001d043477;
Zm00001d005478; Zm00001d005451) that induced by
drought stress encode cellulose synthase A catalytic sub-
unit. These results suggest that C7-2t could reduce the
negative effects of drought stress through strengthening

the synthesis of cell walls. Although the DEGs encoding
expansins were also detected in C7-2, no significant en-
richment results were obtained under drought stress.

Stable sugar synthesis under drought

The DEGs encoding bidirectional sugar transporter
(Zm00001d016590; Zm00001d040656; Zm00001d010440;
Zm00001d015914; Zm00001d044421) and sucrose synthase
(Zm00001d029091; Zm00001d029087; Zm00001d045042)
were all up-regulated in C7-2 and C7-2t. The upregulation
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of sugar synthesis and transport under drought requires a
steady supply of energy from photosynthesis.

In C7-2, drought-responsive 69 genes were involved in
photosynthesis (GO:0015979), photosynthesis and dark
reaction (GO:0019685), photosynthesis, light harvesting,
photosynthesis (GO:0009765), light harvesting in photo-
system I (GO:0009768), and other biological process.
Among them, 66 DEGs were inhibited by drought, but
only three were induced by drought (Zm00001d042211,
Zm00001d001820, protochlorophyllide  reductase A;
Zm00001d016166, phosphoenolpyruvate carboxylase).

In C7-2, the expressions of the DEGs encoding triose
phosphate/phosphate translocator under drought were
inconsistent: one up-regulated (Zm00001d005542), two
down-regulated (Zm00001d032383; Zm00001d039258).
A gene encoding sucrose synthase (Zm00001d051837)
and several genes encoding sugar transporter were
down-regulated (Zm00001d029251, Zm00001d009603,
Zm00001d029254, Zm00001d009605). The downregula-
tion expression of these genes was not detected in C7-
2t. These results suggested that the stable photosyn-
thesis of C7-2t under drought stress may provide a
better guarantee for the synthesis and metabolism of
sugars.

gRT-PCR verification of the DEGs

A total of 18 DEGs of interest were selected to
evaluate the accuracy of the RNA-seq results (Table
S7) with qRT-PCR (Fig. 6). In particular, the expres-
sion level of sucrose synthase 6 was decreased in
C7-2 under drought; the expression levels of perox-
idase 17, peroxidase 42, superoxide dismutase 2 and
other five DEGs involved in photosynthesis were
higher in C7-2t than those in C7-2. The results of
qRT-PCR were consistent with those of the tran-
scriptomic analysis.
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Discussion

Differentially physiological and biochemical responses
between C7-2t and C7-2

In the present study, a drought-tolerant maize mutant
C7-2t by ®Co-y irradiation was developed. Compared
to its wild type C7-2, C7-2t exhibited a higher drought
tolerance under drought stress. There were significant
differences in physiological and biochemical indexes be-
tween C7-2t and C7-2 (Fig. 2).

RWC is widely used to identify the drought tolerance
of various plant species, including maize [20, 38]. Plants
with higher RWC can increase their adaptability by re-
ducing the drought-caused damage to their antioxidant
systems [39]. C7-2t showed a higher RWC in leaves, i.e.
a high moisture retention ability, than C7-2 under
drought. Proline and soluble sugar plays important roles
in osmotic regulation [40], correlating with drought tol-
erance [41, 42]. Under drought, C7-2t accumulated
more proline and soluble sugars in the leaves than those
in C7-2.

An improved efficiency of the antioxidative defense
system could protect photosynthetic pigments, proteins,
and DNA from excess ROS damage [40, 43]. CAT activ-
ity is inversely proportional to MDA content under se-
vere drought stress [20]. The assay of CAT activity and
MDA content indicated that C7-2t suffered less ROS
damage than C7-2 under drought stress.

In the field, light distribution in plant canopy can be
improved by reducing Chl content [44, 45]. On the other
hand, nitrogen and energy saved by reducing Chl synthe-
sis would enhance the specific responses to drought
stress [46]. Thus, low Chl content in the leaves of C7-2t
might be a part of its drought adaptation strategy. Taken
together, higher levels in RWC, osmolyte accumulation,
antioxidant activities and photosynthetic efficiency and a
less level of MDA contributed to higher drought toler-
ance of C7-2t than C7-2.
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The contribution of osmoregulation of soluble sugars to
drought tolerance of C7-2t

Soluble sugars, including glucose, sucrose, maltose, and
trehalose, play active roles in osmoregulation under
drought stress [47-49]. In a drought-resistant wheat, the
increased expression of soluble sugar synthesis-related
genes explained its drought tolerance [50]. In the
present study, the soluble sugar content in C7-2t was
higher than that in C7-2 under the control and drought
stress conditions (Fig. 2). Clearly, C7-2t has an efficient
drought adaptation strategy partly based on osmoregula-
tion of soluble sugars. In the present study, the expres-
sion of photosynthesis-related genes in C7-2t was
almost unaffected, thus C7-2t could synthesize soluble
sugar more efficiently under drought conditions.

C7-2t regulated the specific component of soluble
sugar at the transcriptome level. Glucose could form tre-
halose with a 1,1-glycosidic linkage and reduce the
injury caused by high concentrations of trehalose-6-
phosphate under drought stress [48]. In the present
study, the expression of trehalose 6-phosphate synthase/
phosphatase and trehalose 6-phosphate phosphatase
showed a sharp fluctuation in C7-2 (log, fold changes
from - 3.46 to 7.63) under drought stress, whereas their
expressions were inhibited in C7-2t, implying that the
elevated content of soluble sugars in C7—2t might not be
due to the enhanced trehalose synthesis.

Moreover, the expression of  B-amylase
(Zm00001d014083) was activated under drought in both
C7-2 and C7-2t, indicating that starch in the leaves
could be decomposed into maltose. However, several
genes encoding B-amylase in C7-2 were downregulated
under drought (Zm00001d009016, Zm00001d029983,
Zm00001d047077), possibly resulting in an decreased
content of maltose and an increased sensitivity of photo-
synthetic system to drought stress [51]. In summary,
C7-2t could synthesize more soluble sugars in its leaves
and maintain the stability of photosynthesis under
drought stress, thereby making it more drought-tolerant
than C7-2.

The contribution of cell wall biosynthesis-related genes to
water retention in C7-2t

The involvement of an organized multienzyme complex in
polysaccharide biosynthesis provided a strong guarantee
for cell wall synthesis [52]. The elevated expression of gly-
cosyltransferase contributed to drought resistance of Arabi-
dopsis thaliana cytokinin-deficient mutants [53]. In the
present study, several glucuronosyltransferases in C7-2t
(Zm00001d039231,  Zm00001d007231) and C7-2
(Zm00001d002064, Zm00001d007231, Zm00001d008250)
were upregulated under drought stress. GO enrichment
analysis revealed that in C7-2t many DEGs were related to
cell wall organization, especially the expansin family [54]
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that was induced by various abiotic stresses and ABA [55,
56]. Stomatal density was shown to decrease by overex-
pression of RhEXPA4 [57]. Furthermore, expansins could
reduce water loss by discontinuing cell wall activity and
stiffening cell structures [27].

The lignin content and intermediate product of the
phenylpropanoid synthesis pathway were positively cor-
related with drought tolerance in maize [58, 59]. The ac-
cumulation of caffeic acid and p-coumaric acid in the
xylem sap regulated the growth of maize leaves by influ-
encing lignin biosynthesis under drought stress [60, 61].
p-Coumaric acid could rapidly lignify tissues under
stress and improve adaptability under drought stress [62,
63]. In the present study, KEGG and GO enrichment
analyses showed that lignin-related metabolic activities,
such as phenylpropanoid synthesis pathway, were en-
hanced in C7-2t under drought. Most possibly, phenyl-
propanoid biosynthesis pathway and its intermediates,
caffeic acid and p-coumaric acid, were involved in the
response of C7-2t to drought stress.

The role of ABA in drought adapation strategy in C7-2t
9-cis Epoxycarotenoid dioxygenase 1 was a key enzyme in-
volved in ABA synthesis [64, 65]. In the present study, the
log, fold change of the genes encoding 9-cis epoxycarote-
noid dioxygenase 1 (Zm00001d018819, Zm00001d033222)
reached 4.48 and 3.15 in C7-2t, whereas the corresponding
changes were 7.03 and 4.57 in C7-2, suggesting that the
sensitivity of C7-2 to drought stress may result from more
endogenous ABA produced under drought stress.

PP2C participates in the ABA signal transduction
pathway as a negative regulator under stress [26]. A re-
cent study proved that PP2C-A10 (localized on chromo-
some 6) was related to ER stress [26]. In the present
study, 29 PP2C genes (25 upregulated and 4 downregu-
lated) and 14 (all upregulated) were detected in C7-2
and C7-2t, respectively. Especially, the log, fold change
of PP2C-A10 was significantly lower in C7-2t than in
C7-2. These results that ABA-dependent upregulated
genes provided transcriptional support for drought toler-
ance in plants [6], including C7-2t.

Conclusions

In the present study, we developed a more drought-
tolerance inbred line C7-2t compared with C7-2 in
both controlled and field conditions. The differences in
physiological, biochemical and transcriptomic changes
between C7-2 and C7-2t could explain the drought tol-
erance mechanisms in C7-2t (Fig. 7). The drought-
tolerant mutant C7-2t and the drought-responsive
DEGs identified here will be useful for basic research
and drought tolerance breeding in maize.
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DEGs positively respond to drought stress
Genes associated with water stress were up-regulated in
the two lines, e.g. dehydrin DHN1 and dehydrin COR410.
The expression of PP2Cs were lower in C7-2t.

Specific DEGs enriched to membrane system
GO enrichment analysis indicated a significant difference
between C7-2t and C7-2 regarding membrane system,
especially plasma membrane and chloroplast membrane.

Specific secondary metabolic processes
induced by drought in C7-2t

DEGs related to phenylpropanoid biosynthesis, taurine
and hypotaurine metabolism were up-regulated in C7-2t,
which were necessary for cell wall synthesis.

Drought had little effect on the genes related
to photosynthesis in C7-2t

Under drought, the genes involved in photosynthesis
were significantly down-regulated in C7-2, whereas their
expressions had no significant changes in C7-2t.

C7-2t and C7-2 plants exposed to drought

Compared to C7-2, C7-2t could maintain an efficient growth for a
prolonged period under drought stress

Fig. 7 Possible drought-adaptation mechanisms in the drought-tolerant mutant C7-2t

The increased soluble substances
The contents of proline and soluble sugars in C7-2t were
higher than those in C7-2 under drought.

Changes in ROS scavenging enzyme activity
CAT activity was increased in C7-2t, but decreased in
C7-2 during drought.

Significant differences in MDA content

Under drought, MDA was increased in level in C7-2, but
it remained a low level in C7-2t, indicating a less ROS
damage.

Efficient photosynthesis contributed to
drought tolerance in C7-2t

Under drought, Fv/Fm and Y(Il) of C7-2t were all higher
than those in C7-2.

Methods

Creation of drought-tolerant maize mutants

The seeds of maize (Zea mays L.) C7-2 were purchased
from Henan Qiule Seed Industry Science and Technol-
ogy Company, Ltd. (Zhengzhou, China). The seeds were
artificially mutated by ®°Co-y irradiation for 1h with
three doses of 150, 200 and 250 Gy. The 200 Gy radi-
ation had a fatality rate of approximately 50%. Thus, the
200 Gy-treated seeds were planted in the field in 2013 to
produce the M, generation. Through reducing watering
times to maintain soil drought, the drought-tolerant
plants were selected and self-pollinated. Field selection
process was continuously performed for five vyears
(mainly by QBZ and WW). Since M, generation, the
promising drought-tolerant lines (such as C7-2t) that
performed better than C7-2 in the field were collected
and preserved in seed storage room (College of Life Sci-
ences, Henan Agricultural University, China). The
drought tolerance of C7-2t was further evaluated in pot

experiments, based on phenotypes, physiological and
biochemical changes during drought [66].

Maize materials and growth conditions

The seeds were washed with 2% sodium hypochlorite for
10 min and rinsed with distilled water three times. The
samples were then planted in a plastic box filled with
1100 g of the growing medium (Pindstrup Substrate, 0—
6 mm, pH 6.0, Pindstrup Mosebrug A/S, Denmark) and
1000 ml of water. The boxes were placed into a growth
chamber with 27 °C, 60% humidity and 14 h of light and
10h of darkness. Seven-day-old seedlings were divided
into two groups: (a) control plants with normal watering
and (b) drought-treated plants that were subjected to
stopping watering for seven days. Afterwards, the ex-
panded third leaves were collected for physiological, bio-
chemical and RNA-seq analysis. Leaves from three
individual plants represented a sample and were stored
at -80°C after being frozen in liquid N,. All
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experiments were performed in at least three independ-
ent biological replicates.

Physiological and biochemical assays

Fresh leaves were divided into two equal groups: one
was dried at 80 °C for 12 h to determine dry weight, and
the other was placed in distilled water in the dark for 12
h to determine the turgid weight. RWC was calculated
by the following equation: RWC = (fresh weight - dry
weight) / (turgid weight - dry weight) - 100% [67]. CAT
activity and Chl, free proline, SSC and MDA content
were assayed by the established methods [68-72]. Chl
fluorescence was determined by a MINI-PAM-II (Walz,
Germany). The maximum photochemical quantum yield
(Fy/F,) and effective photochemical quantum yield
(Y(II)) of PS II were calculated [73, 74]. All assays were
performed in three biological experiments.

RNA extraction and detection

Twelve samples in three biological replicates were used
to extract RNA using an Ultrapure RNA Kit (CoWin
Biotech Co., China) according to the manufacturer’s in-
structions. The RNA was treated with RNase-free DNase
I (Takara, Japan) to remove any possible DNA. The in-
tegrity was then checked by gel electrophoresis and an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA). The concentrations of total RNA were
determined using a NanoDrop 8000 spectrophotometer
(NanoDrop, Wilmington, DE). Total RNA with a RIN
value >7.3 and a 28S:18S ratio > 1.2 was subjected to
RNA-seq analysis by Annoroad Gene Technology Co.,
Ltd. (Beijing, China).

RNA-seq analysis

About 2 pg of RNA per sample was used as input mater-
ial for RNA-seq analysis. Sequencing libraries were gen-
erated using a NEBNext® Ultra™ RNA Library Prep Kit
for Ilumina® (#£7530L, NEB, USA) following the manu-
facturer’s recommendations. Index codes were added to
attribute the sequences in each sample. Briefly, mRNA
was purified from the total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out
by divalent cations under elevated temperature in NEB-
Next First Strand Synthesis Reaction Buffer (5X). RNase
H and polymerase I were used for catalytic first-strand
c¢DNA and second-strand cDNA syntheses, respectively.
A-tailing and adapters were implemented after purifica-
tion and terminal reparation. The purified cDNA tem-
plate was enriched by PCR, and then the library was
completed. Cleaned RNA-seq reads were obtained from
the raw reads after removing the contaminated reads,
low-quality reads and reads whose N base was greater
than 5% for the total bases.
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The reference genomes and the annotation file were
downloaded from the ENSEMBL database (http://www.
ensembl.org/index.html). Bowtie2 was used to construct
the genome index. The clean data were aligned to the
reference genome by HISAT2 [75, 76], and gene expres-
sion was calculated by FPKM [77]. DEGs were estimated
by the software DESeq2, after which p-values were cal-
culated according to the Wald test [78]. The p-values
were corrected by the BH method. Genes with ¢ < 0.05
and |log2_ratio| = 1 were identified as DEGs.

Functional enrichment analysis

GO terms with FDR < 0.05 were considered to be signifi-
cantly enriched. Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG, http://www.kegg.jp/) enrichment of the
DEGs was implemented by hypergeometric test, in
which p-values were adjusted by multiple comparisons
as g-values. KEGG terms with ¢ < 0.05 were considered
to be significantly enriched.

Quantitative qRT-PCR analysis

Twelve total RNA samples were extracted from three in-
dependent groups for each line under drought and con-
trol conditions. First-strand cDNA synthesis were
performed with SuperReal PreMix Plus (Tiangen,
Beijing, China).

A total of 18 genes were selected, and gene-specific
primers were designed with the online tool Primer3
(http://primer3.ut.ee). The ubiquitin gene was chosen as
a loading control in conjunction with primers Ubi 5’
(5"-TAAGCTGCCGATGTGCCTGCG-3") and Ubi 3’
(5'-CTGAAAGACAGAACATAATGAGCACAG-3").
Each PCR (20 pL) contained 10 uL of 2x SuperReal Pre-
Mix Plus, primers at 0.6 uM and appropriately diluted
c¢DNA. qRT-PCR was performed using Thermo Fisher
Scientific StepOnePlus™ Real-Time PCR Instrument ac-
cording to the manufacturer’s instructions. The thermal
cycling conditions were 95 °C for 15 min followed by 40
cycles of 10s at 95°C and 32s at 60 °C. At the second
dissociation stage, 95°C for 10s followed by 65-95°C
with increments of 0.5°C for 0.05s were used. All reac-
tions were performed in triplicates. The relative expres-
sion levels were calculated by the 2784CT method [79].
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