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Abstract

Background: Gene duplication is prevalent in many species and can result in coding and regulatory divergence.
Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In
maize, WGD resulted in the subgenomes maizel and maize2, of which maizel is considered the dominant
subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still
largely uncharacterized.

Results: To address the consequence of gene duplication on co-expression network divergence, we developed a
gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference
inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted
duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes
were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression
pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene
duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic
genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-
expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not
observed in the co-expression networks — maizel and maize2 exhibit similar levels of intra subgenome
correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome
correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network
modules and the hub genes were not predominantly from any specific subgenomes in maize.

Conclusions: Our work provides a comprehensive analysis of maize co-expression network divergence for three
different types of gene duplications and identifies potential relationships between duplication types, duplication
ages and co-expression consequences.
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Background

Gene duplication exists widely in nature, and can be
divided into whole genome duplication, local (tandem)
duplication, single gene transposition-duplication and
chromosomal duplication [1]. Nearly all higher plants
have experienced at least one whole genome duplication
(WGD) and tandem/segmental duplications are also
widely observed [2-4]. Gene duplication plays a vital
role in evolution [5], and has been suggested to be more
important than point mutations [6]. In vertebrates,
large- and small-scale gene duplications contributed pre-
dominantly to the evolution and adaptive radiation of
species [7]. Moreover, gene duplication followed by the
diversity of genomic content and gene regulation is
probably the major factor resulting in the speciation and
adaptation in plants [8]. The additional copies of genes
can introduce functional redundancy, which may pro-
mote evolutionary processes at either the coding or
the regulatory level [9]. Duplicate copies may be af-
fected by nonfunctionalization, where pseudogenization
occurs, or neofunctionalization, where a novel gene func-
tion emerges, or subfunctionalization, where duplicate
genes partition and share the ancestral gene function in
different tissues and/or developmental stages [1, 6, 9-12].

Transcript abundance variation among duplicate genes
is well-documented [13]. Gene duplication can increase
gene expression diversity within and between species
[14]. Duplicate genes can enable specialized expression
differences in different tissues or developmental stages,
as well as under different biotic or abiotic stress con-
ditions [15-25]. Moreover, WGD was associated with
co-expression regulatory network partitioning in Saccha-
romyces cerevisiae, resulting in more complex regulatory
diversity [26]. In allohexaploid bread wheat, Pfeifer and
colleagues explored the transcriptome dynamics and iden-
tified cell type- and stage-dependent genome dominance,
indicative of genome interplay among different cell types
in a polyploid cereal genome [27]. Thus, following
duplication, there is a trend toward increased com-
plexity and specialization among duplicate pairs and
other interacting genes.

Maize provides a useful system to study the regulatory
divergence of duplicate genes. Maize has undergone a
recent WGD event ~5—-12 Mya followed by whole gen-
ome rearrangement, which combined the duplicated
chromosomes into a diploid genome containing 10 mo-
saic chromosomes [28]. The maize genome is divided
into two distinct subgenomes, referred to as maizel and
maize2 [29]. Based on greater gene retention and higher
expression level among homeologs, maizel exhibits sub-
genome dominance over maize2 [29]. Widespread
neofunctionalization was also observed between homeo-
logs in maizel and maize2 assuming that both ancient
genomes were equal at the moment of WGD [30].
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Purifying selection and dominant gene expression con-
tributed to subgenome evolution after the recent WGD
in maize [31]. In addition to the expression divergence
permitted by WGD in maize, segmental gene duplication
(i.e. tandem duplication and inserted duplication) was
also shown to be related with the differential expression
of maize genes with different tissue expression specific-
ities [32—-35]. However, the landscape of whole-genome
regulatory divergence of maize WGD, inserted and tan-
dem duplication events remains largely unexplored.

Co-expression network approaches provide insights
into the patterns of transcriptome organization and sug-
gest common biological functions for networked genes.
Co-expression edges represent significant expression
level correlations between genes based on expression
profiles across a set of samples. Clusters of genes with
co-expression edges are grouped into shared modules in
the co-expression network. A number of studies have
utilized diverse datasets (microarray data and RNA-seq
data) to identify modules of genes with shared patterns
of expression in plants [36-40]. There is also evidence
that co-expression modules can be conserved across
species [41, 36, 42]. In some cases, genes exhibiting co-
ordinated expression across samples are biologically co-
regulated [43]. Thus, co-expression modules have the
potential to infer the regulatory network of genes. The
availability of a maize genome sequence [44] and ample
transcriptome datasets [45] provides an opportunity to
explore the regulatory (co-expression) outcomes of du-
plicate genes. Of particular interest is the co-expression
divergence of duplicated genes in maize 1 and maize 2
subgenomes. The functional divergence of duplicate
genes, especially the subgenome interplay and divergence
at the co-expression network level, was specifically ad-
dressed in this work.

Here, we developed a gene co-expression network
from a transcriptome dataset consisting of 64 different
tissues and stages from the reference inbred — B73. A
total of 189 co-expression modules with at least ten
genes were identified. We uncovered significant differen-
tiation in co-expression networks among WGD, inserted
and tandem duplications. Although the maizel subge-
nome exhibits dominance in terms of gene retention
and expression level, there is no significant bias of intra
subgenome correlations within either of the two subge-
nomes. Our study provides a genome-wide classification
of co-expression network divergence for different types
of duplicate genes and uncovers similar levels of inter
and intra subgenome interactions after WGD in maize.

Results and discussion

Development of a maize co-expression network

To explore the potential regulatory divergence of dupli-
cate genes in maize, we utilized a RNA-Seq dataset
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(Fig. 1a and Table 1) from 64 different tissues and devel-
opmental stages of the reference inbred B73. These tis-
sues and stages were classified into several distinct plant
structures shown in Fig. 1a. More than 3.5 billion NGS
reads were obtained and mapped to the maize B73 refer-
ence genome version 3 [44]. Over 2.9 billion reads were
mapped to profile the transcriptome variation across
different tissues and stages in maize (Table 1). Co-
expression of genes was determined (see Methods for
details) and several Z score thresholds were tested based
on the biological means and statistical stringency
(Additional file 1: Figure S1). Significant co-expression
relationships (Z score >2.5) were adopted to construct a
co-expression network, which contained 189 moderate-
size modules of 31,811 genes (Fig. 1b). This network was
integrated into the COB database [40] and can be ex-
plored by selecting the SAM dataset [46].
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Gene co-expression networks can be used to identify
modules based on tissue/stage-specific expression pat-
terns. An example is a shoot apical meristem- (SAM) re-
lated expression module (Fig. 1c), which contains several
well-characterized genes Rough sheathl (Rsl) [47, 48],
Knottedl (Knl) [49, 50] and Liguleless3 (Lg3) [51]. A
total of 790 genes were co-expressed with Knl, RsI and
Lg3. There are 254 genes that were co-expressed with all
three genes, while 401 genes were only correlated with
one of the three genes. This SAM-related specific ex-
pression module is composed of genes with a distinct
expression pattern across 64 different tissues/stages
(Fig. 1d). Many (55 %) of the modules with at least 10
genes exhibited significant GO enrichments (Additional
file 2: Table S1). This gene co-expression network pro-
vides a resource to explore the regulatory divergence of
duplicate genes in maize.
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Fig. 1 A co-expression network constructed in maize. a The distribution of uniquely-mapped reads in each tissue/stage. Detailed information on
each tissue and developmental stage is available in Table 1. b A gene co-expression network for maize, including 189 modules with 31,811 genes.
The co-expression network can be explored at the online database [46]. The blue module in the co-expression network shows a shoot apical
meristerm specific sub-network. ¢ A shoot apical meristem (SAM) module involving well-known SAM-expressed genes. Each node represents one
gene, while each edge (line) linking two nodes indicates a significant co-expression correlation. Kn1, Rs1 and Lg3 represent the Knotted1, Rough
Sheath1 and Liguleless3 genes, respectively. The size of gene labels is in accordance with the node size, which is further determined by the
number of co-expressed genes. d The tissue-specific expression pattern of the SAM-specific module shown in C. Each row of the heatmap (feft
panel) indicates one tissue/stage and each column represents one gene. Each line of the plot (right panel) represents one gene; the red line
shows the average scaled expression level across all tissues/stages
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Table 1 Transcriptome Datasets used in our study

ID  Tissues/Stages Tissue # Total % contaminating % bases >q20 Uniquely mapped % reads in Reference
classification reads adaptor reads in FGS FGS gene
sequences gene space space
1 Trans SAM related - 22994564 524 95.87 17664753 76.82 [63]
embryo
2 M SAM related - LM 33567585 3.66 97.70 18748653 5585  [63]
31 SAM related - 39027020 211 98.14 25877026 66.31 [63]
embryo
4 L4 SAM related - 31676873 3.31 98.10 24636049 77.77 [63]
embryo
5 Col SAM related - 41066790 2.95 98.05 27532949 67.04 [63]
embryo
6 V5_Shoot_tip SAM containing 37966015 549 96.71 31957110 84.17 [45]
7 V3_Stem and SAM SAM containing 75700900 7.24 90.86 58077428 76.72 [45]
8 V1_4D_PE_Stem_SAM SAM containing 68096357 5.66 95.80 58736028 86.25 [45]
9  V5_First_elonagetd_internode stem 50620425 542 96.78 42021210 83.01 [45]
10 V9_Fourth_elongated_internode stem 49883803 468 96.64 42811552 85.82 [45]
11 V1_4D_PE_Primary_root root 34338211 538 96.03 28431679 82.80 [45]
12 6DAS_GH_Primary Root root 75974682 7.89 9481 58789326 77.38 [45]
13 tassel_stgl tassel 41685877 1.38 99.38 37715842 90.48 [64]
14 tassel_stg3 tassel 44907570 1.60 99.08 39810029 8865  [64]
15 tassel_stg2 tassel 33527176 1.28 98.97 29884294 89.13 [64]
16 R1_Anthers tassel 50390993 6.51 9522 42255501 83.86 [45]
17 V13_Immature_tassel tassel 67777936 4.83 96.86 57328334 84.58 [45]
18 V18_Meiotic_tassel tassel 90322080 417 96.99 76409461 84.60 [45]
19 V18_Immature_cob ear 63065877 4.27 96.92 51946957 8237 [45]
20 ear_tip ear 19469355 3.85 9791 17259171 8865  [64]
21 ear_mid ear 22832854 1.66 9869 20181747 8839  [64]
22 ear_base ear 22257472 2.06 99.34 19599692 88.06 [64]
23 R1_Pre-pollination_cob ear 78890387 3.61 97.56 65827854 83.44 [45]
24 R1_Silks ear 85297444 347 97.73 73722387 86.43 [45]
25 16DAP_Whole_seed seed 36090184 5.88 96.18 30262739 83.85 [45]
26 24H_Germinating Seed seed 67115301 9.53 93.24 50590975 75.38 [45]
27 14DAP_Whole_seed seed 57197138 8.00 94.15 49994899 87.41 [45]
28 10DAP_Whole_seed seed 59980127 6.77 95.05 51983114 86.67 [45]
29 12DAP_Whole_seed seed 55057984 751 94.26 47658798 86.56 [45]
30 18DAP_Pericarp seed 45315693 8.06 94.50 37642629 83.07  [45]
31 2DAP_Whole_seed seed 50626444 7.31 94.38 43151312 8523 [45]
32 18DAP_Whole_Seed seed 54296830 9.77 9249 47308022 8713 [45]
33 6DAP_Whole_seed seed 53677071 10.33 92,65 45188276 84.19  [45]
34 8DAP_Whole_Seed seed 58148634 10.14 92.10 48258631 82.99 [45]
35 20DAP_Whole_Seed seed 76914729 7.66 94.53 60236045 7832 [45]
36 22DAP_Whole_Seed seed 71960325 836 93.25 61230630 85.09  [45]
37 24DAP_Whole_Seed seed 92168996 7.53 94.03 80572513 8742 [45]
38 4DAP_Whole_Seed seed 100145919 822 93.97 84635434 84.51 [45]
39 14DAP_Endosperm endosperm 47165528 574 95.93 41130552 87.20 [45]

40 16DAP_Endosperm endosperm 43133667 2417 81.93 36465697 84.54 [45]
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Table 1 Transcriptome Datasets used in our study (Continued)
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41 24DAP_Endosperm endosperm 44105309
42 22DAP_Endosperm endosperm 50805946
43 20DAP_Endosperm endosperm 73033574
44 18DAP_Endosperm endosperm 71722169
45 12DAP_Endosperm endosperm 105002559
46 Pro embryo 29413276
47 16DAP_Embryo embryo 42474548
48 20DAP_Embryo embryo 46773334
49 22DAP_Embryo embryo 54593430
50 18DAP_Embryo embryo 66441077
51 24DAP_Embryo embryo 69915678
52 VT_Thirteenth_Leaf leaf 37375422
53 V9_Eleventh_Leaf leaf 34439420
54 R2_Thirteenth_Leaf leaf 44695525
55 V9_Thirteenth_Leaf leaf 44205877
56 V9_Eighth_Leaf leaf 50771168
57 V9_lmmature_leaves leaf 43514876
58 V1_4D_PE_Pooled_Leaves leaf 52523629
59 V3_Topmost_leaf leaf 55571667
60 V7_Bottom_of_transition_leaf leaf 53754587
61 V5_Bottom_of_transition_leaf leaf 62309853
62 V5_Tip of stage-2 Leaf leaf 79560349
63 V7_Tip_of_transition_leaf leaf 84671628
64 6_DAS_GH_Coleoptile leaf 121128249

6.98 95.06 39097597 88.65 [45]
839 93.89 44051966 86.71 [45]
8.58 93.76 56588796 7748 [45]
9.68 92.92 62724952 87.46 [45]
378 97.71 90746296 86.42 [45]
414 96.73 12517310 4256 [63]
25.27 81.01 35238795 82.96 [45]
8.18 93.69 39847251 85.19 [45]
8.38 94.22 46407023 85.00 [45]
8.93 93.22 55947651 84.21 [45]
7.27 94.61 59151359 84.60 [45]
14.22 88.85 28643636 76.64 [45]
9.38 92.76 29562400 85.84 [45]
11.87 9131 35886544 80.29 [45]
14.04 89.31 36100685 81.66 [45]
13.85 89.38 42468259 83.65 [45]
25.26 81.13 35013880 80.46 [45]
8.80 9361 44510623 84.74 [45]
6.22 96.08 46448356 83.58 [45]
5.08 96.09 46018705 85.61 [45]
504 97.24 53863310 86.44 [45]
6.88 94.70 63185974 7942 [45]
519 95.87 71020587 83.88 [45]
643 94.92 103474057 8543 [45]

Identification of duplicate genes in maize

The Needleman-Wunsch algorithm with BLOSOM62
scoring matrix implemented in NCBI blast package [52]
was used to identify paralogous duplicate gene pairs (See
Methods) among the 39,323 annotated maize genes from

the maize reference genome version 3 [44]. In total,
130,485 duplicate pairs were classified as whole genome
duplications (WGD), local tandem duplications (tandem)
or single gene insertions (inserted) based on grass pan
genome synteny blocks [53] (Fig. 2a-b and Additional
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Fig. 2 Identification of duplicate genes and their relationship with duplication age. a Schematic diagram of duplication types in the maize
genome relative to sorghum. Duplications were classified into three major patterns: whole genome duplication (WGD), tandem duplication and
inserted duplication (located in non-syntenic positions). Boxes represent genes and the grey area shows the homologous relationship of genes
between maize subgenomes or between species. “Other region” refers to a non-syntenic genomic location. b The number of duplicate gene pairs
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file 3: Table S2). Genes from inserted duplications are
prevalent in maize, which may be due to the widespread
transposon elements and transposition events in the
maize genome [44]. The rate of synonymous mutations
(dS) was used as a proxy for duplication age for each
gene pair (Fig. 2c). Duplicate genes from WGD have the
lowest mean dS and smallest variance, as expected with
a single WGD event and subsequent divergence.
Inserted duplicates exhibit a higher mean of dS, indicat-
ing inserted duplication occurred earlier than the recent
WGD and tandem duplications (P <= 2.2e-16), while
tandem duplicates show a higher variance, implying that
they occurred continually over a long period of time
(Fig. 20).

Co-expression network divergence of duplicate genes
Gene duplication, which generates functional redundancy,
can allow duplicates to diverge in a coding sequence or
expression-level manner [9]. These duplicate divergences
could play an important role in species evolution and en-
vironmental adaptation [1, 5, 8, 12]. To dissect these di-
vergences, we examined expression patterns of the
duplicate genes in the co-expression network. Maize
provides an ideal system to study the co-expression
network divergence of duplicate genes because of the
clear history of “WGD” [28, 29] and ample available
transcriptome datasets [45].

The duplicate pairs were classified into several types
based on the relative co-expression relationships of both
genes (Fig. 3a). For each pair of duplicate genes (genel
and gene2), two statistics were determined, the propor-
tion of common neighbors in the genel co-expression
module and the proportion of common neighbors in the
gene2 co-expression module. These two proportions
were then used to characterize each duplicate gene pair
(Fig. 3a). Four patterns of relative co-expression relation-
ships were classified: type I — completely overlapping
edges; type II- partial overlap of edges; type III - minimal
overlap of edges; and type IV — non-overlapping edges
for the pair (Fig. 3a). In addition, two other types of pairs
were classified: type V — one gene without edges; and
type VI — no edges for both members in the pair
(Fig. 3a). The remaining pairs of duplicates genes, which
could not be classified into any of the above six co-
expression patterns but with at least 10 edges for both
duplicate genes, were designated as “unclassified”. About
11 % of the duplicate pairs had no neighbors for either
one or both of the members of the pair (types V and VI).
The majority (56 %) of the genes that had edges for both
members of the pairs have little or no overlap of edges
(type IV). Duplicate genes from all six distinct co-
expression groups exhibit significant functional GO en-
richment (Additional file 4: Table S3). The duplicate
genes with type I co-expression show strong GO
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enrichments in sexual reproduction, response to oxida-
tive stress and response to chemical stimulus, while type
VI is enriched for transcriptional regulators (Additional
file 4: Table S3). Interestingly, genes from type IV to VI,
which show extreme co-expression difference between
duplicates, have GO enrichment of responses to envir-
onmental changes. Taken together, our co-expression
network allowed us to classify duplicate genes in maize,
providing a resource to understand potential gene regu-
latory divergence after gene duplication.

The relationship between co-expression patterns and
duplication types was investigated. The WGD gene pairs
were most enriched in types I, II III, and the unclassified
group, and are depleted in types IV and V, suggesting
that many WGD pairs have common neighbors for both
genes. The tandem pairs were enriched for type I genes
with completely overlapping co-expression neighbors
(Fig. 3b). Although duplicate pairs classified as inserted
were not significantly enriched in any of the co-
expression groups, they are slightly depleted in groups I,
II, III, VI and unclassified, and slightly increased in
group IV co-expression groups, suggesting that inserted
pairs tend to have one or both members with no
strong co-expression relationships or that these pairs
lack common neighbors. The association between du-
plicate co-expression network divergence and duplica-
tion types is consistent with the results in rice and
Arabidopsis [13, 18]. These results agree with the sce-
nario where whole genome duplicates tend to main-
tain intact promoter regions and further express both
copies, while duplicate genes from “inserted” duplica-
tion events are prone to lose promoter regions and
reduce the correlated expression of duplicates [54].
Our result is also in agreement with the DNase I
footprint variation between WGD and tandem dupli-
cate genes in Arabidopsis, where whole genome du-
plicates have more footprints than do tandem
duplicates and further allow whole genome duplicates
to form more complex regulatory networks than tan-
dem duplicates [55].

We also examined the relationship between co-
expression patterns and duplication age, which was
estimated using synonymous mutations (dS). The dif-
ferent patterns for co-expression relationships of the
duplicate genes exhibit differences in duplication age
(Fig. 3c). Types I, II and III (together) tend to have
younger duplicates (P < 2.2E-16, compared to types IV
and V). Type V has slightly older duplicates while
type IV has the oldest duplicates. This may reflect
that older duplications are more likely to have di-
verged in co-expression partners as type IV has the
most divergent co-expression partners. Surprisingly,
the youngest duplications seemed to be enriched for
type VI. This may be due to duplicates from the
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youngest duplications lacking the time to set up the
co-expression network with other functional genes.
Overall, this result indicates that duplication age may
play a role in the co-expression partitioning of dupli-
cate genes. The longer duplicate pairs are retained,
the more likely the breakdown and partitioning of
their shared co-expression network.

Besides the exploration of co-expression divergence
from a biological angle described above, we also
employed metrics from graph theory to measure co-
expression divergence in terms of the edge number in
the shortest path between duplicates (a path with
minimized weights of its constituent edges between
two nodes), node clustering coefficient (a measure of
how close its neighbors are to being a complete
graph) and local node connectivity (the minimum
number of edges needed to remove to eliminate all
paths from one gene to its duplicate counterpart).
Consistently, duplication types were related to co-
expression divergences (Additional file 5: Figure S2A, B
and C). WGD duplicates were more likely to be connected
in the co-expression network, while duplicates from
inserted duplication tended to be singletons. However,
tandem duplicates showed more similarity to inserted
pairs in terms of the edge number in the shortest path
and local node connectivity. Moreover, younger duplica-
tions related to less co-expression divergence than older
pairs (Additional file 5: Figure S2D and E).

Page 8 of 15

A substantial number of inter subgenome correlations
were uncovered after whole genome duplication

A pre-grass WGD shared among all grass genomes, the
radiation of the grasses, and a maize lineage-specific re-
cent WGD occurred during maize evolution [53]. Given
the long period of divergence and substantial fraction-
ation for the first two ancient large-scale genomic evolu-
tion events, we focused our analyses on the two maize
subgenomes (maizel and maize2) that were generated
by the recent WGD event. Prior to a WGD event, genes
from the ancestral genome would likely interact with
each other to carry out their biological function, which
could be inferred by co-expression correlation as cluster-
ing modules [43]. After a WGD event, co-expression
correlations between genes from the same ancestral
genome can be classified as subgenome intra edges and
co-expression correlations between genes from the du-
plicated genomes can be classified as subgenome inter
edges (Fig. 4a). Previous studies indicate that WGD can
result in co-expression relationships among genes that
are more likely to be restricted to pairs of genes from
the same subgenome (i.e. intra edge correlations; Fig. 4a)
[26]. Maizel is the dominant subgenome, which ought
to maintain more intra genome co-expression relation-
ships, while the non-dominant maize2 loses functional
relationships due to both gene loss and decreased gene
expression. Our prediction is that maizel will show
more intra edge relationships than maize 2 intra edge or
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inter edge relationships between the two subgenomes.
Thus, maizel and maize2 provide a useful system to
examine divergence of co-expression relationships after
a WGD event and assess the extent of intra and inter
edge correlations.

To characterize potential changes in the co-expression
networks for metabolic pathways after a recent WGD
event, we first assessed the co-expression network of
428 pathways annotated by maizeCyc [56]. The stearate
biosynthetic pathway, which has retained all homeologs
and the glycolysis IV pathway, which was partially frac-
tionated following the WGD event were selected as exam-
ples for visualization (Fig. 4b-c). The extant maize stearate
biosynthetic network contains seven co-expression edges
and six of the seven co-expression edges are inter
subgenome in nature, providing evidence of preva-
lence of inter subgenome correlations following the
WGD event (Fig. 4b). The glycolysis IV pathway also
has more inter than intra subgenome edges (Fig. 4c).
Both examples demonstrate the occurrence of inter
subgenome correlations after the recent WGD event.

To further assess the relative prevalence of inter- and
intra subgenome correlations in metabolic pathways, we
explored the co-expression network divergence for 32
pathways, which have more than seven co-expression
edges among genes from maizel and maize2 subgenomes
(Additional file 6: Table S4). No significant difference was
observed in the density (fraction of co-expression relation-
ships observed over the possible number of pairs) of
maizel intra-edges and maize2 intra-edges (P=0.85, t-
Test: Paired Two Sample for Means), suggesting limited
divergence of co-expression relationships between the two
subgenomes. Interestingly, there are equivalent number of
inter subgenome edges to the total number of maizel and
maize2 intra-edges (P=0.65 for absolute edge number;
Additional file 6: Table S4). Furthermore, the overall pro-
portion of inter and intra subgenome edges is not signifi-
cantly different (P =0.56 for the normalized edge number
normalized by the number of possible pairs). We further
dissected the co-expression network divergence for the
duplicate pairs of the Knl [49, 50] and Rsl [47, 48]
genes. We observed co-expression network divergence
for both duplicate pairs, the Kni pair showed the
gene co-expression type IV pattern, while Rsi exhib-
ited the type II pattern (Fig. 5). However, the prob-
ability of intra and inter subgenome edges for both
cases are not significantly different (P =0.46 and 0.86
for Knl and Rsl pair, respectively).

The prevalence of inter subgenome interactions was
also assessed for all WGD pairs to determine whether
the observations from metabolic pathways were repre-
sentative of genome-wide trends. Separate analyses were
performed for retained gene pairs and for genes that
only retain the maizel or maize2 gene. In both cases,
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the permutation analysis with the same number of genes
and edges indicates no significant difference between the
proportion of maizel and maize2 intra-edges and a simi-
lar level of inter subgenome edges as intra subgenome
edges (P =0.83). Meanwhile, the contingency table ana-
lyses showed similar levels of inter subgenome and intra
subgenome correlations (P=0.72). Taken together,
WGD in maize was accompanied by a large number of
inter subgenome correlations, but in contrast exhibiting
an equivalent level of intra subgenome correlations.
These results are in contrast to the subgenome parti-
tioning observed in yeast, whereby more intra subge-
nome correlations were observed [26]. This may be due
to the fact that yeast is a single cell where all genes can
directly respond to various environmental challenges. In
more complex genomes, gene interactions were more
likely to be regulated by transcription factors (hub
genes), which may adjust the pathway in a more syner-
gistic manner. If we assume most modules of ancestral
genomes looked much like extant networks (i.e. same
genes involved and same number of edges), loss of genes
would remove intra-edges, and to complete metabolic
pathways, these would be replaced by inter-edges.
This may account for why there were large numbers
of inter subgenome correlations observed given the
widespread gene loss in maize subgenome2 [29]. Im-
portantly, we do not know the ancestral state of the
co-expression network prior to WGD event, so we
could not postulate retention of ancestral correlations
from newly evolved ones.

Ancient WGDs or paleopolyploids are widespread in
flowering plants in the evolutionary history of different
clades [2—4]. Comparisons of syntenic regions in Arabi-
dopsis thaliana, Zea mays, and other flowering plants
resulting from the most recent WGDs have uncovered
the existence of biased gene content [29, 53, 54, 57-59].
This biased gene content between duplicate genomic re-
gions could result from either more gene gain or more
gene loss in a specific duplicate or one of the parental
subgenomes [1]. One proposed model to explain the
biased gene content is that the expression dominance of
duplicate genes in one subgenome could make the less
expressed copies in the other subgenome selectively
neutral [29]. Based on the dominance of the maizel sub-
genome, which would retain more biological function
while maize2 would lose biological function due to gene
loss and decreased expression level, we expected that
maizel subgenome would exhibit more functional dom-
inance than maize2 in terms of more maize subgenome
1 intra edges. Unexpectedly, our co-expression network
analyses identified similar levels of intra edge genome
correlations in maizel and maize2. In addition, we ob-
served that there was a similarity in the frequency of
intra and inter edge correlations, indicating that gene
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GRMZM2G028041 (Rs1)

inter- and intra- subgenome correlations

Fig. 5 Co-expression divergence patterns for two duplicate pairs of well-known functional genes. (A) The Kn1 duplicate pair of GRMZM2G017087 (KnT)
and GRMZM2G303381 showed the co-expression type IV pattern. (B) The RsT duplicate pair of GRMZM2G028041 (Rs1) and GRMZM2G452178 showed
co-expression type |l variation. Red indicates the gene is from subgenome maize1, while blue indicates that the gene is from subgenome maize2.
Grey means the gene could be anchored on either subgenome. Only genes anchored distinctly to maize1 or maize2 were used to quantify the level of

GRMZM2G060050

GRMZM2G452178

expression in the maize subgenomes was integrated very
quickly even after the recent WGD. This result is robust
to choice of cutoff for the detection of connecting genes
in the co-expression network.

No subgenome asymmetry was observed in maize
transcriptional network

We constructed a de novo transcriptional network including
189 modules (subnetworks) involving 31,811 annotated
maize genes. Of these co-expression modules, there were 48
modules with more than 20 classified maizel and maize2
genes, however, only two modules showed maizel subge-
nome dominance where significantly more maizel genes
were enriched (Adjusted P value < = 0.05). The proportion
(4 %) of subgenome dominant modules is significantly
lower than that (92 %) in allohexaploid bread wheat [27]
(Additional file 7: Table S5). Hub genes, which are

connected with thousands of other genes in network, may
play a critical role in biological function of organisms. Fur-
thermore, 1000 permutation tests of node degree in the
maize co-expression network uncovered 525 highly con-
nected genes in the network (hub genes) (Additional file
8: Table S6). However, these hub genes were not
significantly more likely to show a subgenome bias (Chi-
Square Test; P =0.13), which is also different from that in
wheat. Unlike wheat, the co-expression network in maize
exhibited no subgenome asymmetry, which may be due to
the relative older age of the maize whole genome duplica-
tion [44, 60]. Maize tetraploidy occurred between 5 and
12 million years ago, while allohexaploid genome bread
wheat has experienced much less time (2.5 ~ 4 million years)
to diverge [61]. Compared to wheat, the increased time
maize had to merge subgenomes resulted in a genome that
is highly integrated from a transcriptional viewpoint. Taken
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together, our results indicate that the maize genome does
not have subgenome dominance in terms of transcriptional
networks. However, our study provides a comprehensive
landscape of co-expression divergence of duplicate genes
after WGD in maize.

Methods

Transcriptome dataset in maize

All transcriptome datasets were publicly available and down-
loaded from NCBI Sequence Read Archive [45, 62—-64]. A
total of 64 experiments generated by next generation se-
quencing (NGS) were obtained from different tissues or de-
velopment stages of maize reference inbred B73 (Table 1).
The transcriptome dataset consists of both single-end reads
and pair-end reads with read length ranging from 50 to
110 bp. Each experiment (tissue/stage) had 2 to 3 biological
replicates. Each biological replicate was analyzed separately
and the average normalized expression level of all the bio-
logical replicates was obtained to represent the expression-
level of specific tissue/stage.

Transcriptome profiling and co-expression network
construction
After downloading all the transcriptome datasets, trimmo-
matic [65] was employed to remove all the adapter se-
quences. Then, low quality sequences were removed using
Fastx-Toolkit [66]. High quality NGS reads of each bio-
logical replicate for each tissue/stage were mapped onto
annotated gene region space of the maize reference gen-
ome (AGP v3) [44] using RSEM [67] with parameters “p
8 —bowtie2 —estimate-rspd —append-names —output-gen-
ome-bam ”. The statistic “TPM” (Transcripts Per Million)
was adopted as the proxy of normalized expression-level.
A matrix (39,323 annotated maize genes X 64 transcrip-
tome datasets) of a transcriptome profiling dataset across
64 different tissues/stages was used for further analyses.
We considered a gene was expressed if it had TPM > 0
in at least three tissues or TPM > 5 in at least one tissue.
A total of 37,649 genes were determined to be expressed
across 64 different tissues/stages of maize reference in-
bred B73. To reduce the weight of highly expressed
genes on correlation coefficients, we transformed TPM
values using inverse hyperbolic sine function, which
compressed large values while preserving the relative
magnitude of small values [45]. Co-expression networks
were constructed by calculating Pearson correlation co-
efficients between all pairs of genes (37,649 x 37,649):

R; = PCC(E;, E)

Where i,j =1, ..., 37,649 and i # j. The set of correlations
was then transformed by Fisher transformation [68],
which yields approximately normal distribution [38]:
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Z = llnﬂ
2 1-R

Fisher transformed values were then standard nor-
malized such that the resulting co-expression edge
distribution had a mean of zero and a standard devi-
ation of one. A set of cutoffs of Z score (1.5, 2.0, 2.5
and 3.0) was used as the threshold for the detection
of significant edge (interaction) between genes. The
co-expression networks were created and analyzed
using the Sleipnir C++ library [69]. The software
Cytoscape 3.0.2 [70] was used for visualization of the
co-expression networks. The co-expression network
could be explored through the COB database [46].
Due to the memory limitation of local computers,
only a small fraction of co-expression connections
that users query can be rendered. However, the user
can download the full co-expressed gene list using
“Table View” of the COB database.

Duplicate genes and the identification of expression-level
variation and co-expression divergence pattern
Maize paralogous duplicate genes were identified using
NCBI blast + [52], which adopted the Needleman-
Wunsch algorithm with the BLOSOMS62 scoring matrix.
The candidate paralogous pairs were extracted using the
cutoff E value < =1.0E-05 based on the protein sequence
alignment of all maize annotated genes. Furthermore, if
the proportion of aligned protein amino acid length to
the full protein length is more than 40 % for both genes,
the significant gene pair was considered as a paralogous
duplicate. Then, the duplicate genes were compared and
merged with syntenic gene blocks in maize [53]. For the
paralogous duplicates, the protein sequence was translated
into aligned codons, and further codeml of the PAML
software package [71] was used for the calculation of syn-
onymous mutation rate (dS) with its default parameter
sets. Only duplicate pairs, of which both genes were
expressed across 64 different tissues/stages, were kept for
further analyses of co-expression network divergence.
Co-expression network divergence was examined by
comparing the sharing neighbors between two dupli-
cates. First, by exploring the co-expression networks, we
summarized the number of nodes (correlated genes) of
duplicate genes. Then, we computed the proportion of
common neighbors (same correlated genes) for the
members from any pair of duplication. The proportion
of shared correlated genes of a specific gene module is
defined as the number of shared correlated genes
between two duplicates divided by the total number of
correlated genes for one of the duplicate genes. Specific-
ally, for a paralogous duplicate pair (genel and gene2),
the statistic genelcommon represents the proportion of
common neighbors with gene2 for genel, while
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gene2common indicates the proportion of common
neighbors with genel for gene2. Both genelcommon
and gene2common range from 0 (without any common
neighbors) to 1 (sharing all the neighbors) in the co-
expression network. For the paralogous pairs where both
duplicates have at least 10 neighbors (correlated genes),

if \/(1—genelco;fnrrlorl)2 + (1-gene2common)® < 0.1, type 1 —
completely sharing neighbors with each other was classi-

fied; if \/(O.B—genelcommon)2 + (0.5-gene2common)* < 0.1 ,
type II — partial sharing of neighbors was classified;

if \/(1—genelconfm’wn)2 + (0-gene2common)® < 0.1, or

\/(O—genelcommon)2 + (1-gene2common)® < 0.1, type

IIT — minimal sharing of neighbors was classified; if

\/(O—gemzlcommon)2 + (0-gene2common)® < 0.1, type
IV — non-sharing neighbor for the pair was classified;
otherwise, the paralogous pairs where both duplicates
have at least ten neighbors (correlated genes) were desig-
nated as “unclassified”. If one duplicate has at least ten
neighbors while the counterpart has no neighbors, such
paralogous pairs were classified as type V. If both dupli-
cates have no neighbors (singleton), such paralogous pairs
were classified as type VI. A total of seven co-expression
regulatory patterns (type I~ VI and unclassified), were
identified, while other paralogous duplicate pairs which do
not satisfy the above criteria were excluded in our further
analyses. Gene Ontology enrichment analyses for the
genes from different co-expression divergence groups
were performed using AgriGO [72].

Furthermore, to detect the co-expression divergence
using graph theory, we also adopted the shortest net-
work path, edge connectivity of a duplicate pair, and
local clustering coefficient of genes in the co-expression
network for the representation of co-expression diver-
gence in the further analyses. The calculation was
conducted using igraph R package [73].

We employed a set of Z score cutoffs (1.5, 2.0, 2.5 and
3.0) for the classification of co-expression divergence.
Given the peak of proportion of type IV at around 2.0, the
statistic significance, and the relative less number of un-
classified co-expression type (Additional file 1: Figure S1),
we employed Z score cutoff of 2.5 for the construction of
maize co-expression network and further analyses.

Duplication type, age and their relationships with
regulatory divergence of duplicate genes

Duplication type and the manner that duplication oc-
curred were obtained by analyzing maize updated syntenic
gene blocks [53]. Three major duplication types were iden-
tified: “WGD” is defined as whole genome duplication;
“tandem” for tandem duplication; and “inserted” for dupli-
cate genes located in non-syntenic genomic regions
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(Fig. 2a). Synonymous mutation rate, which is an indicator
of duplication age, was calculated using PAML [71]. All
the relationship analyses were conducted in R [74].

Co-expression edge fractionation in maize transcriptional
network

Maize metabolic pathways were downloaded from
MaizeCyc 2.2 [56, 75]. The metabolic pathways with at
least two pairs of duplicate genes generated by recent
WGD event were kept for the co-expression fraction-
ation analysis. Maizel intra edges, maize2 intra edges
and inter subgenome edges were counted and summa-
rized to identify different types of edges in each meta-
bolic pathway. Paired two sample t-test was conducted
on 32 metabolic pathways with at least seven edges for
the comparison between maizel intra edges, maize2
intra edges and inter subgenome edges. The overall
genome-wide trend of co-expression edge fractionation
was investigated based on two different sets of WGD
duplicate genes: one is the retained gene pair, and the
other is genes that have been subjected to fractionation.
In both cases the frequency of inter subgenome correla-
tions and the frequency of intra subgenome interactions
were calculated and compared with each other. Permu-
tation analysis with the same number of genes and edges
was performed to test if the observation that more inter
subgenome edges than intra edges is significant. Similar
analyses with less stringent Z score cutoffs (1.5 and 2.0)
were conducted and showed consistent results.

Subgenome enrichment test in maize co-expression
network modules

The mcl markov cluster algorithm was employed to
distinguish co-expression network modules with default
parameters [76]. According to maize pan genome infor-
mation [53], we summarized the number of maizel
genes and maize2 genes, and then applied a Chi-
square test to discriminate if specific subgenome
genes were enriched in any co-expression network
modules with at least 20 maizel and maize2 genes.
The significance of the Chi-square test was adjusted
through Bonferroni correction.

Hub genes, which had significantly more connected
genes than the average in the network, were analyzed in
our study. The degree (the number of the co-expressed
genes) of each gene in the maize co-expression network
was obtained by in-house perl scripts. Further, 1000 per-
mutation tests with the same number of genes (nodes)
and significant correlations (edges) were conducted to ob-
tain the cutoff (a =0.05) of highly connected genes (hub
genes) in the maize co-expression network. A cutoff of
2706 was obtained for the identification of 525 hub genes
in our study. Finally, Chi-square tests on the 525 hub
genes were performed to check if these genes were
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enriched in maizel or maize2. These tests were conducted
after taking into account the gene number differences
between maizel (15,231) and maize2 (9553).

Conclusions

We developed a co-expression network for the maize in-
bred line B73 from 64 different tissues/stages B73 and
used the network to explore the expression fate of dupli-
cate genes. There are four key findings from our work:
(1) WGD, tandem and inserted gene duplications exhibit
different regulatory divergence; (2) co-expression vari-
ation was greater in older duplicate genes than younger
duplicates; (3) more co-expression divergence was ob-
served in inserted duplications and and this divergence
was also related to the age of the duplication; and (4)
maizel and maize2 exhibit similar levels of intra and in-
ter subgenome correlations, indicating that there is no
subgenome dominance in the network.
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