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Abstract

Background: Increasing grain yield is a primary objective of maize breeding. Dissecting the genetic architecture of
grain yield furthers genetic improvements to increase yield. Presented here is an association panel composed of
126 maize inbreds (AM126), which were genotyped by the genotyping-by-sequencing (tGBS) method. We
performed genetic characterization and association analysis related to grain yield in the association panel.

Results: In total, 46,046 SNPs with a minor allele frequency (MAF) 20.01 were used to assess genetic diversity and
kinship in AM126. The results showed that the average MAF and polymorphism information content (PIC)
were 0.164 and 0.198, respectively. The Shaan B group, with 11,284 unique SNPs, exhibited greater genetic
diversity than did the Shaan A group, with 2644 SNPs. The 61.82% kinship coefficient in AM126 was equal to 0, and

only 0.15% of that percentage was greater than 0.7. A total of 31,983 SNPs with MAF 20.05 were used to characterize
population structure, LD decay and association mapping. Population structure analysis suggested that AM126 can be
divided into 6 subgroups, which is consistent with breeding experience and pedigree information. The LD decay
distance in AM126 was 150 kb. A total of 51 significant SNPs associated with grain yield were identified at P< 1 x 107>
across two environments (Yangling and Yulin). Among those SNPs, two loci displayed overlapping regions in the two

yield, potentially facilitating genetic improvement.

environments. Finally, 30 candidate genes were found to be associated with grain yield.

Conclusions: These results contribute to the genetic characterization of this breeding population, which serves as a
reference for hybrid breeding and population improvement, and demonstrate the genetic architecture of maize grain
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Background

Maize (Zea mays L.), the most widely grown crop in the
world, plays an essential role in global food security and
industrial products [1]. As a cross-pollinated crop, gen-
omic divergence is nearly 1.42% between two maize
inbred lines, which is greater than the divergence of
1.34% between humans and chimpanzees [2]. This great
genomic diversity has resulted in considerable phenotypic
variety. Moreover, maize is an important model plant for
studying genome evolution, heterosis and the genetic
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architecture of complex quantitative traits [3]. According
to statistical data from the FAO, the predicted worldwide
population of 9 billion by 2050 will require 70% more food
than today’s population [4]. It is estimated that more than
half of the increased demand for cereals will come from
maize, which is the crop with the largest planted area and
highest total production. The necessary increase in maize
production will require substantial changes in agronomic
practices and methods of genetic improvement [5]. Previ-
ously, yield improvement has occurred at the expense of
environmental pollution from increased fertilizer use
[6, 7]. Along with the increasing focus on green production,
more work has been aimed at increasing yield through gen-
etic improvements, through which several QTLs and genes
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associated with grain yield and yield-related traits had been
validated. For example, five QTLs showing a high genetic
relationship with the phenotypic variance of yield compo-
nent traits [8] and one large-effect QTL influencing kernel
row number located on chromosome 7 was identified using
linkage mapping [9]. Additionally, a stable locus related to
kernel shape, PKS2, was identified through linkage and
association analysis in 240 maize inbreds [1].

In the last several decades, the power and resolution
of QTL mapping for complex quantitative traits, such as
flowering, drought resistance, the contents of fatty acids
and minor elements (carotenoids and tocopherols), me-
tabolome features and kernel rows, has greatly increased
because of the development of association analyses, in-
cluding candidate gene association mapping and GWAS
in maize and other species [10-12]. However, the in-
creasingly wide application of association mapping is
due to the rapid development of genotyping techniques,
which has produced effective high-throughput molecular
technology. A kind of molecular markers were devel-
oped by different genotyping technologies, among SSR
makers were used to evaluate the polymorphisms of
Dwarf 8 associated with flowering time in maize in the
early days of development [13]. Later, association ana-
lyses using SSR markers were performed in plants to
dissect complex quantitative traits [14, 15]. At present,
SNP markers are widely utilized in association analyses
of spring wheat, rice, Arabidopsis thaliana and maize
[16-19], because of the advantages of biallelic markers
and their higher content in the genome. Large numbers
of these markers have been exploited through SNP chip
and genome sequencing technology.

For maize, a variety of SNP chips based on SNP genotyp-
ing platforms have been designed by sequencing known
genes for genotyping. These chips include the Illumina®
SNP1536 chip, the MaizeSNP50 BeadChip with a high
resolution, and a higher-density 600 k SNP genotyping
array based on 57 M SNPs and small indels determined
from 30 representative temperate maize lines in compari-
son with B73 AGP_v3 [20-22]. However, using SNP chip
analysis as a genotyping method is expensive and fixed.
In addition, the ability to detect ectopic exchange points is
very weak. In comparison, genotyping-by-sequencing (GBS)
is a recently developed simple sequencing procedure that
can provide a large number of markers across the genome
at low cost per sample and can be applied to maize, which
exhibits high diversity and a large genome [23]. The GBS
method does not rely on previous knowledge of SNPs
and greatly expands the number of individuals and
markers that can be studied, which increases the chance
of discovering more uncommon or rare variants [24, 25].

Increasing grain yield is the primary target for meeting
the food demand of the growing population, and dissect-
ing the genetic architecture of grain yield is helpful for
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achieving this goal. Due to the complexity of the genetic
architecture of grain yield and the difference between
association populations, some researchers have aimed to
uncover the genetic architecture of grain yield through
association mapping; however, these studies are far from
sufficient. Therefore, in this study, 126 maize inbred
lines from the Shaan A and Shaan B groups were se-
lected for genotyping with tGBS sequencing technology.
Our aims were 1) to perform detailed characterization
of the association mapping panel, including relationships,
population structure, and genetic diversity; and 2) to
dissect the genetic basis of grain yield in the association
mapping panel.

Methods

Plant materials and field experiments

The association mapping panel consisted of 126 diverse
inbred lines (AM126) selected from Shaan A and Shaan
B group inbreds cultivated at Northwest A&F University.
According to the theory of domestic and international
maize breeding, we simplified heterotic model and
adopted the breeding strategy of two divergent heterotic
groups to build Shaan A and Shaan B heterotic groups,
in which superior varieties are employed as basic mate-
rials to adapt maize production to Shaanxi Province
[26]. High-density planting, drought, low fertilizer use
and multiple environments were carried out to the ex-
pansion, improvement and utilization of the germplasm.
From 2007 to 2008, basic groups were constructed over
three generations. From 2009 to 2015, the Shaan A
group and Shaan B group were optimized and upgraded
through 7 rounds of selection in 30 departments in seven
provinces (Shaanxi, Gansu, Henan, Hebei, Neimenggu,
Sichuan and Xinjiang). Ultimately, we explored a technical
approach for continuous improvement of maize germ-
plasm and successfully built the Shaan A and Shaan B
groups. In AM126, 94 different inbred lines belonged to
the Shaan B group, and the others belonged to the Shaan
A group. Detailed information about the 126 inbred lines
is provided in Additional file 1. These inbred lines were
planted in Yangling (34°16'N, 108°40°E) and Yulin (38°30°
N, 109°77'E) in Shaanxi Province in 2017. At each loca-
tion, all inbred lines were planted in a two-row plot using
a randomized experimental design with two replications,
with a row length of 5 m and a distance of 0.6 m between
adjacent rows. The planting density was 67,500 plants/ha.
During growth, field management followed normal field
operations.

Phenotypic evaluation and analysis

Upon harvest, all ears were harvested by hand threshing,
and corresponding data, including the grain water con-
tent, total grain weight and weight of ten panicles, were
recorded to calculate the grain yield per mu (kg) by
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multiplying the grain yield per panicle by the total number
of plants in the plot and adjusting to a 14% moisture con-
tent. Then, the mean grain yield of two replicates was
calculated for subsequent analysis (Additional file 2).
Phenotypic data analyses, which included basic de-
scriptive statistical analyses, ANOVA and Pearson cor-
relation analysis, were carried out using SPSS v.22
software (IBM crop. Armonk, NY, USA). According to
the method described by Knapp et al. [27], the broad-
sense heritability (4% of yield is estimated with the
formula: #* = 62/(0% + 02, /n + 03 /nk), where o ” is the
genetic variance; cgez is the interaction variance be-
tween the genotype and environment; 032 represents
the residual error variance; and n and k represent the
environment and number of replications, respectively.

Genotyping

Total genomic DNA was extracted from leaf samples of
each inbred line based on the CTAB procedure [28]. Fun-
damental qualities were evaluated by gel electrophoresis
and spectrophotometry (Nanodrop2000, Thermo Scien-
tific) in our laboratory. More stringent DNA quality testing
and sequencing were completed by Data2Bio (D2B; LLC,
Ames, IA, USA). The tGBS protocols followed by Data2Bio
were described previously [29]. Briefly, 299,598,955 raw
reads were generated from the 126 maize samples through
six Ion Proton runs. Prior to alignment, the nucleotides of
each raw read were scanned for low-quality bases.
Bases with PHRED quality scores of <15 out of 40
(<£3% error rate) were trimmed [30, 31]. Subsequently,
the trimmed reads from each sample were aligned to
GenomeB73_RefGenV4 using GSNAP [32], and confi-
dently mapped reads were filtered if they mapped
uniquely (<2 mismatches every 36 bp and < 5 bases for
every 75 bp as tails). Finally, 46,046 SNPs were filtered
according to the following criteria (Additional file 3): 1.
minimum calling rate >50%; 2. minor allele frequency
(MAF) =0.01; 3. allele number = 2; 4. genotype >2; and
5. heterozygosity rate of 0% ~ (2 x Frequencygjele; X
Frequencyayeiez + 20%) from the TASSEL-GBS Pipeline [33].

Genetic diversity

The polymorphism information content (PIC) and MAF,
which can be used to evaluate the genetic diversity of the
population, were calculated with Powermarker v3.25 [34]
using 46,046 SNPs. The PIC can reflect the degree of DNA
mutation in a population and can be estimated as follows:

where Plu and Plv refer to the frequency of the uth and
vth alleles of marker 1, respectively. A PIC value from 0

Page 3 of 12

to 0.25 indicates low polymorphism; a PIC value from
0.25 to 0.5 indicates intermediate polymorphism; and a
PIC value from 0.5 to 1 indicates high polymorphism.
The MAF was used to quantify the degree of genetic
differentiation in the maize population. The ratio of the
number of SNPs with less variation to the total number
of SNPs at each SNP locus was calculated. To avoid the
influence of sample size, a re-sampling strategy was
adopted in this study. The distribution of the SNPs
unique to the Shaan A inbred lines or the Shaan B group
inbred lines on ten chromosomes was determined with
the ggplot R package.

Population structure and relative relationships
The relative kinship matrix between inbred lines i and j
was calculated with TASSEL v.5.0 software to explore
the pairwise relationships of the 126 inbred lines. The
results were illustrated with the Genomic Association and
Prediction Integrated Tool-R (GAPIT) package [35]. All
negative values between pairwise lines were set to 0 [36].
In addition, to rapidly investigate population structure,
31,983 high-quality SNPs were screened with stringent
criteria (missing rate < 0.05, MAF >0.05) using TASSEL
v.5.0 software and imported into Admixture software
version 1.23 for cross validation [37]. The optimal parti-
tioning of subgroups (K) was determined from the mixed
cross validation error values, which were computed from
the number of subpopulations (K), ranging from 1 to 15.
The output of the Admixture software was imported into
R to create a stacked bar chart.

SNP-based genome-wide association mapping and gene
annotation

A total of 31,983 SNPs with MAF >0.05 and missing
rate < 50% were filtered for the genome-wide association
study (GWAS). The GWAS of the grain yield data from
the two locations was accomplished in the TASSEL v.5.0
software with a mixed linear model (MLM), controlling
for population structure and relative kinship (K + Q) to
avoid spurious associations [33]. When using the Bonfer-
roni correction threshold for GWAS, we found no sig-
nificant association between the grain yields from the
two locations. Therefore, P <1 x 10”2 was chosen to de-
termine significant SNPs for the trait. Thereafter, the LD
decay distance in AM126 was estimated using TASSEL
v.5.0 software. Finally, we confirmed the unique candidate
genes underlying the association signals with SNP markers
based on the LD decay distance of this population and an-
notated the candidate genes according to the information
available in the Maize Sequence (http://ensembl.gramene.
org/Zea_mays/Info/Index) and the MaizeGDB (http://
www.maizegdb.org/gbrowse) databases. Because only a
version 3 gene annotation file exists, all v4 gene IDs were
converted to v3 gene IDs and then annotated.
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Results

Basic SNP statistics of AM126 based on tGBS sequencing
Through tGBS sequencing, 299,598,955 raw reads were
generated from AM126 and uniquely aligned to the refer-
ence genome (http://ensembl.gramene.org/Zea_mays/Info/
Index, AGPV4). Ultimately, 1,133,188 sites were identified,
among which 46,046 SNPs were polymorphic in AM126,
with a missing rate of less than 50% and MAF of more
than 0.01. For the 46,046 SNPs, the number of SNPs per
chromosome ranged from 3235 SNPs on chromosome 10
to 6513 SNPs on chromosome 1 (Table 1). Chromosome 3
showed the lowest average marker density and chromo-
some 5 the greatest. The average marker density across the
ten chromosomes was found to be approximately 45.7 kb.
For the 31,983 high-quality SNPs with an MAF >0.05, the
number of SNPs per chromosome ranged from 2287 SNPs
on chromosome 10 to 4494 SNPs on chromosome 1. The
average distance between neighbouring markers on dif-
ferent chromosomes varied from 59.4 to 69.8 kb, with
an average of approximately 65.9 kb. The proportion of
the reduction of SNPs with MAF <0.05 was greater on
chromosomes 1, 6 and 7 than on the other chromosomes.

Genetic diversity

A total of 46,046 SNPs were used to estimate the MAF
and PIC for AM126 and each group. The MAF and PIC
distribution of all SNPs are provided in Fig. 1. Among
the 46,046 SNPs, 28.08% showed an MAF of less than
0.05, and 12.43% exhibited a PIC of less than 0.05 in
AM126. The average MAF for AM126 was 0.164, vary-
ing from 0.010 to 0.500, and the average PIC was 0.198,
varying from 0.020 to 0.398 (Table 2). The Shaan B
group showed a higher average MAF (0.166) and PIC
(0.200) than the Shaan A group, which displayed an aver-
age MAF of 0.134 and PIC of 0.157. Furthermore, 32
inbred lines (the same sample size as for Shaan A) were
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selected randomly from the Shaan B group 10 times to
eliminate the effect of sample size. The results confirmed
that the Shaan B group exhibited higher genetic diversity
than the Shaan A group, with an average MAF of 0.161
(0.154-0.178) and PIC of 0.191 (0.180-0.220).

The chromosomal distribution of unique polymorphic
sites is provided for further comparison of the genetic
diversity between the Shaan A and Shaan B groups
(Fig. 2). Among the 46,046 SNPs, 11,284 SNPs (24.5%)
were unique to the Shaan B group and were widely
distributed on all chromosomes, whereas the Shaan A
group contained 2644 unique SNPs, which only accounted
for 5.7% of the total. The number and distribution of
unique SNPs on chromosomes showed obvious differences
between the Shaan A and Shaan B groups. The analysis
indicated that Shaan B had a broader genetic basis than
Shaan A group.

Relative kinship and population structure

To elucidate the relationships among the inbred lines, all
46,046 SNPs were used to compute kinship coefficients.
The pairwise relative kinship coefficients in AM126
ranged from 0.00 to 1.03. A total of 61.82% of the relative
kinship values were equal to 0, and 36.62% of the relative
kinship values varied from 0.05 to 0.5. Only 0.15% of the
relative kinship values exceeded 0.7. The remaining 1.38%
of the paired relative kinship values ranged from 0.5 to 0.7
(Fig. 3a, Additional file 4). The kinship heatmap is shown
in Additional file 5. Low relative kinship was observed for
AM126, which is consistent with known pedigrees.

The 31,983 high-quality SNPs were used to estimate an-
cestry in Admixture, based on the maximum-likelihood
approach [37]. The cross validation error value for K ran-
ging from 1 to 15 was computed to infer the population
structure of AM126 (Fig. 3b). The lowest cross validation
error value was observed when K=6, suggesting that

Table 1 Chromosomal distribution and proportion of polymorphic markers used for computing genetic diversity and relationships
(46,046 SNPs) and for population structure, LD decay and association analyses (31,983 SNPs)

Chromosome 46,046 SNPs 31,983 SNPs
No. of markers Proportion Marker density (kb) No. of markers Proportion Marker density (kb)

1 6513 14.14% 47.1 4494 14.05% 68.3
2 5120 11.12% 478 3560 11.13% 68.7
3 5692 12.36% 414 3967 12.40% 594
4 5513 11.97% 448 3857 12.06% 64.0
5 4678 10.16% 479 3284 10.27% 68.2
6 3684 8.00% 472 2492 7.79% 69.8
7 3956 8.59% 46.1 2651 8.29% 68.8
8 4110 8.93% 441 2863 8.95% 63.3
9 3545 7.70% 451 2528 7.90% 63.2
10 3235 7.03% 46.7 2287 7.15% 66.0
Average 4604.6 10.00% 457 31983 10.00% 65.9
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Fig. 1 Distribution of MAF and PIC in AM126, the Shaan A group and the Shaan B group. MAF distribution (a) and PIC distribution (b)

AM126 could be divided into six subgroups (Subs 1, 2, 3,
4, 5, and 6) (Fig. 3¢, Additional file 6). In addition, com-
parison with previous breeding experience and pedigree
backgrounds also indicated that K =6 was a logical num-
ber for the subpopulation. PH6WC, belonging to the Reid
group, was included in Sub 2, which was composed of 4
inbreds selected from the Shaan B group and 24 inbreds
selected from the Shaan A group. Therefore, Sub 2 is also
referred to as the Reid subgroup. Sub 1 contained 33
inbreds from the Shaan B group and 3 inbreds from the
Shaan A group. Sub 3 consisted of 9 inbreds from the
Shaan B group, which was a much smaller number than
in the other subpopulations. Twenty-four Shaan B group
inbred lines were clustered into Sub 4. Twelve Shaan B in-
bred lines and 2 Shaan A inbred lines were grouped into
Sub 6. Additionally, 3 Shaan A inbred lines and 12 Shaan B
inbred lines that showed a lower probability were assigned
to Sub 5, which was also referred to as the mix subgroup.
The resulting population structure of AM126 can be used
for further analysis and shows that the Shaan A group pre-
sents less ancestral diversity than the Shaan B group.

Genome-wide association study

The grain yield was counted and was found to follow a
normal distribution at each location (Additional file 7).
In Yangling and Yulin, the average yields were 195.11
and 442.26 kg/mu, varying from 81.59 to 338.36 and
282.45 to 687.58 kg/mu, respectively (Table 3), and the
coefficient of variation (CV) were 25.00% and 17.39%,

Table 2 MAF and PIC of different groups determined using
46,046 SNPs

Group
AM126 126

MAF PIC

0.164 (0.010-0.500)  0.198 (0.020-0.398)
0.134 (0.000-0.500)  0.157 (0.000-0.375)
0.166 (0.000-0.500)  0.200 (0.000-0.409)
0.161(0.154-0.178) ~ 0.191(0.180-0.220)

No. of lines

Shaan A group 32
Shaan B group 94

Shaan B group 32
(re-sampled)

respectively. The grain yields in Yangling and Yulin were
significantly positively related at the p =0.01 level, with
a Pearson correlation coefficient of 0.519. Additionally,
in this panel, the grain yield displayed a high heritability
of over 83.33%. These results suggested that the grain
yield was highly variable in this population.

GWAS of the grain yield of AM126 was performed separ-
ately for the two locations (Yangling and Yulin) using 31,983
high-quality SNPs. As shown in the quantile-quantile plots
of grain yield (Fig. 4b, d), fewer false positives were found
after application of the MLM with a population structure
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and relationship (Q + K) model, and we used these results
to annotate associated genes and identify candidate genes. A
total of 51 lead SNPs, corresponding to 33 loci, were signifi-
cantly associated (P < 1 x 10~ ?) with yield. Only one of these
loci was the same in the two environments. The Manhattan
plots showed that the SNPs associated with yield were
spread across the genome in Yangling and were distributed
mainly on chromosome 4 in Yulin (Fig. 4a, c). When
the R* value was less than 0.01, the LD decay distance was
about 150 kb in AM126 (Additional file 8). Therefore, we
identified candidate genes in a 300 kb region around the
positions of significantly associated SNPs and discovered
that two intervals in the samples from the two environ-
ments were mostly overlapping.

According to the gene and protein annotations from
Maize Sequence (http://ensembl.gramene.org/Zea_mays/
Info/Index), MaizeGDB (http://www.maizegdb.org) and
InterPro (http://www.ebi.ac.uk/interpro), genes that may
be associated with yield were identified and were illustrated

in Table 4. Among the genes with functional annotations,
Zm00001d027610, which encodes a vegetative storage
protein and is located within the overlapping interval on
chromosome 1 (8,876,216-9,176,216 bp), appeared to be a
candidate gene that may be associated with grain yield
(Fig. 5a, ¢). In another region with overlapping interval on
chromosome 7 (5,969,535-6,348,940 bp), we identified the
gene Zm00001d018819, encoding viviparous-14, which is
involved in the abscisic acid (ABA) biosynthesis pathway
(Fig. 5b, d). In addition, 28 candidate genes were identified
based on significant SNPs associated with grain yield in a
single environment. Zm00001d025617 encodes general
regulatory factor (GF) 2, which belongs to the 14—3-3 fam-
ily (IPR0O00308), on chromosome 10. Zm00001d053298,
also known as GBPI4, encodes the GLABROUSI
enhancer-binding protein (GeBP) transcription factor,
which belongs to the GeBP family (IPR007592) and
is located on chromosome 4. However, we did not find
genes of known function at the loci with the lowest

Table 3 Descriptive statistics, correlation coefficient between the two environments and broad-sense heritability of the yield traits

Environment Mean + SD Range CV(%) Correlation coefficient h2 (%)
Yang ling

Yangling 195.11 + 4877 81.59-338.36 25.00 8333

Yulin 442.26 + 7693 282.45-687.58 17.39 0.519°

Significant different at 0.01 level
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p values; these genes may not be directly involved in
the relevant pathway, or the SNP loci may be linked
with nearby genes.

Discussion

Many researchers have analysed complex quantitative
traits using association panels collected from hundreds
of inbreds from all over the world, especially in maize
[38, 39]. These inbreds usually originate from different
breeding programmes around the world. However, the
materials employed in present study were derived from
the same breeding project, and they had been cultivated
under high-stress conditions for nearly 10 years. There-
fore, to analyse genetic diversity and kinship within this
germplasm, the inbreds must be used more accurately in
breeding programmes. Using the AM126 panel to perform
association mapping will provide new insight into combin-
ing molecular genetics and conventional breeding.

Maize has abundant genetic diversity, and abundant
genetic diversity of maize germplasm greatly benefits crop
breeding [40]. Artificial selection for favourable alleles has
gradually reduced genetic diversity in maize and increased
the abundance of some favourable low-frequency alleles
[41]. This selection will help us to identify new genes. In
this study, the PIC and MAF of the entire panel were
0.198 and 0.164, respectively. These values are signifi-
cantly lower than those reported in other studies of diver-
sity in maize inbred lines [20], including the PIC and
MATF of 0.29 and 0.33, respectively, obtained in a previous
study using 2846 SNPs across 32 inbred lines selected

from the Shaan A and Shaan B groups [42]. However, the
average MAF was relatively higher than that of 538 maize
inbred lines (CMLs) determined using 955,120 SNPs with
MAF 20.01 [43]. These differences were mainly caused by
the choice of maize germplasm and SNP filtration criteria.
In general, compared to ordinary association mapping, the
genetic diversity of the breeding population was lower.
Additionally, GBS can produce a very high miss rate and a
large number of SNPs with a very low frequency [44].
Low-frequency SNPs may facilitate the identification of
complex traits that rely on low-frequency and rare vari-
ants [45]. In addition, the inbreds from the Shaan B group
were found to be more diverse than those from the Shaan
A group in this study. These results showed that inbreds
from the Shaan A group might have experienced stricter
selective conditions than those from the Shaan B group
during inbred selection under the same environment.
Population structure is the foundation of hybrid breed-
ing and a key factor in association mapping [36]. Ac-
cording to long-term breeding experience, maize inbreds
have been divided into several heterotic groups. How-
ever, it remains unclear how many heterotic groups of
maize exist; indeed, researchers have not reached a con-
sensus in this regard. For maize in the USA, the classic
view is that maize should be separated into two heterotic
groups—stiff stalk (SS) and non-stiff stalk (NSS) [46].
Following this breeding strategy and grouping, inbred
lines were divided into two divergent heterotic groups
according to the different requirements of the parents of
hybrids. In Europe, the flint and dent heterotic groups
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Table 4 Markers and genes significantly associated with yield in the two environments

Environment Chr Pos P-value Marker R? MAF Candidate interval Gene ID

Yangling 1 64,203,074 2.54E-04 0.182 0.071 64,053,074-64,353,074 Zm00001d029264
Yangling, Yulin 1 9,026,216 4.18E-04 0.149 0.107 8876,216-9,176,216 Zm00001d027610
Yangling 1 296,366,071 548E-04 0.150 0.28 296,216,071-296,516,071 Zm00001d034563
Yangling 1 82,414,042 5.88E-04 0.179 0.071 82,264,042-82,564,042 Zm00001d029679
Yangling 1 275,324,785 7.76E-04 0216 0.269 275,174,785-275,474,785 Zm00001d033834
Yangling 1 208,984,720 8.68E-04 0.113 0.061 208,834,720-209,134,720 Zm00001d031996
Yangling 2 17,192,443 1.72E-04 0.136 0.084 17,042,443-17,342,443 Zm00001d002623
Yangling 3 174,894,572 1.50E-04 0174 0.255 174,744,572-175,044,572 Zm00001d042637
Yangling 3 217,771,512 7.76E-04 0.109 0.364 217,621,512-217,921,512 Zm00001d044048
Yangling 3 151,015,584 8.38E-04 0.110 0.054 150,865,319-151,165,584 Zm00001d042108
Yulin 4 226,628,381 8.83E-05 0.286 0.262 226,478,381-226,778,381 Zm00001d053334
Yangling 4 36,611,473 1.77E-04 0.182 0.349 36,461,473-36,761,473 Zm00001d049590
Yulin 4 224,904,708 2.76E-04 0.115 0.09 224,754,708-225,054,708 Zm00001d053298
Yulin 4 227,248,589 5.65E-04 0133 0.248 227,098,589-227,398,589 Zm00001d053354
Yulin 4 228,002,806 7.35E-04 0.14 0.095 227,812,359-228,152,806 Zm00001d053369
Yulin 4 197,048,390 1.09E-03 0.116 0.232 196,898,390-197,198,390 Zm00001d052678
Yulin 4 222,979,053 1.09E-03 0117 0.200 222,829,053-223,129,053 Zm00001d053259
Yangling 5 60,500,183 7.64E-04 0.102 0.064 60,350,183-60,650,183 Zm00001d014722
Yangling 6 37,566,120 497E-04 0.130 0.257 37416,120-37,716,120 Zm00001d035629
Yangling 7 6,198,940 7.25E-04 0.140 0.285 5,969,535-6,348,940 Zm00001d018819
Yulin 7 6,119,535 7.34E-04 0.126 0.366 5,969,535-6,348,940 Zm00001d018819
Yangling 7 165,187,310 9.21E-04 0.113 0.087 165,037,310-165,337,310 Zm00001d021877
Yangling 8 166,364,288 2.95E-04 0.154 0.070 166,214,288-166,514,288 Zm00001d012007
Yulin 8 134,765,776 4.07E-04 0.226 0.176 134,615,776-134,915,776 Zm00001d010946
Yangling 8 103,836,414 4.24E-04 0.104 0.096 103,686,414-103,986,414 Zm00001d010201
Yangling 8 153,275,644 5.55E-04 0.129 0.133 153,108,098-153,425,644 Zm00001d011515
Yulin 9 26,330,295 6.05E-05 0.145 0.073 26,180,295-26,480,295 unknown
Yangling 9 95,895,364 2.94E-04 0.251 0.362 95,745,364-96,045,364 Zm00001d046558
Yangling 9 53,338,849 3.34E-04 0.125 0.105 53,188,849-53,488,849 Zm00001d046004
Yangling 9 124,887,914 3.72E-04 0127 0.056 124,737,914-125,037,914 Zm00001d047266
Yangling 10 126,844,985 5.79E-04 0.121 0.056 126,694,985-126,994,985 Zm00001d025703
Yangling 10 123,993,567 6.10E-04 0114 0329 123,843,567-124,143,567 Zm00001d025617
Yulin 10 13,050 8.89E-04 0.100 0.154 0-163,050 unknown

have been widely developed to produce superior hybrids
[47]. However, in China, opinions have differed due to
the unclear relationships among Chinese maize inbreds.
Zhang et al. suggested that 269 inbred lines could be
assigned to six heterotic groups based on different methods
[48]. Research using 84 parental lines showed that heterotic
groups originating from Lancaster, Reid, Tang SPT, Zi330
and E28 in the early 1990s had become Reid, Tem-tropic I,
Zi330, Tang SPT and Lancaster, respectively, in the early
twenty-first century [49]. Many studies have divided widely
used inbred lines into three or more than heterotic groups
[50-52], though some reports have indicated that the

inbreds found in China can be assigned to two divergence
groups. For example, 362 important inbreds from
Southwest China were divided into two heterotic groups:
temperate and tropical [53]. Additionally, 155 inbred lines
were separated into two groups, with seven subgroups,
using 82 SSRs [54], and 367 diverse inbreds lines were
divided into two heterotic groups, composed of six sub-
groups [55]. In this study, two divergent heterotic groups,
Shaan A and Shaan B, were cultivated through long-term
artificial selection based on breeding experience in China
and abroad. The population could be divided into 6 sub-
groups. The Shaan A and Shaan B groups exhibit a clear
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Fig. 5 Region plot of four SNPs associated with grain yield, which are located within 2.5 Mb on both sides of the lead SNP. Zm00001d027610
was identified based on the lead SNP, which was associated with grain yield in Yangling (a) and Yulin (). Zm00001d018819 was identified based
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population structure that can serve as a reference for
hybrid breeding and reduce bias in association analysis. The
results suggested that the breeding strategy of two divergent
heterotic groups has been successful in this population.

The main objective in maize breeding programmes is
to increase grain yield [56]. GWAS is an effective tool
for identifying genes and dissecting the genetic architec-
ture related to traits, which furthers genetic improve-
ment in crops [18]. In this study, 51 significant SNPs
associated with yield were detected across two environ-
ments. By searching for candidate genes 150 kb up- and
downstream of significant SNPs, 30 genes that were
associated with grain yield were identified. Among these
genes, Zm00001d027610 and Zm00001d018819 were iden-
tified in both environments. Zm00001d027610 encodes a
vegetative storage protein. Previous studies have shown
that vegetative storage proteins play an important role in
the mobilization of amino acids and defence against biotic
and abiotic stresses in Arabidopsis thaliana and soybean
[57, 58]. Another gene (Zm00001d018819) identified in
both environments encodes the viviparous-14 protein,
which is involved in the biosynthesis of the ABA pathway
in maize according to its functional annotation. ABA plays
a key role in diverse growth processes [59]. Therefore,
viviparous-14 may be involved in determining grain yield
by regulating the biosynthesis of ABA. Moreover, the
GBPI14 gene (Zm00001d053298), discovered in Yulin, was

annotated as a GeBP transcription factor belonging to the
DUF573 family, which includes GeBP and GeBP-like
proteins as well as storekeeper and storekeeper-like
(STKL) transcription factors (http://pfam.xfam.org/family/
PF04504.13). In Arabidopsis, GeBP and GeBP-like pro-
teins play roles in cytokine hormone pathway regulation
[60]. The STK protein may regulate patatin expression in
potato tubers [61], and an STKL factor participates in the
glucose (Glc) signalling pathway in Arabidopsis [62].
Therefore, the candidate gene can likely increase grain
yield. Finally, Zm00001d025617, identified in Yangling, en-
codes grf 2, belonging to the 14-3-3 protein family; this
family includes zmgfl4—4 and zmgfl14-6, which exhibit
prominent expression during maize kernel development
[63]. The levels of 14-3-3 proteins significantly decrease
under salt stress in maize to improve maize adaption [64].
The GF14 protein may play an important role in response
to biotic and abiotic stresses in Arabidopsis [65]. Hence,
we infer that Zm00001d025617 and these genes belonging
to the 14-3-3 protein family have similar functions in
maize. More work needs to be conducted to verify the
functions of these candidate genes.

The genetic improvement of maize yield not only im-
proves yield potential, but also increases stress tolerance
[66]. Grain yield is a complex trait and is highly influ-
enced by environmental variation [67]. The experimental
locations in this study were Yangling and Yulin, which
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are both irrigated areas, but one exhibits a sub-humid
monsoon climate and the other a semiarid monsoon
climate. The different climate and soil conditions re-
sulted in different grain yields, which ranged from
195.11 (Yangling site) to 442.26 kg/mu (Yulin site). Com-
pared to the candidate genes identified in Yulin, the inbreds
cultivated in Yangling displayed more stress-related genes
in their genome. For example, Zm00001d034563, which
encodes dirigent protein (DIR) 4, belongs to the plant DIR
family, which has been reported to respond to environmen-
tal stress [68]. Additionally, Zm00001d029679 encodes an
ethylene-responsive transcription factor (ERF). AtERF53
increases drought tolerance by facilitating stress-responsive
gene expression in Arabidopsis [69]. A short GC-box motif
has been identified in the ERF genes, which are essential for
the response to ethylene, influencing plant growth and
development [70]. Zm00001d033834 encodes a GRAS
transcription factor. Relevant studies have shown that
GRAS family protein play roles in gibberellin (GA) signal-
ing, which not only regulate pant growth and development,
but also respond to abiotic stress [71, 72]. These studies in-
dicate that the genes identified in the present study could
be involved in responses to biotic and abiotic stresses. The
differences in phenotype and genotype observed at the two
locations clearly revealed an interaction between the geno-
type and environment (G x E), suggesting that the popula-
tion in Yangling suffered worse growth conditions, which is
consistent with the uneven rainfall distribution and con-
tinuous high temperatures recorded in Yangling. How-
ever, some genes that are significantly associated with
drought tolerance, such as ZmNACI111, ZmVPPI and
ZmDREB2A, were not identified in this population
[73-75]; it is possible that these genes were purified
through long-term selection in the population.

Conclusions

In the present study, the genetic diversity, population
structure, relationships and association maps related to
the grain yield of 126 inbred lines (AM126) selected
from the Shaan A and Shaan B groups cultivated at North-
west A&F University were assessed using high-quality
SNPs. The MAF and PIC of AM126 were 0.164 and 0.198,
respectively. The Shaan B group exhibited a higher MAF
and PIC and more unique SNPs than did the Shaan A
group. Therefore, the Shaan B group has a broader genetic
basis than the Shaan A group. AM126 was divided into 6
subgroups according to genotype analysis and breeding ex-
perience, and the inbreds display low relative kinship.
GWAS was performed on this population to identify re-
gions associated with grain yield using a population struc-
ture and kinship (Q + K) model. A total of 30 candidate
genes related to grain yield were identified, among which
two were identified in both environments and the others in
a single environment. The largest proportion of the genes
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identified in this study were associated with abiotic stress,
which is consistent with the climate conditions. These re-
sults illustrate the genetic characteristics of the breeding
population and provide favourable alleles related to maize
yield, and they can serve as a guideline for hybrid breeding
and genetic improvement in the future.
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