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Abstract

Background: Maize requires more water than most other crops; therefore, the water use efficiency of this crop
must be improved for maize production under undesirable land and changing environmental conditions.

Results: To elucidate the genetic control of drought in maize, we evaluated approximately 5000 inbred lines from 30
linkage-association joint mapping populations under two contrasting water regimes for seven drought-related traits,
including yield and anthesis-silking interval (ASI). The joint linkage analysis was conducted to identify 220 quantitative trait
loci (QTLs) under well-watered conditions and 169 QTLs under water-stressed conditions. The genome-wide association
analysis identified 365 single nucleotide polymorphisms (SNPs) associated with drought-related traits, and these SNPs
were located in 354 candidate genes. Fifty-two of these genes showed significant differential expression in the inbred line
B73 under the well-watered and water-stressed conditions. In addition, genomic predictions suggested that the
moderate-density SNPs obtained through genotyping-by-sequencing were able to make accurate predictions in
the nested association mapping population for drought-related traits with moderate-to-high heritability under

the water-stressed conditions.

Conclusions: The results of the present study provide important information that can be used to understand the
genetic basis of drought stress responses and facilitate the use of beneficial alleles for the improvement of drought

tolerance in maize.
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Background

Maize (Zea mays ssp. mays L.) is one of the three most
important cereal crops and has the second highest cultiva-
tion area worldwide (http://faostat.fao.org). However, the
productivity of this crop is frequently reduced in response
to drought stress. Traditional breeding has shown limited
progress in improving maize drought tolerance under
water-limited conditions; therefore, determining how
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maize responds to drought stress will provide new tools
for the genetic improvement of crop yields in arid envi-
ronments [1].

Grain yield (GY) under water stress is a primary trait
used to evaluate the degree of drought tolerance in
maize [2]. Certain secondary traits associated with
drought tolerance, such as the anthesis-silking interval
(ASI), plant height (PH) and grain yield components, are
highly correlated with drought tolerance and exhibit in-
creased heritability [3—7]. Hence, these traits have been
used to improve the selection efficacy for drought toler-
ance in plant breeding and identify the underlying func-
tional quantitative trait loci (QTLs)/genes that control
drought tolerance [8].
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Previous studies have reported the use of linkage analyses
and/or association mapping to identify drought-related
quantitative trait loci. QTL mapping for GY and agronomic
traits associated with drought tolerance have been con-
ducted in a number of different bi-parental populations
under well-watered (WW) and water-stressed (WS) condi-
tions [4, 9-12]. The QTLs for drought tolerance identified
in maize are available at http://www.maizegdb.org and
http://www.plantstress.com, and several researchers have
collected published QTL results, and data associated with
QTLs for drought stress or drought tolerance obtained in
different populations were used to conduct QTL meta-
analyses [11, 13-15] to identify consensus QTLs and
shrink the QTL confidence interval. However, the QTL
studies with bi-parental populations can only detect two
alleles and have limited mapping power and resolution.

Furthermore, association mapping based on linkage
disequilibrium has been used to identify the causal genes
affecting GY and agronomic traits associated with
drought responses. Lu et al. [16] identified several single
nucleotide polymorphisms (SNPs) associated with ASI
and PH under drought tolerance in 305 diverse inbred
lines genotyped using a 1536 SNP array. Xue et al. [17]
identified 42 drought-associated SNPs for nine agro-
nomic traits using a 350 tropical and subtropical maize
association panel and data on 56 K SNPs. Thirunavuk-
karasu et al. [18] used 240 accessions of subtropical
maize and 56,110 SNPs to conduct association analyses
for seven agronomic traits, including ASI, grain yield and
five-grain yield component traits under WW and WS con-
ditions, and their results indicated that 61 SNPs were
significantly associated with drought tolerance. These
drought studies were performed using small association
panels and low marker densities that were unable to iden-
tify the global beneficial alleles for drought tolerance.

Currently, two publically available maize genetic re-
sources called nested association mapping (NAM) pop-
ulations have been developed in the US (US-NAM) and
China (CN-NAM). The US-NAM population consists
of 25 bi-parental families, including approximately 5000
recombinant inbred lines (RILs) [19]. The CN-NAM
population consisted of 11 bi-parental families, includ-
ing approximately 2000 RILs [20]. These populations
provide increased mapping resources to successfully
dissect the genetic architecture of different complex
agronomic traits, such as the flowering time [21], leaf
architecture [22], male and female inflorescences [23],
kernel components traits [24], plant height [25], stalk
strength [26], etc. Using these NAM populations, we
systematically dissected the genetic loci controlling
maize drought tolerance using a joint linkage analysis
and genome-wide association studies (GWAS). In
addition, both NAM populations were sequenced using
the Genotyping-By-Sequencing (GBS) method, and
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high-density recombination maps were constructed
based on the GBS-obtained data [20]. These methods
improved the mapping resolution.

In the present study, two sets of NAM populations were
used to determine the phenotype of seven drought-related
traits under well-watered (WW) and water-stressed (WS)
conditions. Joint linkage QTL mapping was performed to
detect the genomic regions that control maize drought
tolerance under different water regimes. GWAS was
conducted to identify the candidate genes that were sig-
nificantly associated with seven drought-related traits.
Furthermore, the candidate genes were validated using the
RNA-seq data of the inbred line B73 obtained under
the WW and WS conditions. In addition, cross-
validated genomic predictions were performed to assess
the accuracy of predicting drought-related traits under
the two water regimes.

Results

Analysis of phenotypes under the WW and WS conditions
The heritability of the seven drought-related traits and
average phenotypic performance based on the BLUP
values is shown in Additional file 1: Table S1 for CN-
NAM and Additional file 2: Table S2 for US-NAM. Sig-
nificant differences were observed for the means of all of
the traits within the two NAM populations under the
WW and WS environments using the F test. The results
suggested that drought stress at the flowering stage had
different effects on drought-related traits. The average
grain yield per plant (GYPP) in the CN-NAM population
decreased by 28 % under WS, whereas it decreased by
66 % decrease in the US-NAM population under WS.
As expected, the average ASI in the two NAM popula-
tions was longer under WS than under WW because the
ASI reflects the susceptibility of different genotypes to
drought stress. The estimated heritability for the seven
traits of the CN-NAM population under WS and WW
ranged from 49.3 to 83.5 % and from 61.7 to 89.4 %,re-
spectively. The heritability estimates of the seven traits
were all higher under WW than under WS.

The phenotypic correlations among the seven traits
are listed in Additional file 3: Table S3 and Additional
file 4: Table S4 for the CN-NAM and US-NAM popula-
tion, respectively. Except for ASI and EL under the two
water regimes, significant phenotypic correlations were
observed among all the traits, and significant negative
correlations were observed between the ASI and the
remaining traits under both water regimes.

Joint linkage mapping of drought-related traits

We identified the QTLs that control drought tolerance-
related traits under the WW and WS conditions using a
joint linkage analysis of the CN-NAM population. We
identified 8-23 QTLs for the seven drought-related
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traits under WW, and they explained 23.7-66.3 % of the
total phenotypic variation, whereas we identified 8—20
QTLs under WS, and they explained 20.2-55.4 % of the
total phenotypic variation (Table 1). A single joint QTL
could explain 0.9-8.3 % of the phenotypic variation
under WW depending on the trait, whereas it could ex-
plain 1.2-10.4 % of the phenotypic variation under WS
(Additional file 5). Except for GYPP, other traits were
detected as consensus QTLs under different water re-
gimes, with a total of 35 consensus QTLs identified. The
consensus QTLs for each trait could explain more than
50 % of the total phenotypic variation by all QTLs de-
tected in the corresponding trait except the KNPR. The
joint linkage analysis enabled the estimation of an inde-
pendent allele effect for each QTL in all 11 CN-NAM
families. The total QTL allele effects ranged from 88 for
GYPP to 253 for HKW under WW (31-73 % alleles
were significant at P < 0.05), whereas the number ranged
from 88 for GYPP to 220 for PH under WS (27—43 % al-
leles were significant at P < 0.05).

To validate the QTLs identified in the CN-NAM popu-
lation, we also conducted a joint linkage analysis in the
US-NAM population (Additional file 6). A total of 112
and 78 joint QTLs were detected for all of the traits in the
US-NAM population under the WW and WS conditions,
respectively. Among the 112 and 78 QTLs, 32 and 18
QTLs were identified under the WW and WS conditions
in the CN-NAM population, respectively, and each trait
under the different water conditions had consensus QTLs
between the CN-NAM and US-NAM populations except
for KNPR under WS (Additional file 7: Table S5).

GWAS of drought-related traits

The genome-wide association study (GWAS) identified
1075 SNPs under WW and 795 SNPs under WS with a
bootstrap posterior probability (BPP) >0.05 for all of the
traits in the CN-NAM population (Additional file 8), and
it identified 700 SNPs under WW and 448 SNPs under
WS in the US-NAM population (Additional file 9). In

Page 3 of 11

certain cases, clusters of associated SNPs were detected
within less than 100 kb of each other. The SNPs within a
cluster were all identified based on a strong linkage with
the same causative genes. Therefore, 100 kb was selected
as a non-overlapping sliding window, and the SNPs with
the highest statistical significance were selected as repre-
sentatives of this window. A total of 778 SNPs under WW
and 649 SNPs under WS for the CN-NAM population
and 586 SNPs under WW and 359 SNPs under WS for
the US-NAM population were identified in this manner
(Fig. 1).

To identify the most robust associated SNPs, we fur-
ther selected a BPP>0.25 as a significance threshold,
which detected a total of 255 and 146 strongly associ-
ated SNPs for CN-NAM and US-NAM, respectively
(Fig. 1). The GWAS results for both NAM populations
were compared with both NAM joint QTL intervals. In
the WW treatment, 27 % of the strongly associated
SNPs identified in both NAM populations overlapped
with both NAM joint QTL intervals, whereas in the WS
treatment, 29 % strongly associated SNPs overlapped. A
total of 221 and 179 strongly associated SNPs were de-
tected in both NAM populations under the WW and
WS conditions, respectively. Among the SNPs detected
under the different water regimes, 18 associated SNPs
were detected in both water regimes, which suggests
that these SNPs were constitutive loci in different water
environments. Ultimately, 365 strongly associated SNPs
were used to identify the candidate genes associated with
drought tolerance.

Identification of candidate genes

The predicted genes close to each of the 365 underlying
genes might be identified using a publicly available
maize genome database (http://www.maizesequence.org),
and 354 candidate genes were identified. Among the 365
SNPs, 185 SNPs were located within the coding region
of the candidate genes, whereas the remaining 180 SNPs
were located closer to the candidate genes, with a

Table 1 Joint linkage analysis of seven drought-related traits under the WW and WS conditions in the CN-NAM population

Trait WW WS WW-WS

QTL number PVE H? QTL number PVE H? Shared QTL number PVEuw/PVEws
AS| 15 481 61.7 11 428 573 4 26.2/229
PH 21 579 87.2 20 54.7 759 11 455/419
GYPP 8 237 689 8 202 493 0 0/0
EL 15 537 815 11 36.1 67.2 4 34.1/249
HKW 23 663 894 18 554 835 11 50.9/42.0
KNPR 13 347 777 10 28.1 613 1 77/6.
EwW 13 473 795 13 346 56.5 4 26.5/176
Total 108 - - 91 - - 35 -

PVE phenotypic variation explained by all QTLs (%), H* broad-sense heritability (%), WW-WS common QTLs detected under WW and WS, PVE, phenotypic
variation explained by common QTLs under WW (%), PVEs phenotypic variation explained by common QTLs under WS (%)
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Fig. 1 Comparison between the results of the joint linkage analysis and GWAS for the seven drought-related traits under the WW and WS conditions for
the CN-NAM and US-NAM populations. The pink and green bars represent the joint QTLs for CN-NAM and US-NAM, respectively. The bar width represents
the support interval of the QTLs. Blue and red dots represent the significantly associated SNPs for CN-NAM and US-NAM, respectively. a ASl, b plant height
(PH), ¢ grain yield per plant (GYPP), d ear length (EL), @ hundred kernels weight (HKW), f kernel number per row (KNPR), and g ear weight (EW)

physical distance between the SNPs and the candidate
genes ranging from 1 to 172,496 bp based on the B73
reference genome v2 (Additional file 10).

To validate the candidate genes associated with drought
tolerance, we used the significantly differentially expressed
genes obtained through the RNA-seq of the ovaries during
flowering from the inbred line B73 under the WW and
WS environments. Among the 354 candidate genes, 52
genes showed significantly different expression under the
two water treatments, including 25 up-regulated genes
and 27 down-regulated genes (Table 2).

Genomic predictions of drought-related traits
Figure 2a shows the accuracy of the genomic predictions
for all of the target traits evaluated under the WW and

WS conditions using GBS data in the CN-NAM popula-
tion. The prediction accuracy differed among all of the
predicted traits for both water regimes. The accuracy
values under WW ranged from 0.51 to 0.80, with a mean
of 0.64, whereas the values under WS ranged from 0.40
to 0.74, with a mean of 0.57. Except for the ASI, the ac-
curacy values of other traits under WS were consistently
lower than those under WW. Reflecting differences in
the heritability and genetic architecture of the target
traits, the GYPP and KNPR had small prediction accuracy
under the same water regime compared with other agro-
nomic traits. In addition, we conducted genomic predic-
tion for all traits under the WW and WS conditions in the
US-NAM population (Fig. 2b). Moreover, similar trends
were observed between the two populations, although
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Table 2 List of SNPs significantly associated with seven drought-related traits and the closest candidate genes with significantly
differential expression between the samples under the WW and WS conditions in B73

Chr  Position BPP Inside Trait Gene ID Proximity of SNP Gene function DEG®
(op)? QTL®  affected to gene (bp)
1 4606329 028 - HKW GRMZM2G341934 1721 Peroxidase superfamily protein 0.05
1 27627382 027 + PH GRMZM2G111324 Inside gene O-Glycosyl hydrolases family 17 protein 0.07
1 35465166 039 + HKW GRMZM2G164562  Inside gene Chorismate synthase 0.56
1 154107233 053 - KNPR GRMZM2G056039 25433 Heat shock protein 70 201
1 163956308 049 - ASI GRMZM2G443525 130508 ADR1-like 1 392
1 219379659 025 + HKW GRMZM2G146278 1444 Cytochrome B561-1 0.24
1 269328425 036 - EL GRMZM2G157727 Inside gene Phytochrome A 3.15
1 275974364 030 - PH GRMZM2G173852 590 Acyl-CoA N-acyltransferase with RING/FYVE/PHD-type 1.52
zinc finger protein
1 287727328 057 - PH GRMZM2G133023 4891 Stem-specific protein TSJT1 9.94
2 10624855 026 - EL GRMZM2G098239  Inside gene HXXXD-type acyl-transferase family protein 0.05
2 19262986 042 - KNPR GRMZM2G162333 1756 Pectin lyase-like superfamily protein 0.02
2 236797598 038 - GYPP GRMZM2G016677 229 Photosystem Il subunit P-1/PsbP 041
3 17258723 056 - EW GRMZM5G871336  Inside gene Expressed protein 487
3 165705047 051 - EL GRMZM2G057823 17923 Aldolase superfamily protein/fructose-bisphospate aldolase 0.19
isozyme
3 197321346 038 - HKW GRMZM2G021704  Inside gene Pyrimidin 4 0.33
26425071 027 - PH GRMZM2G089995  Inside gene Ethylene response factor 7/AP2 domain containing protein 423
4 172055239 062 + EL GRMZM2G062084 260 P-loop containing nucleoside triphosphate hydrolases 0.13
superfamily protein/kinesin motor domain containing protein
4 204344848 038 - HKW GRMZM2G117064 1105 Long chain acyl-CoA synthetase 9 044
4 218157821 031 - HKW GRMZM2G422464 2207 HhH-GPD base excision DNA repair family protein 224
5 10273708 055 - GYPP GRMZM5G833140  Inside gene CHASE domain containing histidine kinase protein 2.59
5 11908448 028 - KNPR GRMZM2G157147 Inside gene Phosphatidylinositol-4-phosphate 5-kinase 1 0.16
5 16321609 036 - ASI GRMZM2G134980 Inside gene Chaperone protein dnaJ 0.69
5 22556254 088 + PH GRMZM5G869246  Inside gene Kinesin motor family protein 032
5 85252655 050 + HKW GRMZM2G104632 14 Glyceraldehyde-3-phosphate dehydrogenase of plastid 1 0.30
5 140093287 032 - HKW GRMZM2G060253  Inside gene HMG (high mobility group) box protein 0.03
5 143975579 051 - HKW GRMZM2G158313 1348 Basic-leucine zipper (bZIP) transcription factor family protein 0.01
5 208637679 095 + EL GRMZM2G081214  Inside gene Phosphate-responsive 1 family protein 6.03
6 9710805 026 - KNPR GRMZM2G055238 60720 Ureide permease 5 540
6 58454978 050 - HKW GRMZM2G473788 4959 Expressed protein 1.87
6 82185973 066 + PH GRMZM2G430680 Inside gene Glucan synthase-like 12 0.34
6 85797877 025 + PH GRMZM2G365961 52 Prephenate dehydrogenase family protein 0.15
6 88935877 040 + PH GRMZM2G150302 13001 Nucleotide-diphospho-sugar transferases superfamily 041
protein/glycosyltransferase family 43 protein
6 119695193 050 - HKW GRMZM2G368678  Inside gene Binding/expressed protein 1.80
6 121945548 049 - EL GRMZM2G142409 Inside gene VIRB2-interacting protein 2/reticulon domain containing protein ~ 5.21
6 150839908 041 - EL GRMZM2G178797 1986 Guanylyl cyclase 1 2.1
6 155438561 0.28 + GYPP GRMZM2G117344 12391 Expressed protein 0.18
7 135573138 064 - PH GRMZM2G130959 140 Bug22p-like protein 247
7 152001464 027 - EL GRMZM2G105750 36998 ATP binding;protein kinases;protein serine/threonine kinases 3.08
7 157758647 033 + HKW GRMZM2G129354 Inside gene ARF-GAP domain 5/GTPase-activating protein 3.00
7 160601468 037 + HKW GRMZM2G058197  Inside gene C2H2-like zinc finger protein 1.85
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Table 2 List of SNPs significantly associated with seven drought-related traits and the closest candidate genes with significantly
differential expression between the samples under the WW and WS conditions in B73 (Continued)

8 129080393 061 + ASI GRMZM2G171781 4780

8 148509016 056 - KNPR GRMZM2G013625  Inside gene
8 166653395 026 + AS GRMZM2G143640 Inside gene
8 166781122 030 + ASI GRMZM5G805609  Inside gene
9 24062413 035 + KNPR GRMZM2G082855 565

9 24062931 061 - PH GRMZM2G082855 47

9 31283082 026 - GYPP GRMZM2G308595 76352

9 78421440 032 + HKW GRMZM2G094497 Inside gene
9 133586941 031 HKW GRMZM2G317262 252

9 134721582 094 - PH GRMZM2G033846 250

10 6398185 037 + PH GRMZM2G057753  Inside gene
10 15549436 064 - PH GRMZM2G088689  Inside gene

MYB domain protein 61 0.03
Associated molecule with the SH3 domain of STAM 2 320
MYB family transcription factor 20.26
Glycosyl hydrolase superfamily protein 433
ERECTA-like 2/receptor-like protein kinase 5 precursor 034
ERECTA-like 2/receptor-like protein kinase 5 precursor 0.34
Nudix hydrolase homolog 21 839
ATPase, V1 complex, subunit B protein 0.58
F-box family protein 6.68
Ca2 +-binding protein 1/EF hand family protein 0.05
Ovate family protein 13/DUF623 domain containing protein 0.10
Thiamin diphosphate-binding fold (THDP-binding) superfamily 547

protein/dehydrogenase E1 component domain containing
protein

physical position based on B73 maize reference genome v2

b7 repesents that significantly assiciated SNP is located in QTL support interval; “-" repesents that significantly assiciated SNP is not located in QTL support interval
“differential expressed genes (DEG),expression level ratios of candidate genes between WS and WW from B73

lower accuracy was observed for the US-NAM population
compared with the CN-NAM population.

Discussion

In the present study, we assessed the phenotypes of seven
important agronomic traits associated with drought stress
for two sets of NAM populations under well-watered and
water-stressed environments. Although the CN-NAM
population, which included 1972 lines, was evaluated for
only 2 years at a single location, the broad-sense heritabil-
ity estimates based on plots for each trait across the 11
CN-NAM families were moderately high (Table 1). These
estimates of heritability suggested that variations for all of
the target traits in the CN-NAM population were primar-
ily influenced through QTLs. The US-NAM population,
which included 2948 lines, was phenotyped for only 1 year
under the different environments. The US-NAM popula-
tion represented a validation population and was used to
verify the results obtained in the CN-NAM population.

The linkage analysis within a single bi-parental popu-
lation was successfully used to locate QTLs that affect
drought tolerance in maize. In the present study, both
NAM populations with much larger mapping population
sizes and high-density genetic maps were used to per-
form the first detection of QTLs that control drought
tolerance. A total of 169 joint QTLs were detected under
the water-stressed environment in the both NAM popu-
lations. These drought-related QTLs were compared
with previously reported meta-QTLs (mQTLs) (Add-
itional file 11), which provided a good summary of the
published QTLs associated with the drought tolerance-
related traits involved in the present study. Among 169
drought-related QTLs, 106 QTLs overlapped with at least
one mQTL and six QTLs overlapped with three mQTLs
obtained in three different studies. One genomic region on
chromosome 1 (43.75-46.55 Mb) harbored one QTL for
WSHKW in the CN-NAM population and one QTL for
WSKNPR in the US-NAM population, and it also
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contained three mQTLs that were also reported in the
studies of Li et al. [14], Semagn et al. [15] and Almeida et
al. [12]. Particularly, Li et al. [14] identified the candidate
gene pdc3 as associated with drought tolerance in this re-
gion through a bioinformatics analysis. The region between
204.65 and 206.18 Mb on chromosome 3 included three
QTLs for WSHKW, WSEL and WSEW in the CN-NAM
population. In this physical region, Almeida et al. [12] de-
tected an mQTL that affects the number of ears per plant
under WS conditions, suggesting that this region is an im-
portant drought tolerance locus that controls grain yield.
Another important genomic region located in the 85.32—
95.89 Mb interval on chromosome ten overlapped with
three QTLs for WSHKW and WSASI in the CN-NAM
population and WSASI in the US-NAM population.
Almeida et al. [11] and Li et al. [14] reported two mQTLs
in this region. In addition, the gene ZmSNACI, which is
responsive to drought stress in maize [27], was located in
this region. The genomic regions described above provide
important target regions for identifying candidate genes as-
sociated with drought stress and marker-assisted introgres-
sion for drought tolerance in maize.

The fifty-two candidate genes identified in the present
study were identified as encoding transcription factors,
signal transduction factors, dehydrins and osmotins, etc.
(Table 2). These genes have also been frequently associ-
ated with drought tolerance in plants. For example, the
GRMZM2G081214 gene was associated with the most
highly robust SNP (BPP =0.95) located in the QTL re-
gion. This gene is predicted role in ABA activity and en-
codes a phosphate-responsive 1 family protein (http://
www.maizegdb.org/). The gene is more differentially up-
regulated in the ovaries of the inbred line B73 under WS
compared with WW.

Two robust associated SNPs were located near the
GRMZM2G082855 gene, which is associated with plant
height and kernel number per row. This gene encodes
the precursor to receptor-like protein kinase 5, a plant
protein kinase responsive to abiotic stress. Receptor-like
kinase (RLK) is widespread in plants, particularly in Ara-
bidopsis and rice, and includes 600 and 1132 RLKs, re-
spectively [28].

Two genes, GRMZM2G143640 and GRMZM5G805609,
were associated with the ASI and harbored one strong as-
sociated SNP in the ASI QTL regions on chromosome 8,
respectively. GRMZM2G143640 encodes a DIVARICATA-
like putative MYB DNA-binding domain superfamily
transcript factor that plays an important role in plant
growth and development and responds to abiotic stress,
including drought tolerance [29]. This candidate gene
was more differentially up-regulated under WS than
WW in the inbred line B73. GRMZM5G805609 en-
codes glucan endo-1,3-beta-glucosidase 7 of the glyco-
syl hydrolase protein superfamily, and it was also
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significantly up-regulated in the inbred line B73 under
drought stress.

Most of the remaining genes listed in Table 2 were as-
sociated with grain yield component traits, which are
highly associated with drought tolerance. A full under-
standing of the genetic control of these traits would be
helpful for maize breeding for high vyields under
watered-well or water-stressed environments.

With the advancements of next-generation sequencing
and statistical models, maize breeders have successfully
used genomic prediction methods to estimate the breed-
ing value of unphenotyped lines within breeding popula-
tions [30], single bi-parental or multiple bi-parental
populations [31, 32] and association populations [33].
Genomic prediction models have been demonstrated as
advantageous for complex traits controlled through
many small-effects loci, such as grain yield [34, 35]. In
the present study, good prediction accuracies were ob-
tained for the target traits under WS, although certain
traits showed low heritability. We observed that trait
heritability affects the prediction accuracy of the CN-
NAM population. The target traits with high heritability
generally achieved high prediction accuracy under the
WS or WW conditions. Marker density has previously
been demonstrated as an important factor for prediction
accuracy [36, 37]. We selected 100, 300, 500, 1000, 2000,
5000, 10000 or 20000 SNPs that evenly covered the
entire genome to investigate the influence of marker
density on the prediction accuracy of the CN-NAM
population (Fig. 3). The results indicated that approxi-
mately 5000 SNP markers were sufficient to achieve ac-
curate predictions for the drought-related traits under
the WW or WS environments. Zhang et al. [38] used
low-density SNPs and high-density markers (GBS) to
predict the grain yield, flowering time and plant height
for 19 bi-parental populations under WW and WS treat-
ments, and their results indicate that moderate marker
density was largely sufficient for complex and simple
traits. Genomic predictions for drought-related traits are
efficient in multiple bi-parental populations, such as the
CN-NAM population. However, additional studies are
needed to assess the prediction accuracy for drought toler-
ance within association populations with unrelated lines.

Conclusions

In this study, a total of 220 QTLs under well-watered
conditions and 169 QTLs under water-stressed condi-
tions were detected by joint linkage mapping in the CN-
NAM and US-NAM populations. The genome-wide
association analysis identified 365 SNPs associated with
drought-related traits, and these SNPs were located in
354 candidate genes. Of these candidate genes, 52 candi-
date genes showed significant differential expression in
the inbred line B73 under the well-watered and water-
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Fig. 3 Accuracy of the whole-genome predictions of PH under the WW and WS conditions within the CN-NAM population depending on the
number of SNPs. Accuracies averaged over 20 cross-validation runs are shown for 100, 300, 500, 1000, 2000, 5000, 10000 and 20000 evenly
spaced SNPs

stressed conditions. In addition, the moderate-density
SNPs obtained through genotyping-by-sequencing were
able to make accurate predictions in the nested associ-
ation mapping population for drought-related traits with
moderate-to-high heritability under the water-stressed
conditions. This paper presents these drought tolerance
QTLs and candidate genes for the maize scientific com-
munity to provide detailed direction for future studies.

Methods

Plant materials and field environments

The CN-NAM and US-NAM panels were generated as
previously described [20]. A total of 1972 CN-NAM
lines were grown and measured in the spring of 2009
and 2010 in Urumqi of Xinjiang Province, where the in-
stitute of crop science belonging to the Chinese Acad-
emy of Agricultural Sciences has set up experimental
field bases. The institute of crop science was approved
for field experiments, and the field studies did not in-
volve endangered or protected species. For each year, all
of the plant materials were subjected to well-watered
(WW) and water-stressed (WS) treatments. Trials of
each treatment were planted in single-row plots of 11
plants, and there were two replications. Two irrigation
regimes were applied using the furrow irrigation method
starting at the seeding period. In the WW regime, irriga-
tion was provided in 15-day intervals. In the WS regime,
irrigation was given until 3 weeks prior to the expected
anthesis date in each CN-NAM family. This stress
condition was maintained until 4 weeks after 50 % of the
RILs flowered. Nineteen of the 25 US-NAM families,
including 2948 RILs, were grown in Urumgqi, Xinjiang
Province in the spring of 2013. Based on the previous
flowering time data [20], four families (CML228,
CML247, CML52, and IL14H) with late maturity were
excluded from the drought tolerance identification. The
P39 and Hp301 families belonging to the sweet and

popcorn types were also excluded in the present study.
Single-row plots of 11 plants with one replication were
grown for each RIL under the WW and WS environ-
ments. Each plot was 3 m in length, and the rows were
spaced 0.6 m apart. The RIL families were randomly ar-
ranged as previously described [39]. Within each family,
incomplete blocks consisting of 40 random RILs, the
B73 line and alternate parents of the family were planted
in an alpha lattice. In the WS regime, the drip irrigation
method was applied in 10-day intervals until 3 and
5 weeks prior to the expected anthesis date and after
50 % anthesis occurred. For the WW condition, the soil
moisture was maintained at field capacity. All plant ma-
terials used in this study were conserved in our experi-
ment lab and we declared that all plant materials used in
this study comply with the “Convention on the Trade in
Endangered Species of Wild Fauna and Flora”.

Phenotyping

A total of seven traits were measured for all of the lines
under both water regimes. The anthesis-silking interval
(ASI) was counted as the difference (in days) between
male and female flowering times in each plot. The plant
height (PH) was calculated as the average height of five
random plants measured from the ground to the tassel
tip in each plot. Five representative plants in each plot
were harvested. The grain yield per plant (GYPP) was
evaluated from an average of five plants. The ear length
(EL), kernel number per row (KNPR), and ear weight
(EW) were measured for five ears and averaged over the
plot. The hundred kernel weight (HKW) was estimated
from the average weight of 100 randomly selected seeds
in three samples.

Genotypic data
A set of 0.95 million SNPs from the CN-NAM and US-
NAM populations was generated using Genotyping-By-
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Sequencing technology [40]. The missing SNPs were
imputed using the FILLIN method in TASSEL v.5.0 [41].
These marker sets are publicly available at http://
www.panzea.org. The SNP sites exhibiting more than
20 % missing taxa, <5 % minor allelic frequency (MAF),
and >20 % heterozygosity were excluded from the raw
genotype datasets. Thus, a total of 333,577 and 404,543
SNPs were identified for the CN-NAM and US-NAM
populations, respectively. These SNPs were subsequently
used in the GWAS and genomic predictions. For the
joint linkage mapping, two composite genetic maps that
included 4932 and 5296 markers were constructed for
the CN-NAM and US-NAM populations, respectively.
Detailed information on the maps and genotypes scores
has previously been described [20].

Phenotypic data analysis

For the CN-NAM and US-NAM populations, the best
linear unbiased prediction (BLUP) for all of the traits of
each line across environments (CN-NAM) and within a
single environment (US-NAM) was calculated from a
random effects model using PROC MIXED in SAS 9.2.
In models across the environments of the CN-NAM
population, the environment, family, family*environment
and entry (family) were considered random effects. The
mixed model was fitted within a single environment of
the US-NAM population, and the family, RIL within
family, blocks, rows and columns were included in the
field design. Correlation coefficients were obtained based
on the BLUP using Pearson’s statistic applied using the
cor function of R software. The broad-sense heritability
(h?) for each trait across environments in the CN-NAM
population was calculated on a plot basis using the
ANOVA tool in QTL IciMapping Version 3.3 [42].

Joint linkage mapping in CN-NAM and US-NAM

The joint linkage analysis for CN-NAM and US-NAM
was conducted in SAS 9.2. The detailed information for
joint linkage mapping has previously been described
[21]. Briefly, PROC GLMSelect was implemented to se-
lect the significant marker effects in a family-nested
QTL model. For all of the traits, the P-values for the
entry and exit of the model were determined using per-
mutation testing. The phenotypic variation explained by
all of the QTLs was counted according to Li [43]. The
joint linkage QTL support intervals were counted ac-
cording to Tian [22].

GWAS in CN-NAM and US-NAM

The GWAS was performed in a single NAM population
using the Fixed and random model Circulating Probabil-
ity Unification (FarmCPU) method in R software [44].
To identify the SNPs with the most robust associations
with phenotypes, a subsampling procedure was used in
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the GWA analysis [45]. For each subsampling, 80 % of
the RILs of each NAM population were randomly sam-
pled without replacement. This procedure was repeated
100 times between each trait and polymorphism. In each
subsampling, we implemented a Bonferroni-corrected
threshold probability of 0.05/N to verify the significance
levels, where N is the number of individual trait-SNP
combinations tested. The significance levels were used
to control the false positives in the GWAS. The boot-
strap posterior probability (BPP), which is defined as
the proportion of times that SNPs were included in the
100 subsamples, was calculated for each significantly
associated SNP. Only SNPs with BPP > 0.05 were listed
in the results. According to Valdar et al. [45], a BPP >
0.25 was considered the most robust SNP association.

Validation of the candidate genes using RNA-seq data
Based on the maize B73 reference genome assembly V2,
genes co-localizing with or adjacent to the associated
SNPs were determined to be candidate genes for drought
tolerance. Functional annotations of the candidate genes
were conducted using blastp, conserved domain search
tools, the Maize Genome Database and a literature-
specific inspection for each gene. To validate the candi-
date genes for drought tolerance revealed in the GWAS,
the available RNA-seq data of the inbred line B73 was
used to evaluate the expression of candidate genes under
the WW and WS environments [46]. The RNA-seq data
from pollinated ovaries of drought sensitive inbred B73
under WW and WS environments were downloaded from
the NCBI web site (http://www.ncbinlm.nih.gov/sra/).
Briefly, after obtaining the RNA-seq data, the quality
control of the raw reads were dealt with the FASTX tool-
kit (http://hannonlab.cshl.edu/fastx_toolkit/). High-quality
RNA-seq reads were mapped to the maize B73 reference
genome (B73 AGPv2; http://www.maizesequence.org) using
the programs TopHat v2.04 [47]. Differential expression
analysis was conducted using the HTSeq-DEseq workflow
[48]. A false discovery rate (FDR) <0.05 after Benjamini-
Hochberg correction for multiple tests was applied.

Cross-validated genomic prediction

We conducted genomic predictions using a mixed-
model solver in the rrBLUP package [49] distributed by
R software. The prediction accuracy of all traits was
evaluated through cross-validation. To perform the
cross-validation, a five-fold cross-validation scheme was
applied and repeated 20 times. All of the lines in the
NAM panel were randomly divided into five disjointed
subsets. One of five subsets was selected as the validation
population, and the remaining four subsets were used as
the training population to estimate the SNP effects for
predicting the lines’ values in the validation. The predic-
tion accuracy was calculated according to Pearson’s
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correlation between the predicted and observed values av-
eraged over all of the cross-validations and replicates.
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