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Neuronal response in Alzheimer’s 
and Parkinson’s disease: the effect of toxic 
proteins on intracellular pathways
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Abstract 

Accumulation of protein aggregates is the leading cause of cellular dysfunction in neurodegenerative disorders. 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease, Prion disease and motor disorders such as 
amyotrophic lateral sclerosis, present with a similar pattern of progressive neuronal death, nervous system deteriora-
tion and cognitive impairment. The common characteristic is an unusual misfolding of proteins which is believed to 
cause protein deposition and trigger degenerative signals in the neurons. A similar clinical presentation seen in many 
neurodegenerative disorders suggests the possibility of shared neuronal responses in different disorders. Despite the 
difference in core elements of deposits in each neurodegenerative disorder, the cascade of neuronal reactions such 
as activation of glycogen synthase kinase-3 beta, mitogen-activated protein kinases, cell cycle re-entry and oxidative 
stress leading to a progressive neurodegeneration are surprisingly similar. This review focuses on protein toxicity in 
two neurodegenerative diseases, AD and PD. We reviewed the activated mechanisms of neurotoxicity in response to 
misfolded beta-amyloid and α-synuclein, two major toxic proteins in AD and PD, leading to neuronal apoptosis. The 
interaction between the proteins in producing an overlapping pathological pattern will be also discussed.

Keywords:  Alzheimer’s disease, Parkinson’s disease, Beta-amyloid, Alpha-synuclein, Intracellular signalling, 
Neurotoxicity, Neurodegeneration

© 2015 Majd et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Protein misfolding and aggregation contribute to the 
pathophysiology of neurodegenerative disorders such as 
Alzheimer’s (AD) and Parkinson’s diseases (PD). In physi-
ological situations protein misfolding is sensed by the cel-
lular control systems as a threat which is then followed 
by an immediate response. Any delay detecting the mis-
folded proteins, may result in damage and progression of 
neurodegenerative disorders [1, 2]. Unfortunately, not all 
the cellular responses to misfolded proteins are neuro-
protective. Activation of some intracellular pathways as a 
part of this response occasionally create further damage, 
interruption in synaptic connections and neuronal apop-
tosis [3, 4].

Pathophysiology of toxic proteins
All the proteins implicated in neurodegenerative diseases 
share the common pattern of dysfunctional structure 
due to an unusual folding [5–7]. Through folding, pro-
teins acquire the three dimensional structures required 
to undertake their biological functions. This process is 
prone to errors, causing the protein not to acheive its 
functional structure, building a toxic protein deposition. 
When an aggregation status is established, disaggregation 
rarely occurs because under physiological conditions, 
the equilibrium is in favour of aggregation [8–11]. These 
early aggregates are believed to be the source of toxicity 
in neurodegenerative disorders.

Alzheimer’s disease (AD)
AD is the most common form of dementia and among 
the leading causes of death in adults. AD is associ-
ated with two main lesions: extracellular plaques made 
of beta-amyloid (Aβ) and intracellular neurofibrillary 
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tangles (NFT) made of tau protein [12, 13]. The plaques 
are the consequences of abnormal protein folding and 
aggregation with direct and indirect toxic effects on neu-
ronal survival [14, 15].

Aβ biochemical structure and toxicity
Aβ, the principle protein implicated in development of 
AD, is derived from amyloid precursor protein (APP). 
More than ten isoforms of the protein are characterized 
by different lengths of amino acid chains, and among 
them APP695 is exclusively expressed in neurons. The 
transmembrane region of APP is placed near the c-termi-
nus, and contains a Kunitz-type protease inhibitor (KPI) 
domain, which acts as a potent inhibitor of coagulation 
factors IXa and XIa, however, APP695 lacks the KPI 
domain [16, 17].

APP can act as a receptor for a signalling glycoprotein 
F-spondin that is released by neurons and possesses roles 
in axonal guidance, neuronal differentiation and neuro-
repair [18, 19]. Some other functions of APP have also 
been proposed, including serving as a link between kine-
sin and synaptic vesicles being an adhesion protein, a role 
in metal ion homeostasis, neuroprotection and a func-
tion relating to promotion of neurite growth [16, 20].

APP is degraded in lysosomes [21–23] (Fig.  1). Aβ is 
produced when a normal cleavage of APP occurs α and β 
secretase cleave APP, outside the membrane. Also three 
members of a family of peptidase proteins, ADAM, (a 
disintegrin and metalloproteinase) have a recognized 
role cleaving the extracellular portion of APP, in the same 
way that α-secretase does [24]. Proteolysis of APP by 
β-secretase cleaves APP695 after Met-596 and produces 
a large soluble N-terminal (sAPPβ) and a small mem-
brane-bound C-terminal fragment (C99), sAPPβ, is neu-
roprotective and regulates synaptic plasticity. This larger 
fragment of APP can also act as a microtubule associated 
protein (MAP) [25].

APP can undergo proteolysis at the cell surface. Its C99 
fragment can be processed by γ- secretase, presenilin 1 
and 2, γ-secretase produces Aβ isoforms of 1-40, 1-42 or 
1-43 [17, 26–28]. These peptides are made throughout 
life, but in AD they accumulate due to either increased 
production or decreased degradation or removal. 
Remaining Aβ has the potential to enhance its own pro-
duction in cerebrovascular smooth muscles and hip-
pocampal neurons [29, 30]. Excess peptides, particular 
those of Aβ 1-40, 1-42 and 1-43, form toxic aggregates, 
which result in progression of AD [16, 31, 32].

Filaments of amyloid structure are approximately 
10  nm wide and 0.1–10  μm long with a β-sheet struc-
ture in their motif [33, 34]. Using Electron Paramagnetic 
Resonance Spectroscopy (EPRS) the β-sheet structure 

was obtained for both Aβ 1-40 and 1–42, two of the most 
toxic forms of amyloid protein [35, 36].

Aβ oligomers can be generated both extra- and intra-
cellularly. Extracellular Aβ toxicity could be mediated 
through binding to receptors such as NMDA and dis-
rupting the calcium balance of the neuron [37, 38]. Extra-
cellular Aβ is internalized, stored in the lysosomes and 
can leak into the cytosol by destabilization of the lyso-
some membrane. Aβ oligomers have the ability to inhibit 
the function of proteasomes causing neuronal apopto-
sis [39, 40]. Toxicity of fibrillar and oligomers of Aβ also 
occurs through cytoskeletal disruption, tangle develop-
ment, loss of synapses and inhibition of hippocampal 
long-term potentiation (LTP). This is the so-called “Aβ 
cascade theory” of AD [12, 41, 42].

Intracellular inclusions of Aβ have been found within 
neuronal compartments. [43, 44]. Internalization of 
Aβ occurs either via binding to low-density lipopro-
tein related protein-2 (LRP2) [45], LRP-1 [46, 47] or to 
a receptor for advanced glycation end-product (RAGE) 
[48]. The presence of Aβ in various subcellular com-
partments, suggests different sites for APP proteolysis, 
such as Aβ40 in the trans-Golgi network and Aβ42 in 
the endoplasmic reticulum (ER) [49, 50] as well as Golgi 
compartments [51]. Autophagic vacuoles enriched with 
presenilin-1 (PS1), APP and Aβ are found frequently in 
degenerating neurons in patients with AD. This suggests 
an essential role for autophagy in clearing the aggregated 
peptide through a lysosomal-dependent pathway [52].

Aβ disrupts APP trafficking, and initiates a pathological 
cascade of Aβ accumulation [39, 43]. An accumulation of 
vacuoles filled with Aβ occurs as a result of interruption 
to neuronal trafficking associated with the disruption of 
autopghgosomes [53]. Aβ itself is also able to activate the 
adenosine monophosphate kinase (AMPK) pathway, gen-
erating more autophagic vacuoles [54]. Thus, AD patients 
appear to produce abundant extracellular Aβ, resulting 
in plaque formation with a high level of toxicity causing 
extensive neuronal apoptosis [55–57].

Aß and kinases
Glycogen synthase kinase‑3 beta (GSK‑3β)
Glycogen synthase kinase-3 beta (GSK-3β) is well-known 
for its role in glycogen metabolism, activation of tran-
scription factors and phosphorylation of tau. GSK3 is 
modulated through a variety of pathways including wnt, 
phosphatidylinositide-3 kinase (PI3K) and Akt deacti-
vate GSK-3β by phosphorylating Ser9 [58, 59], increasing 
GSK-3β, in pre-tangles which is closely associated with 
tangle-bearing neurons suggesting a role in tau hyper-
phosphorylation in AD [60–64]. A recent report associ-
ated GSK-3β gene variants with the level of tau and Aβ42 
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in cerebrospinal fluid in AD as well as cognitive function 
[65]. Further in vivo evidence of GSK-3β’s role in AD has 
come from transgenic mouse models over-expressing this 
kinase with a presentation of tau hyper-phosphorylation, 
astrocytosis, and neuronal death [66, 67]. The concurrent 
hyper-phosphorylation of other cellular structures such 
as presinilines, β-catenin and GSK3-cAMP responsive 
element-binding protein also produces some of the path-
ological features of AD [61, 68, 69].

Aβ exposure induces GSK-3β activity, extensive phos-
phorylation of tau and cell death. Aβ inhibits PI3K and 
Akt pathways and inactivates the wnt cascade,. Because 
these pathways eventually deactivate GSK3, their inhibi-
tion will result in hyperactivity of GSK3 [70, 71] (Fig. 2). 
This Aβ-induced GSK-3β hyperactivity triggers the mito-
chondrial fragmentation leading to neuronal apoptosis 
[72]. GSK-3β also interacts with pyruvate dehydrogenase 
(PDH), thereby reducing levels of acetyl-CoA [73].

Mitogen‑activated protein kinases (MAPK)
Aβ affects another intracellular second messenger the 
extracellular signal regulated Kinase (ERK)/MAPK 

pathway [74, 75]. MAPKs are a family of serine/threo-
nine kinases that contribute to the hyperprocessing of 
APP and hyper-phosphorylation of tau associated with 
AD [76, 77]. MAPKs phosphorylate proteins with regula-
tory functions including other kinases, transcription fac-
tors and enzymes [78–80]. Stimulation of MAPK by Aβ 
in a Ras-dependent manner, leads to tau phosphorylation 
[81–84]. It has also been demonstrated that activation of 
MAPK by neurotrophins as well as Aβ induces p35, the 
specific activator of cyclin dependent kinase 5 (cdk5) in 
the cell cycle. Thus another means of damaging the neu-
ron through MAPK activation by Aβ could be re-activa-
tion of the cell cycle, which is considered a lethal event 
for neurons [78–85].

Aß, cytoskeleton and axonal transport
A constant interaction between microtubules and MAPs 
such as tau is a necessary element for axonal transport 
[86]. Tau holds the microtubular tracks in place and plays 
a key role in their stability [87]. When tau is subjected 
to hyper-phosphorylation, it loses the ability to bind to 
microtubules and to maintain their structure, causing tau 

Fig. 1  Cellular trafficking of APP and Aβ. APP cleavage to peptides occurs both in lysosomes after its endocytosis and at the surface of cell mem-
brane. The proteolysis products accumulate intracellularly or are released into extracellular space
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aggregation into paired helical filaments (PHF) and NFTs 
[88]. The number of NFTs is linked to the degree of demen-
tia, suggesting a correlation between NFT, dystrophic neu-
rite formation and neuronal dysfunction [89–91]. It seems 
that interrupting axonal transport will interrupt neuronal 
function and lead to eventual death [92–94].

Deposition of Aβ plaques precedes tau phosphoryla-
tion and exerts a damaging effect upon the cytoskeleton 
giving rise to PHF formation. [41]. Intraneuronal for-
mation of Aβ also happens prior to appearance of PHF, 
making it the upstream step in triggering the neurode-
generative events [95, 96].

Further evidence that Aβ formation precedes PHF for-
mation comes from a tau mutation study when tau muta-
tion produced tau-inclusion tangles but not plaques, 
however, APP or presenilin mutations caused both 
plaques and tangles. Transgenic mice doubly mutant for 
mutant APP and tau have more tangles than mice with 
the single mutant tau transgene [97, 98]. Tau phospho-
rylation occurs through activation of c-Jun N-terminal 
kinase (JNK), a member of MAPK [99]. In a study, amy-
loid injections exacerbated tangle pathology in mutant-
tau mice but why Aβ injections did not stimulate tau 
pathology with wild-type tau is not known [100], when 
other transgenic mice overexpressing wild-type tau 
exhibited tangles [101].

Aβ and apolipoprotein E (apoE)
ApoE is a normal constituent of cells. In the nervous 
system, it acts as the main lipid transport protein with a 
wide variety of roles in intracellular signalling, immune 
modulation, glucose metabolism, lipid movement and 
lipoprotein metabolism [102]. ApoE has been detected in 
the amyloid plaques in AD [103].

The ability of ApoE to interact with Aβ, demonstrated 
its critical role in amyloid deposition and clearance [91, 
102, 104]. The apoE4 allele of ApoE is associated with 
high cholesterol in cardiovascular disease and particu-
larly AD, however, the apoE2 allele confers some protec-
tion against hypercholesterolemia [102, 105, 106]. ApoE2 
and E3 formed stable complexes with Aβ at levels of 20 
fold greater than those occurring with apoE4 [107]. The 
greater affinity of ApoE2 and E3 for Aβ protects neurons 
from neurotoxic effects of Aβ by facilitating the uptake 
of these complexes by apoE receptors. Conversely, apoE4 
accelerates Aβ deposition and progression/growth of Aβ 
seeds to larger Aβ plaques [108, 109].

Aβ, mitochondria and oxidative stress
The central role of Aβ isoforms, in elevating free radi-
cal levels and oxidative stress led to the introduction of 
an Aβ-oxidative stress model for neurotoxicity in AD 
[110–112].

Fig. 2  Aβ and GSK3. Aβ binding to membrane receptors such as insulin receptor (IR) inhibits the activity of Akt and wnt through PI3K inhibition. 
Inactivation of Akt and wnt consequently dephosphorylate GSK3 which causes tau hyper-phosphorylation and microtubular disorganisation
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Post-mortem studies revealed a wide range of 
Aβ-derived mitochondrial dysfunction in AD patients 
[113–115]. Intracellular Aβ can be localized to mito-
chondrial membranes, where it interrupts the normal 
mitochondrial function through blocking mitochondrial 
channels and inhibiting mitochondrial protein activ-
ity. By blocking the electron transport chain, Aβ accu-
mulation leads to an increase in reactive oxygen species 
(ROS), causing oxidative stress [114, 116–118] (Fig.  3) 
which leads to a deregulation of the ROS signalling path-
way in AD [119]. Superoxide radicals, produced due to 
mitochondrial dysfunction oxidate different neuronal 
compartments such as proteins, lipids and DNA [117, 
120]. The evidence of oxidative damage in patients with 
mild cognitive dementia (MCD) shows that the oxida-
tion insult occurs as one of the first steps of AD [121]. 
Chronic oxidative stress inhibits tau dephosphorylation 
by inhibiting tau phosphatase as well as increasing the 
phosphorylation of tau by activating p38 [119].

The other aspect of oxidative stress relates to pro-
tein oxidation. Oxidative modification of proteins is 
important in aging and age-related neurodegenerative 
disorders [122]. Protein oxidation results in protein dys-
function associated with conformational changes. The 
oxidized protein may also have a higher resistance to pro-
teolysis and protein cross-linking and aggregation will be 
increased [123]. The aggregated misfolded proteins then 
get trapped in proteasome’s pore leading to proteasomal 
dysfunction [124, 125]. A vicious cycle of misfolded pro-
tein accumulation is then established.

Aggregated peptides have the potential to initiate oxi-
dative stress through cellular dysfunction leading to cal-
cium accumulation and increased tau polymerization 

[126]. Oxidative stress also elicits an inflammatory 
response [127] through microglial activation [128, 129] 
and release of pro inflammatory cytokines [130], promot-
ing inflammation and invasion of Aβ plaques by astro-
cytes [131] which mature plaques into neuritic plaques, a 
common finding in AD patients.

Aβ and cell cycle
Inappropriate cell cycle activation is an early event seen 
in AD brains [132]. Although adult neurons are con-
sidered to be in a terminally-differentiated state, accu-
mulation of associated cell cycle-related proteins have 
been described in degenerating neurons [133–137]. It 
is assumed that ectopic localization of cyclins, cyclin-
dependent kinases (cdks) and cdk inhibitors are the 
results of abortive attempt by neurons to re-enter the cell 
cycle. Re-entering the cell cycle is a consequence of mito-
gen factors and perhaps is promoted by the recruitment 
of mitogenic signal transduction mechanisms [138, 139]. 
Subjecting neurons to Aβ, forces the cell to re-enter the 
cell cycle, cross the G1/S phase transition and begin de 
novo DNA synthesis before apoptotic death occurs [140–
142], this could be inhibited by cell-cycle inhibitors [143, 
144]. These findings led to the hypothesis that vulner-
able neurons re-enter the cell cycle and proceed through 
S phase, but then abort somatic division and eventually 
degenerate [145].

Parkinson’s disease (PD)
Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder among the adults. The pro-
gressive impaired motor function in patients with PD is 
an outcome of dopaminergic neuronal loss particularly in 
the substantia nigra (SN) [146]. A common finding from 
degenerating dopaminergic cells includes intracellular 
inclusions of particles, known as Lewy bodies (LBs) [147, 
148]. The major component of LBs is the fibrillar form of 
α-Syn and this suggests the role of protein misfolding in 
Parkinson’s pathology [149, 150].

α‑Synuclein structure and toxicity
α-Syn is an acidic synaptic protein (14  kDa), which is 
expressed in a wide range of tissues including the brain 
[151–153]. α-Syn retains the ability of building a β-sheet 
structure after prolonged incubation due to its posses-
sion of a hydrophobic region of amino acids from 66 to 
95 [154]. As a vesicle associated protein, the main func-
tions of α-Syn are regulating membrane stability, neu-
ronal plasticity, synaptic rearrangement, controlling 
vesicular trafficking and neurotransmission through a 
chaperon-like function to other proteins [134, 155–159]. 
Due to the ability α-Syn to interact with tubulin, α-Syn 
also shows a microtubule-associated activity [160–162].

Fig. 3  Aβ and mitochondrial dysfunction. Attachment of Aβ to inner 
membrane of mitochondria alters the different aspects of mitochon-
drial activity. Blocking electron chain through reducing complex IV 
activity, damaging mitochondrial DNA (mtDNA), inhibiting tricarbo-
xylic acid (TCA) cycle and ATP production, enhancing cytochrome 
c release and activation of apoptotic pathways, and increasing the 
mitochondria production of ROS are some of the examples
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Lesions from autopsied PD brains show a marked 
increase in S129 hyperphosphorylated α-Syn [163] which 
creates high molecular weight α-Syn with a high poten-
tial for self-assembly. This makes it a likely candidate to 
be a toxic protein in the event of aggregation [164, 165]. 
α-Syn could also be phosphorylated on Tyr39 with no 
link between this phosphorylation and pathological fea-
tures [166].

Fibrillar α-Syn as the main component of LBs, is pre-
sent in many dying cells in PD [167], however, oligomeric 
α-Syn also possesses enough toxicity to damage neu-
rons [168]. The process of misfolding of α-Syn has been 
shown to be accelerated by many metals such as copper 
[169] and ferric ion and also by elevated intracellular 
cytochrome c [170]. Conformational changes leads to 
protein misfolding reduce the ability of α-Syn to inter-
act with the vesicular trafficking and modulating neuro-
transmission [171–174]. Conformational changes and 
consequent aggregation α-Syn also triggers a cascade of 
neuronal response such as autophagy, one of the main 
pathways of α-Syn degradation [175, 176].

α‑Synuclein and MAPK
Regulation of MAPK pathway is a downstream effect of 
α-Syn. In neurons, α-Syn binding to MAPK inhibits this 
pathway. In particular, α-Syn binds directly to ERK2 and 
indirectly to Elk-1, which is also an ERK2 substrate [177]. 
Thus α-Syn reduces dopamine transporter (DAT) inser-
tion in the synaptic membranes of axonal terminals [178]. 
α-Syn also decreases MAPK activation through reducing 
the phosphorylation of p38 and down regulating c-fos 
gene [179, 180].

Phosphorylation and accumulation of MAPK elements 
have been reported in PD patients [81, 172]. One of the 
MAPK elements is JNK, that is phosphorylated in PD and 
activates the transcription factor of c-jun. Activation of 
c-jun increases the level of cell death genes expression in 
dopaminergic neurons [82, 181]. JNK also inhibits Bcl-2 
survival protein by activation of pro-apoptotic proteins 
of Bad and Bim [182, 183]. The misregulation of MAPK 
eventually leads to neuronal apoptosis. Inhibiting JNK 
phosphorylation, however, can protect neurons from 
death [184]. Activation of ERK has also been reported in 
glial cells which consequently starts a cascade of inflam-
matory responses and blocking that pathway reduces 
microglial activation [185, 186].

α‑Synuclein and oxidative stress
α-Syn overexpression causes the impairment of mito-
chondrial homeostasis [187] leading to oxidative stress 
and dopamine oxidation [188]. Formation of giant 
mitochondria and laminated bodies, autophagozomes, 

decreased MTT levels, reduction of glutathione and high 
levels of iron, in brain tissue confirmed the presence of 
oxidative stress as a common finding in PD [189–193] 
Oxidative stress affects the Ca2+ shift and balance in 
cytoplasm, leading to stimulation of mitochondrial nitric 
oxide synthase (mtNOS) [194, 195]. α-Syn also has the 
ability of binding to pro apoptotic protein BAD, a mem-
ber of Bcl-2 family [182]. As the result of this attachment, 
Bcl-2 protein is removed from mitochondrial pores, 
allowing cytochrome c to be released from the mito-
chondria. This event triggers neuronal apoptosis dem-
onstrating a link between mitochondrial dysfunction and 
synaptic accumulation of α-Syn in PD [195, 196].

α‑Synuclein and axonal trafficking
α-Syn ability to act as a MAP, allows microtubules to 
maintain their stability, to carry cargos in an energy-
dependent manner, and to facilitate neurotransmitter 
release [159, 161]. Overexpression and phosporylation 
of α-Syn, however, affects the normal function of ER 
and Golgi system. α-Syn directly binds to ER and the 
Golgi apparatus and inhibits the soluble NSF attach-
ment protein receptor (SNARE) complex assembly [197, 
198]. The SNARE complex is made of vesicular SNARE 
proteins (v-SNARE) and target membrane SNARE pro-
teins (t-SNARE). It possesses the ability of self-assembly 
and allows vesicular fusion to cell membrane [199, 200]. 
Blocking this assembly by α-Syn overexpression inter-
feres with neurotransmitter release and reuptake (Fig. 4). 
Consequently, relocating cellular proteins within the cell 
or from the cell toward the membrane and eventual neu-
rotransmission will be disturbed [201]. The eventual out-
come would include protein accumulation inside the cell, 
Golgi system fragmentation, a decrease in neurotrans-
mitter release and neuronal apoptosis [202–204]. α-Syn 
also reduces polymerization of tubulin. Whether reduc-
ing polymerization of tubulin is a direct outcome or an 
indirect one, through generating mitochondrial dysfunc-
tion and lack of ATP for polymerization, the outcome 
represents itself as a disrupted axonal transport and neu-
rite degeneration [20, 203, 205].

α‑Syn and Aβ interaction
Both AD and PD show similar clinical presentations in 
their mid to late stages [206, 207] suggesting the possibil-
ity of interaction between α-Syn and Aβ [25, 144, 208]. 
It has been shown that instead of immediate cell death, 
affected neurons live for several months in a near- func-
tional state [209, 210]. Constant production of both pro-
teins allows continuing protein–protein interaction and 
as a result, a reciprocal induction between α-Syn and Aβ 
could cause a gradual increase in the protein levels of 
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both types, before neurodegeneration commences [144]. 
The PI3K pathway and ApoE could contribute to this 
interaction, as manipulation of PI3K reduced the recipro-
cal elevation of α-Syn and Aβ [144]. Deletion of ApoE in 
α-Syn transgenic mice decreased the levels of Aβ, thereby 
alleviating the onset of disease [211]. More research is 
still required to achieve a complete understanding of the 
underlying mechanisms.

Conclusion
Although the process of neuronal death is a common 
feature in AD and PD, the underlying mechanisms are 
still under investigation. Some aspects of toxicity may be 
specific for a distinct type of neurodegenerative disorder 
however common cellular mechanisms with a substan-
tial overlap underlie the neuronal responses to the toxic 
proteins.

In conclusion, neuronal death in neurodegenera-
tive disorders is not a single-cause event and establish-
ing the exact links between the activation mechanisms 
in response to toxic proteins could open a window for 
promising therapeutic interventions.
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