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Background: The contribution of mitogen-activated protein kinase (MAPK) cascades to plant growth and
development has been widely studied, but this knowledge has not yet been extended to the medicinal plant Salvia
miltiorrhiza, which produces a number of pharmacologically active secondary metabolites.

Results: In this study, we performed a genome-wide survey and identified six MAPKKK kinases (MAPKKKKs), 83
MAPKK kinases (MAPKKKs), nine MAPK kinases (MAPKKs) and 18 MAPKs in the S. miltiorrhiza genome. Within each
class of genes, a small number of subfamilies were recognized. A transcriptional analysis revealed differences in the
genes’ behaviour with respect to both their site of transcription and their inducibility by elicitors and
phytohormones. Two genes were identified as strong candidates for playing roles in phytohormone signalling. A
gene-to-metabolite network was constructed based on correlation analysis, highlighting the likely involvement of
two of the cascades in the synthesis of two key groups of pharmacologically active secondary metabolites: phenolic

Conclusion: The data provide insight into the functional diversification and conservation of MAPK cascades in S.

Keywords: Salvia miltiorrhiza, Gene family, MAPK cascades, Co-expression analysis, Phenolic acid synthesis,

Background

Plants have developed diverse strategies to protect them-
selves from pathogens and environmental stress, many
of which are based on the production of secondary me-
tabolites [1-4]. Metabolic engineering of natural product
pathways is a feasible strategy over the years for en-
hancement of plant disease resistance [5]. Some of these
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compounds also have beneficial nutraceutical or
pharmacological properties (classic bacteriostatic, anti-
biotic, antivirulence, anticancer, anti-diabetic, ect.) [6-9].
It has been estimated that at least 30% of therapeutic
compounds in current use have been derived from medi-
cinal plants [10]. The root of S. miltiorrhiza has a long
history of use in Chinese herbal medicine as a source of
compounds that are effective for curing a range of ill-
nesses [2]. Its major bioactive compounds fall into two
groups: hydrophilic phenolic acids and lipophilic
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tanshinones [9]. The former are synthesized in planta
through both the phenylpropanoid and a tyrosine-
derived pathways [11, 12], while the latter are generated
through the cytoplasmic mevalonic acid pathway and
the plastidial 2-C-methyl-D-erythritol-4-phosphate path-
way [13]. Treating plants with the phytohormones have
been shown to promote the accumulation of both phen-
olic acids [11] and tanshinones [13].

Mitogen-activated protein kinase (MAPK) cascades are
a universal characteristic of eukaryotic cells. These cas-
cades involve the activity of four distinct types of ki-
nases: MAP kinases (MAPKs), MAPK kinases (MAPK
Ks), MAPKK kinases (MAPKKKs) and MAPKKK kinases
(MAPKKKKs) [14—16]. MAPK cascades are important
for plant growth [17], development [18—20] and defence
against biotic [21, 22] and abiotic stress [23-25]. Fur-
thermore, MAPK cascades are very likely to be involved
in secondary metabolism, including camalexin [26], in-
dole glucosinolate [26], nicotine [27], anthocyanin [28]
and phytoalexin [29]. It has been reported that methyl
jasmonate (MeJA), salicylic acid (SA), gibberellic acid
(GA) and abscisic acid (ABA) regulate the accumulation
of phenolic acids [11] and tanshinones [13] in S. miltior-
rhiza. Furthermore, the MAPK cascade regulates the
biosynthesis and signalling pathways of SA [22, 29, 30],
JA [31-33], ABA [25, 31, 34-37], auxin (AUX) [17, 19]
and ethylene (ETH) [17, 26]. The acquisition of an
increasing number of whole plant genome sequences
has revealed large numbers of genes encoding the
component enzymes of MAPK cascades. For example,
a total of 75 MAPKKK [38], 8 MAPKK [39], and 17
MAPK [40] genes have been reported in the rice gen-
ome, whereas the Arabidopsis thaliana genome con-
tains 10 MAPKKKK, 80 MAPKKK, 10 MAPKK and 20
MAPK genes [15, 16]. It was also reported that 74
MAPKKK, 9 MAPKK, and 19 MAPK genes can be
found in maize [41-43], whereas 89 putative
MAPKKK, 6 MAPKK, and 16 MAPK genes are found
in tomato [44, 45]. The present study takes advantage
of the availability of a complete S. miltiorrhiza gen-
ome sequence [46] to document the species’ MAPK
cascade gene content and was undertaken because
these genes are likely important for the synthesis of
its bioactive secondary metabolites. Their identifica-
tion may lead to the application of metabolic engin-
eering with a view to improving the productivity of
the S. miltiorrhiza plant.

Results

The MAPK cascade enzymes encoded by S. miltiorrhiza
The HMMER-based search of the S. miltiorrhiza gen-
ome sequence [46] identified a total of six
SmMAPKKKKs, 83 SmMAPKKKs, nine SmMAPKKs and
18 SmMAPKs using 10 MAPKKKKs, 80 MAPKKKs, 10
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MAPKKs and 20 MAPK sequences from the A. thaliana
genome as queries [15, 16]. The relevant sequences and
gene ID are provided in Additional file 1 Table S1, while
their key structural and other details are provided in
Additional file 1 Table S2. The length of the predicted
MAPKs ranged from 353 (SmMAPK7) to 690
(SmMAPK10) residues, that of the MAPKKs from 289
(SmMMAPKKS5) to 521 (SmMAPKKS3) residues, that of
the MAPKKKs from 185 (SmMAPKKK49) to 1401
(SmMMAPKKK3) residues and that of the MAPKKKKs
from 456 (SmMAPKKKK®6) to 837 (SmMAPKKKKS5)
residues; the molecular weights in the full set of poly-
peptides ranged from 32.4kDa (SmMAPKKS5) to 155.3
kDa (SmMAPKKKS3), and their plI ranged from 4.49
(SmMAPKKK38) to 9.77 (SmMAPKKK14).

The phylogeny and exon-intron structure of the MAPK
cascade genes

The alignment of S. miltiorrhiza sequences with those of A.
thaliana revealed that the SmMAPKs fell into four subfam-
ilies (A through D), the SmMAPKKs into five subfamilies (A
through E), the SmMAPKKKs into three subfamilies (MEKK,
ZIK and RAF) and the SmMAPKKKKs into two subfamilies
(GCK-III and -VI) (Fig. 1). The RAFs constituted the largest
single subfamily (38 members), followed by the MEKKs (36
members); only a single SmMAPKK was present in each of
subfamilies B, D and E, as was the case for subfamily
D of the SmMAPKs. The variation in the exon-intron
structure of the S miiltiorrhiza genes is illustrated in Fig. 2. The
number of introns present among the SmMAPKs varied from
one (SmMAPK9, SmMAPKIO0) to 11 (SmMAPK6, SmMAPK11,
SmMAPK14, SmMAPKI8); among the SmMAPKKs from zero
(SmMAPKK4, SmMAPKKS, SmMAPKK7 and SmMAPKK9) to
eight (SmMAPKK3); among the SmMAPKKKs from
zero (SmMAPKKK7, SmMAPKKKS, SmMAPKKKI3,
SmMAPKKK19, SmMAPKKK?21, SmMAPKKK?23,
SmMAPKKK24,  SmMAPKKK25, — SmMAPKKK34,
SmMAPKKK38, SmMAPKKK39 and SmMAPKKK40)
to 19 (SmMAPKKK3) and among the SmMAPKKKKs
from zero (SmMAPKKKK®6) to 23 (SmMAPKKKKS).
The SmMAPKs in subfamily A all harboured six
exons and showed similar gene lengths to one an-
other, while the subfamily C members all harboured
two exons.

Motif content of SMMAPK enzymes

All of the predicted gene products included various
characteristics associated with MAPK cascade enzymes.
The SmMMAPKSs shared the conserved TxY motif (Fig. 3a)
contained within the activation loop lying between sub-
domains VII and VIII as well as the (LH)DxxDE(P) x
CD domain (Fig. 3b), which acts as the MAPKK docking
site. The TxY motif in the members of subfamilies A, B
and C was represented by TEY, and in subfamily D, it
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Fig. 1 The phylogeny of the SMMAPK gene family. The dendrograms were constructed using the neighbour-joining method applied to full-
length A. thaliana and S. miltiorrhiza MAPK sequences. Bootstrap (500 replicates) values appear at each branch. a MAPK sequences, b MAPKK
sequences, ¢ MAPKKKK sequences, d MAPKKK sequences
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Fig. 2 The intron/exon structure of the SMMAPK gene family members.
a MAPK sequences, b MAPKK sequences, ¢ MAPKKKK sequences, and d
MAPKKK sequences. Exons are shown as yellow boxes and introns with a
simple line. Untranslated regions are indicated by thick blue lines. 0, 1, and
2 represent the intron phase. Gene models are drawn to scale

was represented by TDY. Each of the SmMAPKKs har-
boured a D(L/I/V) K motif along with the consensus se-
quence S/T-x5-S/T (Fig. 3c). The latter motif was
conserved across all members of subfamilies A through
D, but the S/T site was altered to G/A in the subfamily
E member SmMAPKKS8. Among the MAPKKKs, the
MEKKs all retained the conserved signature sequence
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G(T/S)P-x-(W/Y/F) MAPEV, the RAFs retained the GT-
x-x-(W/Y) MAPE sequence, and the ZIKs retained the
GTPEFMAPE(L/V) Y sequence (Fig. 3d-f). The two mo-
tifs shared by the SmMMAPKKKKs were H-R/H-D-L/I/V-
K-x-x-N/S (subdomain VIb) and G-T/S-x-x-W/Y/F-M/
L/-A/S/P-P-E (subdomain VII) (Fig. 3g).

A MEME-based analysis of the full set of sequences con-
firmed the identity of each group. Thus, nine out of 16 mo-
tifs were common to and conserved in all of the SmMMAPK
group A proteins, 10 out of 12 in the SmMMAPKK group C
proteins, 11 out of 20 in the SmMMAPKKK ZIKs and 9 out
of 13 in all of the GCK-IV SmMAPKKKKs (Fig. 4 and Add-
itional file 2 Figure S1). Seven motifs were conserved across
all of the S. miltiorrhiza MAPKKKK proteins, including
motifs #1 (G-T/S-x-x-W/Y/F-M/L/-A/S/P-P-E) and #3
(H-R/H-D-L/I/V-K-x-x-N/S). All  of the GCK-IV
MAPKKKK proteins except for SmMMAPKKKK4: retained
N-terminal motif #5, and all except for SmMMAPKKKK6
retained C-terminal motif #11 (Fig. 4d and Additional file 2
Figure S1). Seven motifs (#1 through #5, #7 and #8) were
reasonably well conserved among the SmMAPKs; motifs
#9, #12 and #14 were only found in subfamily D members,
and motif #15 was only found in subfamily C members
(Fig. 4a). There were three conserved motifs (#1, #2 and #6)
in the SmMMAPKKs, but motif #9 was a subfamily C-
specific motif (Fig. 4a). Motif #5 was reasonably well con-
served among the SmMAPKKKs (Fig. 4c). There were
seven conserved motifs (#1 through #5, #7 and #13) in the
SmMAPKKKKSs, but motifs #6 and #10 were only found in
subfamily GCK-IV (Fig. 4d). The sequences 1500 nt up-
stream of the S. miltiorrhiza MAPK cascade genes har-
boured an array of cis acting elements (Additional file 1
Table S3).

Coexpression of genes responsible for the synthesis of
phenolic acids and tanshinones

The co-expression analysis directed toward genes (the
information on enzymes and transcription factors is
listed in Additional file 1 Table S4 and Table S5)
encoding key phenolic acid pathway enzymes
(SmC4H1, SmCYP98A 14, SmHPPRI1, SmPALI,
SmRASI and SmTATI), transcription factors
(SmAREB1, SmbHLHI48, SmbHLH37, SmbHLHS5I,
SmERFI115, SmERFIL1, SmMYBI111, SmMYBS36,
SmMYB39, SmMYC2a, SmMYC2b, SmPAP1 and
SmTTGI) and members of the SmMMAPK family re-
vealed two major clusters: one of these grouped
SmAREB1,  SmERF115, SmMYB39, SmMYC2b,
SmPAL1, SmPAPI and SmTTGI1 with SmMAPK2 and
SmMAPKS  through SmMAPK10, while the other

comprised SmbHLH148, SmbHLHS51, SmbLH37,
SmC4H1, SmCYP98A14  SmERFIL1, SmHPPRI,
SmMYBI11, SmMYB36, SmMYC2a, SmRASI and
SmTATI together with SmMAPK3, SmMAPK4,
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SmMAPKI3 and SmMAPKI5 through SmMAPKIS
(Fig. 5a). The former group formed two subclusters,
one comprising SmERFI115, SmMYB39 and SmPAPI
along with the SmMAPK members SmMAPKI,
SmMAPK?2, SmMAPK6 through SmMAPKO9,
SmMAPKII and SmMAPKI2; the other linked
SmAREB1, SmMYC2b, SmPALI and SmTTGI with
SmMAPKS and SmMAPKIO (Fig. 5a). The second

SmHMGR2, SmIPII and SmKSLI), transcription factors
(SmAREBI, SmbHLHIO, SmbHLHI48, SmERFIIS,
SmERFIL1, SmERF6, SmMYB36, SmMYBY9, SmMYC2a,
SmMYC2b and SmWRKYI) and members of the
SmMAPK family revealed a transcriptional relationship
between SmMAPKI, SmMAPK2, SmMAPKS through
SmMAPKI2, SmAREBI, SmCPS1, SmCPS2, SmCY-
P76AHI, SmCYP76AH3, SmCYP76AK1, SmDXR,

major cluster formed four subclusters; in one of these
subclusters, SmMAPK3 was grouped with SmbHLHS51,
SmC4H1, SmCYP98A14, SmERF11, SmHPPRI,
SmMYBI11, SmMYC2a, SmRASI and SmTATI, while
the other important subcluster grouped SmbHLH37
and SmbHLHI48 with SmMAPK4, SmMAPKI3 and
SmMAPKI1S5 through SmMAPKI7 (Fig. 5a). The simi-
larity between the transcriptional behaviour of
SmbHLH51 and SmMAPK3 implies that, given that
SmbHLHS1 has been identified as a positive transcrip-
tional regulator of phenolic acid synthesis [47],
SmMAPK3 very likely functions within the phenolic
acid synthesis pathway (Fig. 5a).

The coexpression analysis directed toward genes en-
coding enzymes involved in the synthesis of tanshinones
(SmCPS1, SmCPS2, SmCYP76AHI, SmCYP76AHS,
SmCYP76AK1, SmDXR, SmGGPPS1, SmHMGRI,

SmERFS, SmGGPPS1, SmHMGR2, SmKSL1, SmMYC2
and SmWRKY1 (Fig. 5b). Further linkage was noted be-
tween SmMAPK3, SmMAPK4, and SmMAPK13 through
SmMAPKIS8 and SmbHLH10, SmbHLH148, SmERFILI,
SmERF6, SmHMGR1, SmIPI1, SmMYB36, SmMYB9 and
SmMYC2a (Fig. 5b). The former cluster resolved into
three major subclusters. One of these comprised the
genes encoding enzymes acting throughout the meva-
lonic acid and 2-C-methyl-D-erythritol-4-phosphate
pathways (SmCPS1, SmCYP76AHI, SmCYP76AH3,
SmCYP76AK1, SmDXR, SmGGPPSI, SmHMGR2 and
SmKSLI) along with SmERF115 and the SmMAPK
members SmMAPK1, SmMAPK2, SmMAPK6 through
SmMAPK9, SmMAPKII and SmMAPKI2). The sec-
ond cluster grouped genes encoding two upstream
enzymes (SmHMGR1 and SmiPII) with those encod-
ing seven  transcription factors  (SmbHLHIO,
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SmbHLHI148, =~ SmERFIL1, = SmERF6, SmMYB36,
SmMYB9 and SmMYC2a). Similar patterns of tran-
scription were shown by the gene pairs SmAREBI/
SmMAPKS,  SmWRKY1/SmMAPKIO,  SmERFI115/
SmMAPK2, SmHMGRI1/SmMAPK16, SmbHLHI48/
SmMAPK13, SmbHLH10/SmMAPK14 and SmMYB36/
SmMAPKI8 (Fig. 5b), implying the involvement of
some SmMAPK products in the synthesis of tanshi-
nones. The transcriptional behaviour of SmlIPII,
SmMYB9 and SmMAPK3 was also quite similar.

As shown in Fig. 5, the expression of SmMAPKI14
(Group D) in different tissues/treatments was not
significantly different. In addition, some gene expres-
sion preferences in different tissues/treatments could
be observed from RNA-Seq data. For example, the
expression of SmMAPK4 (Group B) in different tis-
sues (roots, flowers and leaves) and treatments
(MeJA and YE) was more obvious than that under
treatment with SA. Several group D members
(SmMAPKI13, SmMAPKI5 and SmMAPKI17) showed
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Fig. 5 Heat maps illustrating patterns of gene coexpression. Genes encoding (a) key phenolic acid pathway enzymes, transcription factors and
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Transcript abundance was estimated in the roots, leaves and flowers of S. miltiorrhiza plants, some of which were exposed to salicylic acid, methyl
jasmonate or yeast extract. Pearson correlation coefficient (PCC) values were calculated for these genes. Blue: low abundance, red:
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higher gene expression levels in roots than in the
treatments and other tissues, and SmMAPKI8 pre-
sented higher gene expression levels in flowers and
leaves and under SA treatment. Interestingly, gene
members in group A (SmMAPKI, SmMAPK2 and
SmMAPK3) presented higher expression levels than
those in the other groups (Group B, Group C, and
Group D). There are also mounting concerns that
the expression of SmMAPK3 in the roots and under
treatment with MeJA, YE and SA is biased. In con-
trast, the expression of SmMAPKI in roots was
lower than that under the treatments and in other
tissues, and the expression of SmMAPK2 was re-
duced after short-term treatments. This means that
gene members in group A show complex responses
to hormone treatments and complex regulatory
mechanisms of phenolic acid and tanshinone synthe-
sis under hormone treatments.

Coexpression analysis of SMMAPKs and likely MAPK
cascades acting in S. miltiorrhiza

The results of the coexpression analysis of the
SmMAPKs family are shown in Fig. 6a, and the inter-
action network of the MAPK cascades is presented in
Additional file 2 Figure S2. Based on the situation in A.
thaliana, the expectation was that there would also be
two MAPK cascades in S. miltiorrhiza, one related to
AtMPK6 and the other to AtMPK3. However, the
analysis implied that there were three, related to
SmMAPKI (84.8% similar to AtMPK6), SmMAPK2
(likely homologue of AtMPK6) and SmMAPK3 (likely
homologue of AtMPK3). The interaction network
shown in Fig. 6b involved two cascades: the partici-
pants in the first were SmMAPKI, SmMAPKK3, four

SmMAPKKKs (SmMAPKKK?29, SmMAPKKKS9,
SmMAPKKK63, SmMAPKKKS2) and four
SmMAPKKKKs (SmMAPKKKK1, SmMAPKKKK3
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through SmMAPKKKKS), and those in the second
were SmMAPK3, SmMAPKK?2, eight SmMAPKKKs

(SmMAPKKKS3, SmMAPKKK32, SmMAPKKK41,
SmMAPKKKS1, SmMAPKKKS?7, SmMAPKKKS9,
SmMAPKKK64 and SmMAPKKKS3) and three
SmMAPKKKKs (SmMAPKKKK3 through

SmMAPKKKKS) (Fig. 6¢). SmMAPK]1 might be acti-
vated by SmMMAPKK3, which is in turn probably acti-
vated by SmMAPKKK?29, SmMAPKKK59,
SmMAPKKK63 and SmMAPKKKS82; these MAPKKKs
could be activated by MAPKKK  kinases
(SmMAPKKKK1 and SmMAPKKKK3  through
SmMAPKKKK5). On the other hand, SmMAPKK2

might be activated by the MAPKK kinases
SmMAPKKKS3, SmMAPKKK32, SmMAPKKK41,
SmMAPKKK51, SmMAPKKK57, SmMAPKKK59,

SmMAPKKK64 and SmMAPKKKS3, which are in
turn probably activated by the MAPKKK kinases

SmMAPKKKK1 and SmMAPKKKK3 through
SmMAPKKKKS5. These proteins  phosphorylate
SmMAPKK2, which in turn phosphorylates SmMAPK3
(Fig. 6¢).

To validate the results of the coexpression analysis, we
used quantitative RT-PCR. A total of 30 genes were
tested, including MAPK cascade genes, enzymes and
transcription factors (TFs). The correlation coefficient of
the R value between the Ct value of the qRT-PCR results
and the log, "™ values from the RNA-seq analysis was
calculated for each gene via Pearson correlation. The re-
sults are presented in Additional file 1 Figure S3. It was
clear that the expression of SmMAPK3 according to
qRT-PCR was similar to that according to RNA-Seq
(Fig. 7). Furthermore, TFs (SmERF6/SmERFI115) and
enzymes  (SmIPl1/SmHMGR2/SmDXR/SmCYP98A14)
showed the same pattern (Fig. 7). In addition, Fig. 7
shows that the pattern differed between the qRT-PCR
and RNA-seq data for some genes, such as
SmMAPK3 in roots, SmMYB36 in roots and leaves
and SmMAPK6 under YE treatment. The minor dif-
ference between the qRT-PCR and RNA-seq might be
caused by two experimental systems. It was normal
also because the site where we harvested the plant
material differed from the site where the materials
used to generat the RNA-seq data were collected.
This is an inevitable error because we could not ob-
tain the same samples used in the other analyses.

SmMAPK3 directly interacts with SmMYBs and SmAREB1

For the Y2H assay, SmMAPK3 was fused to pGBKT7,
and SmMYC2a, SmMYC2b, SmMYB36, SmMYB39,
SmMYB111, SmMYB9b, SmPAPI, SmTTG1, SmWRKY1,
SmAREBI, SmERF6, SmHLHS51, SmHLH10, SmHLH148,
SmHLH37 and SmERFIL1 were ligated to pGADT7 to
generate pGBKT7-SmMAPK3 and pGADT7-TF. The
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Y2H Gold strain yeast cells transformed with BD-
SmMAPK3 and AD-SmMYC2a/SmMYC2b/SmMYB9b/
SmTTGL/SmWRKY1/SmERF6/SmHLH51/SmHLH10/
SmHLH148/SmHLH37/SmERF1L1 could not grow on
SD-LWHA with AbA and X-a-Gal, while the Y2H Gold
strain yeast cells cotransformed with BD-SmMAPK3 and
AD-SmMYB36/SmMYB39/SmMYB111/SmPAP1/
SmAREB1 could grow on SD-LWHA with AbA and
expressed Mell and turned blue in the presence of the
X-a -Gal substrate (Fig. 8).

Discussion

A number of studies have focused on systematically
identifying and characterizing the proteins participating
in plant MAPK cascades [48-51], which affect various
aspects of both growth and development [18, 52, 53],
stress tolerance [23, 24, 34, 54] and the synthesis of sec-
ondary metabolites [17, 26, 33]. The present research
has extended the scope of these studies to the medicinal
species S. miltiorrhiza, made possible by the recent ac-
quisition of its genomic sequence [46]. Our signal out-
come was the identification of six SmMAPKKKKs, 83
SmMAPKKKs, nine SmMAPKKs, and 18 SmMAPK genes
containing conserved domains through genome-wide
analysis. At the same time, cascades involving the par-
ticipation of SmMAPK3 and SmMAPK]I were identified,
which were most likely to be involved in phenolic acid
and tanshinone biosynthesis according to an enzyme
and TF gene-to-MAPK cascade gene correlation
analysis.

Through the exploitation of RNA-seq-based data, it was
possible to correlate the transcriptional profiles of genes
encoding both key enzymes and transcription factors with
members of the SmMAPK gene family. For example, the
profiles of the two enzyme-encoding genes SmHMGRI
and SmIPI1 resembled those of seven transcription factor-
encoding genes (SmbHLHI10, SmbHLHI148, SmERFILI,
SmERF6, SmMYB36, SmMYB9 and SmMYC2a) (Fig. 5b).
Note that SmIPI1 has been identified as a key enzyme in
the terpenoid metabolic pathway [55]; the correlation of
the transcription of SmMAPK3 with that of SmIPI1 sug-
gested that the product of the former gene may be in-
volved in the regulation of tanshinone synthesis. The
product of SmERF6 modulates the synthesis of tanshi-
nones through its binding to a GCC box present in the
promoters of both SmCPSI and SmKSL1 [56], while
SmMYB36 interacts with many MYB-related core ele-
ments (MBSI, MBSII, AAAAAAC(C/G) GTTA, CAAC
TG and AAAAGTTAGTTA) present in the promoters of
various genes encoding enzymes involved in the synthesis
of secondary metabolites [57]. Correlations were also
identified for a set of eight enzyme-encoding genes
(SmCPS1, SmCYP76AHI1, SmCYP76AH3, SmCYP76AKI,
SmDXR, SmGGPPS1, SmHMGR2 and SmKSLI) along
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with three genes encoding transcription factors
(SmAREBI, SmERFI115 and SmWRKYI). SmWRKY1 has
been shown to participate in the regulation of tanshinone
synthesis through its interaction with SmDXR [58]. An-
other set of correlated genes included six genes encoding
transcription factors (SmAREBI1, SmERF115, SmMYB3,
SmMYC2b, SmPAPI and SmTTGI1) and one gene encod-
ing an enzyme (SmPALI) (Fig. 5a). SmAREBI has been

demonstrated to promote the flux of metabolites through
the phenolic acid-branched pathway via its phosphoryl-
ation of SmSnRK2.6 [59]. The overexpression of SmMYC2
promotes the production of Sal B [60]. AtMPK6, which is
phosphorylated by AtMKK3 (MAPK kinase 3), phosphor-
ylates a basic helix-loop-helix transcription factor,
AtMYC2. Furthermore, AtMYC2 binds to the AtMPK6
promoter and regulates its expression in a feedback
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Fig. 8 SMMAPK3 physically interacts with SmMYBs and SmAREB1. Y2H assay to detect the interactions of SMMAPK3 with SmAREB1, SmbHLH10,
SmbHLH37, SmbHLH51, SmbHLH148, SmERF1L1, SmERF6, SmMYB9b, SmMYB36, SmMYB39, SmMYB111, SmMYC2a, SmMYC2b, SmPAPT, SmTTG1
and SmWRKY1. Transformed yeast was grown on selective medium lacking adenine, histidine, leucine, and tryptophan (SD-LWHA) with AbA and
x-a-gal to test protein interactions
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did SmMAPK2, SmMAPK3, SmMAPKS, SmMAPKIO,
SmMAPKI13, SmMAPKI14, SmMAPK16 and SmMAPKI8
with genes encoding either enzymes or transcription fac-
tors associated with the synthesis of tanshinones (Fig. 5)
Nine of the 18 SmMAPK proteins (SmMAPK2,
SmMAPK3, SmMAPK5, SmMAPKS, SmMAPKI10,
SmMAPK13, SmMAPK14, SmMAPK16 and SmMAPK18)
are potentially involved in the synthesis of key secondary
metabolites; six of these proteins (SmMMAPK2, SmMAPKS3,
SmMAPK5, SmMAPK10, SmMAPK13 and SmMAPK18)
potentially participate in the synthesis of both phenolic
acids and tanshinones, while SmMMAPKS is involved in the
synthesis of only phenolic acids, and SmMAPK14 and
SmMAPK16 are involved in the synthesis of nonphenolic
acids but not phenolic acids. It is proposed that
SmMAPK2, SmMAPK3, SmMAPK5, SmMAPK8 and
SmMAPKI10 are positive regulators, while SmMMAPK18 is
a negative regulator of phenolic acid synthesis;
SmMAPK3, SmMAPK5, SmMAPK10, SmMAPK13,
SmMAPK14, SmMAPK16 and SmMAPK18 also act to
promote tanshinone synthesis.

Elicitors such as yeast elicitors, metal ions (Ag*, Cu>*,
Zn**, Co>"), plant growth regulators (SA, ABA, ETH,
MeJA, TAA, NAA, GA, 6-BA, TDZ), and other treat-
ments (polyamines, ultraviolet-B radiation, H,0O,), in-
duce the biosynthesis and accumulation of secondary
metabolites (tanshinone and phenolic acid biosynthesis)
in S. miltiorrhiza [11, 13], especially plant hormones
(MeJA, SA, ETH, ABA, GA) [62-64]. MAPK cascades
have also been implicated in ABA, ETH, JA and SA sig-
nalling [17, 25, 29, 33, 36, 37]. ABA, ETH, JA and SA
are important plant hormones, and their crosstalk is cru-
cial for secondary metabolite biosynthesis during defence
against pathogens and insects [65, 66]. The present ana-
lysis suggested that in S. miltiorrhiza, members of group
A (SmMAPKI, SmMAPK2 and SmMAPK3) show a
higher expression level under treatments with MeJA, YE
and SA than the other groups (Group B, Group C, and
Group D) (Fig. 5), and SmMMAPK1 and SmMAPK3 are
both probably important regulators of secondary metab-
olite synthesis (Fig. 6¢). SmMMAPK3 can physically inter-
act with SmMYB36/SmMYB39/SmMYB111/SmPAP1/
SmAREBI (Fig. 8), which have been reported to regulate
the synthesis and accumulation of secondary metabolites
[57, 59, 67-69]. In A. thaliana, MAPKK9 promotes
ethylene and camalexin biosynthesis [70], and both
AtMPK3 and AtMPK6, which are highly involved in the
plant response to biotic [71-75] and abiotic stress [21,
54, 76] and the regulation of ETH [17, 26, 33], SA [29,
75] and JA [33, 77] production, are activated by the up-
stream regulatory MAPK kinases AtMKK4 and AtMKK5
[78, 79], which are in turn regulated by the upstream
MAPKK kinase AtMEKK1 [80]. Such interspecific simi-
larity in MAPK function and interspecific differences in
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the architecture of MAPK cascades explain the conser-
vation and variability of gene evolution.

To further identify and characterize the functions of
candidate genes (such as SmMAPK3), we plan to
overexpress and conducted RNA interference knock-
down of SmMAPK3 to obtain an initial understanding
of its function in phenolic acid and tanshinone syn-
thesis. Thereafter, we will validate the proteins inter-
acting with SmMAPK3 (either screened in Y2H assays
or reported in the literature). Then, we will verify the
function of the interacting proteins and determine
their upstream and downstream relationships. Ultim-
ately, we will be able to improve the quality of S. mil-
tiorrhiza through genetic modification.

Conclusions

The present study has provided an exhaustive catalogue
of the genes encoding MAPKs, MAPKKs, MAPKKKs
and MAPKKKKSs in S. miltiorrhiza: 18 genes were identi-
fied as putatively encoding MAPKs, nine MAPKKs, 83
MAPKKKs and six MAPKKKKs. The set of
SmMAPKKKKs formed two subfamilies (GCK-III, GCK-
VI), the SmMAPKKKs three subfamilies (MEKK, ZIK
and RAF), the SmMAPKKs five subfamilies (A through
E) and the SmMAPKs four subfamilies (groups A
through D). The identity of each subfamily was sup-
ported by its sequence-based phylogeny, by the exon-
intron structure of its member genes and by the content
of conserved domains/motifs. Most of these genes were
transcriptionally active in the roots, leaves and flowers of
the S. miltiorrhiza plant, although there was some evi-
dence of topological specialization of a few of these
genes. The results of quantitative RT-PCR verified that
the gene coexpression analysis based on the RNA-seq
data was accurate. Group A of the SmMAPK genes ap-
peared to be inducible, not only by elicitors such as yeast
extract but also by phytohormones such as salicylic acid
and jasmonate. They appear to be prominently
expressed during the defence response and the synthesis
of secondary metabolites. According to the Y2H assay,
SmMAPK3 physically binds TFs including SmMYB36,
SmMYB39, SmMYB111, SmPAP1 and SmAREBI, prob-
ably to regulate the synthesis of secondary metabolites.

Methods

Plant materials

Three different S. miltiorrhiza tissues, the roots, flowers,
and leaves, were collected from the botanical garden of
S. miltiorrhiza at Northwest A&F University in Yangling,
China. S. miltiorrhiza hairy roots (0.3 g FW) resulting
from the infection of sterile plantlets with Agrobacterium
rhizogenes (ATCC15834) (WEIDI, Shanghai, China) were
cultured in a 100 ml shake flask containing 50 ml of li-
quid 6,7-V medium on an orbital shaker.
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Gene discovery and bioinformatic analysis

Hidden Markov model profiles were built using
HMMER v.3.1 software [81] (www.hmmer.org) with
the aim of identifying MAPK cascade family se-
quences in the S. miltiorrhiza genome. The query se-
quences from A. thaliana (the sequences and
Accession Numbers are in Additional file 1 Table S6)
comprised 20 genes encoding MAPKs, 10 MAPKKs,
80 MAPKKKs and 10 MAPKKKKs [15, 16]. The ap-
plied E value threshold was 10™°. After the manual
removal of redundant sequences, alignment was per-
formed using the Clustal W program [82]. A phylo-
genetic analysis was conducted using MEGA v7.0
software [83] (www.megasoftware.net) applying the
neighbour-joining method [84] and a 500 replication
bootstrap test. The molecular weight and pl of each
gene product were predicted using the Compute pl/
MW tool mounted on the ExPASy server [85] (www.
expasy.org). The members of MAPK cascades were
also subjected to analysis based on MEME software
[86] (meme-suite.org/tools/meme). Gene structures
were obtained using Gene Structure Display Server
2.0 (gsds.cbi.pku.edu.cn/). Conserved domains were
identified using DNAMAN software (https://www.lyn-
non.com/). Sequences upstream of the transcription
start site (ATG) of the SMMAPKs were derived from
the S. miltiorrhiza genome sequence. The cis-acting
element content of these promoter-containing se-
quences was deduced using the PLACE database
(www.dna.affrc.go.jp/PLACE/signalscan.html).

Coexpression analyses
RNA-seq reads were derived from mRNA extracted
from the leaves, flowers and roots of plants subjected to
three treatments (salicylic acid, methyl jasmonate and
yeast extract). The reads were recovered from the Se-
quence Read Archive (SRA) (www.ncbinlm.nih.gov/sra)
under accession numbers SRR1043998, SRR1045051,
SRR1020591, SRX1423774, SRX2992229, SRX2992230,
SRX2992231, SRX2992232 and SRX2992233. RPKMs,
calculated using the BMKCloud tool (www.biocloud.
net), were used to derive the Pearson correlation coeffi-
cient for each pair of transcripts using the bivariate cor-
relation analysis tool implemented in Excel2010;
correlations > 0.5 were considered significant.
Coexpression/coregulation cluster analysis was per-
formed for samples from 12 different tissues or time
point by MeV (Version 4.9) [87]. The normalized ex-
pression values of the genes were calculated by dividing
their expression levels from different tissues or time
points. Hierarchical clustering (HCL) was performed
using MeV with default settings. The MAPK cascade re-
action map was constructed with Cytoscape 3.6.1.0 soft-
ware (https://cytoscape.org/).
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RNA extraction and gene expression analysis

For the quantitative real-time PCR (qRT-PCR) analysis
of MAPK cascade genes and their coexpressed genes in
S. miltiorrhiza, total RNA was extracted from the leaves,
flowers, and roots of plants and Danshen hairy roots
treated for different times with salicylic acid, methyl jas-
monate and yeast extract [88]. Total RNA was isolated
by using the RNAprep Pure Plant Kit (TIANGEN,
Beijing, China) according to the manufacturer’s instruc-
tions. cDNA was prepared from total RNA by using the
PrimeScript RT reagent kit (TaKaRa, Dalian, Chain). For
every sample, qRT-PCR was performed on a real-time
PCR system (Bio-RAD CFX96, CA, USA) with the TB
Green® Premix Ex TaqTM II Kit (TaKaRa, China).
Gene-specific primers (Additional file 1 Table S7) were
designed with Primer Premier v5.0 software to detect
the expression of relevant genes. The expression levels
of target genes were normalized to those of B-actin and
ubiquitin [59].

Yeast two-hybrid (Y2H) assays

The coding sequence of the SmMAPK3 gene was cloned
into the pGBKT7 vector, and those of SmMYC2a,
SmMYC2b, SmMYB36, SmMYB39, SmMYBIIlI,
SmMYB9b, SmPAP1, SmTTG1, SmWRKYI1, SmAREBI,
SmERF6, SmHLHS1, SmHLH10, SmHLHI148, SmHLH37
and SmERFIL1 were cloned into pGADT7. The plas-
mids were transformed into Y2H Gold yeast cells and
grown on SD-dropout medium lacking leucine and tryp-
tophan (SD-LW) medium. Furthermore, yeast cells were
screened on SD-selection medium lacking adenine, histi-
dine, leucine, and tryptophan (SD-LWHA) with aureo-
basidin A (AbA) and a-galactosidase (X-a-Gal).
Interactions were observed after a 3 d of incubation at
30°C.

Statistical analysis

All statistical calculations were performed using routines
implemented in SPSS v18.0 software; the chosen signifi-
cance thresholds were P < 0.05 and < 0.01.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-07023-w.

Additional file 1 :Table S1. Sequences belonging to the SMMAPK
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phenolic acids and tanshinones in S. miltiorrhiza. Table S5. Transcription
factors regulating the synthesis of phenolic acids and tanshinones in S.
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Primers used for qRT-PCR and vector construction.
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