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Abstract 

Background:  For genomic prediction and genome-wide association studies (GWAS) using mixed models, covari‑
ance between individuals is estimated using molecular markers. Based on the properties of mixed models, using 
available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individu‑
als to the analysis should never be detrimental. However, some empirical studies showed that increasing training 
population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker 
density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covari‑
ance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-
genome kinship.

Results:  We propose an alternative covariance estimator named K-kernel, to account for potential genetic hetero‑
geneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow 
between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters 
are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between popula‑
tions. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to 
other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS 
on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction 
model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empiri‑
cal null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical 
whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction 
accuracy.

Conclusions:  This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogene‑
ity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 
between identified sub-populations by performing automatic selection of relevant sets of individuals to be included 
in the training population. It may also increase statistical power in GWAS.

© 2015 Heslot and Jannink. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic prediction (GP) is now widely used in plants 
and animals. Numerous methods have been developed 
but a common approach is the GBLUP (genomic best 
linear unbiased prediction) model that uses markers to 

estimate the covariance between the performances of 
individuals. Similar models are also used for genome-
wide association studies (GWAS) to control population 
structure and background effects in the detection of sig-
nificant marker-trait associations e.g., [1]. Many genomic 
prediction studies showed that the prediction accuracy 
of the GBLUP model decreases as more individuals are 
added to the training population. In animal breeding, 
this problem has received considerable attention in the 
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context of prediction between breeds (reviewed in [2]) 
and, so far, empirical results obtained with the GBLUP 
model have been disappointing. Hayes et al. [3] showed 
that the expected accuracies that were derived from the 
mixed model matched the within-breed observed accu-
racies but not the between-breed observed accuracies, 
and poor predictive ability was observed from one breed 
to the other. Similar poor between-breed accuracies 
were reported by Daetwyler et  al. [4] who also showed 
that most of the observed accuracy was due to popula-
tion structure. In goats, Carillier et al. [5] reported small 
gains in accuracy with multi-breed GBLUP compared to 
pedigree-based BLUP, which does not use information 
between breeds.

In plants, similar results have been reported. Wind-
hausen et  al. [6] found no within full-sib family predic-
tion ability in maize when the training population was 
a panel of unrelated individuals. Adding more distantly 
related individuals was either not helpful or detrimental. 
In a set of maize connected crosses, composed of large 
full-sibs families, Riedelsheimer et  al. [7] showed that 
prediction followed expectations when training and vali-
dation individuals were in the same family but not oth-
erwise. In wheat, Dawson et  al. [8] used historical data 
from international nurseries that were collected between 
1992 and 2009, and reported inconsistent accuracies 
when they used data from previous years to predict accu-
racies of later years. These prediction accuracies were not 
explained by variation in the quality of the phenotype 
data of the training or validation sets. Finally, Rutkoski 
et al. [9] showed that accuracies were lower with a train-
ing population of 365 individuals than with optimized 
subsets of that population that were less than half its size.

If the covariance between individuals was well esti-
mated by the current models, adding more individu-
als to the analysis should never be detrimental [10]. 
Consequently, the empirical results are evidence that 
the true covariance matrix between individuals, G, is 
not always well estimated by the whole-genome kin-
ship. The GBLUP estimate of G using m biallelic mark-
ers, Ĝ, is based on W, the n × m centered marker score 
matrix coded as 

{

BB, Bb, bb
}

= {2− 2p, 1− 2p, −2p } 
with p the frequency of allele B and Ĝ = γS with 

S = WW′

/

2
∑

j

pj
(

1− pj
) [11]. γ is a variance com-

ponent estimated by restricted maximum likelihood 
(REML) [4].

If there are too few markers, this estimator is subopti-
mal and some shrinkage is needed to better estimate the 
whole-genome relationship [12–14]. Two non-mutually 
exclusive mechanisms may lead to poor covariance esti-
mation in the presence of high-density markers or even 

full-sequence data. First, at high marker density, Ĝ = γS 
will perfectly describe the whole-genome relationship, 
but G depends only on the causal loci [15]. As a conse-
quence, even if all the polymorphisms present in the pop-
ulation are known through whole-genome sequencing, 
the whole-genome relationship can be perfectly calcu-
lated but G will still be only estimated. As shown by Hill 
and Weir [16], G is not well estimated by Ĝ for distantly-
related individuals, even if marker density is high and for 
additive traits controlled by many loci. Only for a truly 
infinitesimal trait (all loci affect the trait) and when Ĝ is 
calculated on the basis of the whole-genome sequence 
should G and Ĝ converge. Needless to say, this situation 
exists only in thought experiments, but it suggests that 
this effect will depend on effective population size and 
trait architecture. A second mechanism is genetic hetero-
geneity between distantly-related individuals. Conceptu-
ally, such individuals belong to different populations, and, 
for quantitative traits, it is assumed that genetic hetero-
geneity between populations occurs when causal loci or 
alleles that affect a trait differ, or their gametic phase dis-
equilibrium with nearby polymorphisms differs, between 
populations. In practice, these two mechanisms are not 
easy to distinguish since their impacts are consistent with 
each other.

This discussion makes clear that improved estima-
tion of G is a critical issue for the design of training 
populations, for increased prediction accuracy and for 
increased power of the detection of marker-trait asso-
ciations. De los Campos et al. [17], showed that finding 
an estimator for G or kernel has received much atten-
tion in the machine learning literature under the name 
“reproducing kernel Hilbert spaces” (RKHS), which was 
recently reviewed in [18]. A large body of theory indi-
cates that Ĝ = γS is one of many possible kernels and 
shows that the genetic analysis issue can be reduced to 
the choice of a kernel function to estimate the covariance 
between individuals based on markers. Each kernel func-
tion defines a family of kernels indexed by a number of 
parameters. It can be shown that the kernel function or 
family selected determines the functional form of all pos-
sible solutions considered [19].

Our first objective was to propose a multiple kernel 
model to study the problem of genetic heterogeneity 
without pedigree or a priori knowledge about subpopu-
lations. The second objective was to compare the new 
model to other available kernels using empirical data.

Theory
Mixed models
A basic mixed model for genetic evaluation or GWAS 
can be written as:

y = Xβ + Zu + ǫ,
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where y is a vector of phenotypes, β is a vector of fixed 
effects, u is a vector of random individual effects nor-
mally distributed with mean 0 and covariance G and ǫ is 
a vector of i.i.d. errors with common variance σ 2

e , which 
is a common approximation. X and Z are design matri-
ces for the fixed and random effects, respectively. For 
GWAS, the fixed effects X will contain the marker for 
which the effect is tested and possibly some covariates to 
further control population structure [1]. Those covariates 
are often eigenvectors of a principal component analysis 
of the marker data and form a so-called Q matrix. This 
model produces best linear unbiased prediction (BLUP) 
for the random effect u assuming that the variance com-
ponents are known [10] which is not usually the case. To 
estimate G, there are alternative kernels to replace S, as 
described below.

Common kernels in genetic evaluation
De los Campos et al. [17] showed that the genetic evalua-
tion problem could be viewed as a kernel estimation and 
selection problem. If markers are not available, S can be 
replaced by the numerator relationship matrix based on 
pedigree records A.

Another common family of kernels is the Gauss-
ian family. In that case, S is replaced by U such that 
Uij = exp(−(Dij

/

θ)2), where the matrix of Euclid-
ean distances between individuals D is calculated with 
markers and normalized to the interval [0, 1] and θ is 
a so-called bandwidth parameter estimated by REML 
using a grid search. The Gaussian kernel is widely used 
in machine learning [19]. For fully inbred individuals, 
when θ is large relative to D, U is equal to S [20]. A Tay-
lor series expansion of the Gaussian kernel can be writ-
ten: Uij = 1− (Dij

/

θ)2 + 1
/

2(Dij

/

θ)4 + · · · when θ is 
large relative to D [20]. This shows that as θ decreases, 
higher order interactions become more important, and 
suggests that the Gaussian kernel can capture some 
epistasis non-parametrically for fully inbred individu-
als. As a consequence, the random effect predictions are 
genotypic and not breeding values. The Gaussian kernel 
tends to be slightly more predictive of phenotype than S 
on empirical data [18]. For outbred populations, there is 
no demonstration beyond the fact that RKHS is a univer-
sal approximator that will seek to fit the genotypic value 
fully, including additive and non-additive components. 
As such, it should be able to capture some proportion of 
the epistatic variance, if there is any.

When the number of markers is small compared to the 
number of individuals, Endelman et al. [14] have shown 
that S is not a good estimator of the whole-genome kin-
ship and can be replaced by a shrunken estimate such that 
V = δT+ (1− δ)S with T, a so-called low-dimensional 
target. In their paper, they used T = �Sii�I with 〈Sii〉 being 

the average of the diagonal elements of S, which makes 
the shrunken estimate an unbiased estimator in the sense 
that V is equal to S at high marker density. V minimizes 
the mean squared error with the covariance between 
individuals computed using an infinite number of mark-
ers. δ is a shrinkage parameter that is calculated using an 
estimator from [12]. If δ = 0, there is no shrinkage and V 
corresponds to S. If δ is greater than 0, the off-diagonal 
elements of S are shrunk towards 0. The shrinkage inten-
sity does not depend on phenotype but on the number of 
markers relative to the number of individuals.

Similarly, Goddard et  al. [13] argued that S is biased 
compared to A, the numerator relationship matrix, 
because of a finite number of markers and proposed to 
use A itself as a target T. They also proposed an estimator 
of δ that produces no shrinkage if the number of markers 
is very large relative to the number of individuals. Both 
kernels are not used in this paper.

In the GWAS context, another kernel function was 
proposed by [21] and termed compressed mixed model. 
The idea is to cluster individuals based on S and use the 
clusters themselves as random effects instead of the indi-
viduals. The covariance between clusters is obtained by 
averaging the elements of S within and between clus-
ters. This reduces computing time by reducing the num-
ber of levels of random effects and, in their simulations, 
it increased statistical power compared to the use of a 
GBLUP model [21]. However, it seems that some infor-
mation is lost by averaging elements of S within clusters. 
In the following, we name this kernel family “C-kernels”. 
Note that the C-kernel is identity within populations 
(clusters), so it has no ability to predict or correct (for 
GWAS) within populations.

K‑kernels
All the kernels presented above have a common limita-
tion: they do not allow for genetic heterogeneity. For 
example, they cannot describe well a situation where two 
populations have completely different additive genetic 
architectures. Such a case would be best described by a 
block diagonal covariance structure. Recently, [22, 23] 
proposed a multi-trait solution, if groups are known a 
priori. Here, we propose a similar model without prior 
identification of the groups and without using pedigree 
information, which we named “K-kernels” indexed by 
two parameters k and h such that K = hSk + (1− h)S. 
h is a mixture parameter that varies between 0 (GBLUP 
model) and 1 (block-diagonal covariance reduced to the 
target Sk). Sk is a block diagonal matrix with individu-
als ordered into k clusters, if individuals i and j belong 
to the same cluster, the corresponding element of Sk is 
equal to the element of S and 0 otherwise. For a given k, 
the population is split in k clusters that are determined by 
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transforming S in a distance matrix and using a classical 
clustering algorithm. That is for a given k, the assignment 
of individuals to each cluster k is done by a clustering 
algorithm. The values of k and h are estimated by REML 
using a grid search. It can be seen as a multiple-kernel 
model or a simplified multi-trait model. A similar idea 
was also proposed by [11].

This means that the proposed K-kernels allow in one 
extreme case, k populations, each with an independ-
ent additive trait architecture, and, in the other extreme 
case, a single population with an additive model that is 
equivalent to the GBLUP model. Intermediate values of 
h enable some genetic correlation between populations. 
This model attempts to better estimate the true covari-
ance between individuals.

Methods
Data
We used several publicly available datasets representative 
of plant and animal breeding data, which are summarized 
in Table  1. Additional information is available in Addi-
tional file 1: Table S1.

Kernel comparison
For each dataset and trait, GBLUP, Gaussian kernel, 
C-kernel and K-kernel models were fitted to all the data 
available using the R package rrBLUP [24]. For the C- 
and K-kernels, after transformation of S into a distance 
matrix, individuals were clustered using either Ward’s 
minimum variance criterion, which yields compact clus-
ters or UPGMA (unweighted pair group method with 
arithmetic mean) as suggested by [21]. The kernel param-
eters θ for the Gaussian kernel as well as k and h for the 
K-kernel and k for the C-kernel were estimated by REML 
using a simple grid search with k ranging from 1 to 15 
for K-kernel, from 5 up to the number of individuals by 
steps of 5 for the C-kernel, and h from 0 to 1 by steps 
of 0.1. For a given k, affiliation of each individual to a 

cluster was done using either one of the clustering meth-
ods described above.

The GBLUP kernel is nested within the Gaussian, 
K- and C-kernels. For inbred individuals, if θ = 1, the 
Gaussian kernel reduces to GBLUP (here D is normalized 
to [0, 1]). With the C-kernel, if the number of clusters k is 
equal to the number of individuals, it reduces to GBLUP. 
Finally, for the K-kernel, if h = 0 for any k, it reduces to 
GBLUP. Alternative kernels were compared to GBLUP 
using a likelihood ratio test with one degree of freedom 
for the Gaussian and C-kernels. For the K-kernel, two 
degrees of freedom were counted to account for two 
additional parameters compared to the GBLUP. Because 
the hypothesized parameters are placed on the bound-
ary of the parameter space, those tests will be overly con-
servative [25]. The impact of the clustering method on 
the test is also unclear. The validity of the likelihood ratio 
test was tested for each trait and dataset by generating 
100 samples of breeding values from a multivariate nor-
mal distribution with covariance γS, fitting the different 
kernels and calculating the likelihood ratio test statistics. 
This generated an empirical null distribution to confirm 
the validity of the likelihood ratio test. This likelihood-
ratio test examines whether any of the alternative kernels 
describe the true genetic architecture of the trait signifi-
cantly better. In particular for the K-kernel, the signifi-
cance of genetic heterogeneity and its extent are tested.

To select the most predictive model, the AIC (Akaike 
information criterion) was used to compare kernels along 
with cross-validated prediction accuracy. The AIC quan-
tifies the goodness of prediction rather than goodness 
of fit [26]. The number of effective parameters used was 
the number of variance components and kernel param-
eters, as for the likelihood ratio test. Alternative formu-
lations of the AIC were also tested but did not improve 
the results (results not shown). Cross-validation was 
10-fold, iteratively masking 10  % of the individuals and 
predicting them with the different models. For each fold, 

Table 1  Summary of the datasets used

SNP single nucleotide polymorphisms, GBS genotyping by sequencing, DArT diversity arrays technology

Name Species Description Traits

Loblolly pine Loblolly pine [33] 926 individuals, 5000 SNPs Five wood quality traits

Cimmyt wheat Wheat [34] 599 individuals, 1279 DArT markers Yield in four environments

Pig Pig [35] 3460 individuals, 53k SNPs Two anonymous trait

Maize panel Maize [28] 2279 inbreds, 68,120 GBS SNPs imputed Flowering time in degree days

Maize connected crosses Maize [7] 635 inbreds, 17k SNPs Five traits (two diseases, three yield components)

Cornell wheat Wheat [36] Breeding population 365 individuals,  
32k GBS SNPs imputed

Four traits (yield, height, heading date, pre-harvest 
sprouting)

Rice panel Rice [27] 398 individuals, diverse panel 36,901 SNPs 28 traits (flowering time, yield components and 
quality traits)
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the different models were fitted to the data, parameters 
were identified as for the complete datasets and the per-
formance of masked individuals was predicted. Cross-
validation sampling was done in two ways. In the first 
case, sampling was stratified across the different clusters 
to ensure that any validation set was representative of 
the population. In the other cross-validation, the clusters 
with k = 10 obtained with Ward’s criterion were used as 
cross-validation partitions, testing the ability of the mod-
els to discriminate between closely-related individuals. 
If the AIC predicts observed cross-validated accuracy, it 
will indicate that the model does not overfit the data and 
can be used with confidence for genomic prediction. On 
the contrary, if the AIC does not predict observed cross-
validated accuracy, it suggests that the model overfits 
the data. Correlations between AIC and cross-validated 
accuracies were calculated.

GWAS
For the rice [27] and maize panels [28], which are both 
diversity panels used for extensive GWAS, we compared 
the classical GBLUP to the Gaussian, C- and K-kernels to 
correct for population structure. The P3D approach of 
[21] was used, in which variance components are deter-
mined just once to speed up computation. This included 
estimation of θ, k and h by grid search using REML once 
for each trait. Quantile–Quantile (QQ) plots were used 
to compare type I error (false positive) rates between the 
models [1]. In all cases, the models included a Q matrix 
of fixed effects that accounted for population structure, 
which was chosen to be identical to that used in the ini-
tial GWAS for both datasets. For the C-kernel model, 
this might seem like double-counting but the structure of 
Q was taken as input and fitted as fixed effect for each 
model, to be able to compare the log-likelihood between 
the different models.

GWAS simulations
To assess the statistical power of GWAS with the dif-
ferent kernels, we used the simulation scheme of [21] 
which preserves the original architecture of the trait. 
Five thousand markers were sampled as potential causal 
quantitative trait nucleotides (QTN). For each trait ana-
lyzed with the rice and maize datasets, and iteratively 
for each sampled marker, a true QTN effect was added 
to the observed phenotype. GWAS was carried out to 
test if the true QTN could be detected, using the P3D 
approach with γ, θ, k and h previously determined on the 
real data. The added true QTN effect contributed only a 
small proportion of the original phenotypic variance and 
was determined as a fraction q of the original phenotypic 
standard deviation between 0.1 and 0.5. This true QTN 
would explain at most 11.1 % of the phenotypic variation 

depending on the frequency f  of the true QTN in the 
population. The percentage of total variation explained 
by the true QTN is 1/(1+ 1/2f (1− f )q2) with f  being 
the frequency of the true QTN as described in [21]. Sta-
tistical power was calculated as the percentage of true 
QTN detected at the significance threshold 0.01.

All computations were implemented using R 2.15.3 
[29].

Results
Comparison of kernels
The empirical null distributions of the log-likelihood 
ratio test for each trait and dataset allowed the veri-
fication of the test assumptions and the control of type 
I errors based on the observed 95  % quartile. For the 
Gaussian kernel, the mean of the 95  % quartile of the 
simulated likelihood ratio test statistics was equal to 2.58 
with a minimum of 0 and a maximum of 3.84 across traits 
and datasets, which was close to the expected value of 
3.84 for the 95 % quartile of the Chi squared distribution 
with one degree of freedom (one additional parameter). 
Thus, test assumptions were correct for the Gaussian 
kernel. For the K-kernel, the mean was equal to 4.70 
with a minimum of 3.55 and a maximum of 5.74 when 
the 95  % quartile of the Chi squared distribution with 
two degrees of freedom (two additional parameters) was 
equal to 5.99. Thus, test assumptions were correct for the 
K-kernel. For the C-kernel although it requires only one 
additional parameter, the mean was equal to 4.71 with a 
minimum of 3.2 and a maximum of 5.94 when a value of 
3.84 for the 95 % quartile is expected. Thus, test assump-
tions were incorrect for the C-kernel. In the following, 
for the C-kernel, the likelihood ratio test was corrected 
to account for two parameters to better control for false 
positives. The AIC of the C-kernel was also corrected to 
account for two parameters instead of one.

Figures 1 and 2 present the results of the log-likelihood 
ratio test for each trait and dataset for the Gaussian, K- 
and C-kernels. The log-likelihood ratio test tests if the 
alternative kernels describe the genetic architecture of 
the traits considered significantly better than GBLUP. 
The horizontal bar indicates the 5 % significance thresh-
old if a Bonferroni correction for multiple-testing is 
applied on trait-dataset combinations. A lower P value, 
corresponding to a high negative log of P-value indicates 
that an alternative kernel describes the genetic architec-
ture significantly better than GBLUP. This is the case for 
a number of traits, even after Bonferroni correction. The 
C-kernel performed well on the CIMMYT wheat dataset 
that is characterized by a small number of markers and 
on the rice dataset (Fig.  2). The Gaussian kernel had a 
very significantly improved fit to the data for the pig pop-
ulation, maize connected crosses and CIMMYT wheat 
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Fig. 1  Minus log P values of the log-likelihood ratio tests for the Gaussian kernel (gray), K-kernel (red) and C-kernel (blue) for each trait and dataset 
except the rice dataset (see Fig. 2). The horizontal line indicates the significance level at 0.05 with Bonferroni correction for multiple testing on trait-
dataset combinations; the vertical lines separate the different datasets; datasets are presented in Table 1 and more details on the traits are available 
in Additional file 1: Table S1
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Fig. 2  Minus log P values of the log-likelihood ratio tests for the Gaussian kernel (gray), K-kernel (red) and C-kernel (blue) for each trait of the rice 
dataset. The horizontal line indicates the significance level at 0.05 with Bonferroni correction for multiple testing; the rice dataset is in Table 1 and 
more details on the traits are available in Additional file 1: Table S1
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datasets. Similarly, the K-kernel had a very significantly 
improved fit to the data for most traits of the CIMMYT 
wheat, pig population, maize panel and maize connected 
crosses datasets. Finally, for the loblolly pine and Cornell 
wheat datasets, the alternative kernels did not provide a 
significantly improved fit over the GBLUP for most traits. 
Those datasets are narrow-based populations with a mul-
tifamily structure, each family being small (circular mat-
ing cross of 32 parents with an average of 13.5 individuals 
per family for the loblolly pine population and advanced 
breeding lines generated the same year for the Cornell 
wheat population). There are two possible explanations 
for this unexpected result: (1) k was tested up to 15, this 
might not be a sufficient number of groups of individuals 
for those populations; however, close examination of the 
log-likelihood surface obtained for the grid of k and the 
h value does not support this explanation; and (2) both 
populations are narrow-based and thus do not present 
any genetic heterogeneity. Ward clustering was better 
than UPGMA for 38 of the 49 traits. For only three traits, 
(pig T3, rice FRA and PAN), the best fitting K-kernel was 
characterized by independent populations (h = 1). Given 
that the results of the likelihood ratio test were supported 
by empirical null distributions, this demonstrates that 
there is significant genetic heterogeneity in the popula-
tion considered and that it is trait-specific.

The log P-value of the Gaussian and K-kernel were 
significantly correlated across traits and datasets (corre-
lation 0.87, P value <10−16), which suggests that there is 
some overlap in the additional information that the two 
kernels capture. The other pairwise correlations were not 
significant.

Significant marker‑trait association detection
If an alternative kernel better describes the true genetic 
architecture of the trait, it should better control the back-
ground effect in GWAS and increase detection power.

Type I errors with the different kernels were com-
pared by considering the QQ plots for each trait in the 
rice and maize panels as is standard practice for GWAS 
(Additional file 2: Figures S1, S2). Under the null hypoth-
esis, P values follow a uniform distribution and should 
be on the diagonal of the QQ plots with a tail indicating 
GWAS hits. Large deviations from the diagonal indicate 
large deviations from the null hypothesis and, in general, 
suggest a higher risk of detecting false associations [1]. 
In all cases, observed P values fitted a uniform distribu-
tion better (curve closer to the diagonal) when using at 
least one of the alternative kernels than when using the 
baseline model of the published GWAS study [27] (Addi-
tional file 2: Figures S1, S2). No single kernel was best to 
control type I errors on all traits. This is expected since 
Figs.  1 and 2 indicate that the kernel structure that fits 

the data best depended on the trait considered. Differ-
ences in the control of type I errors between models were 
also assessed by calculating for each trait and model, the 
test statistics of the Kolmogorov–Smirnov test for devia-
tion of the P-values from a uniform distribution. Aver-
age values of the test statistics were equal to 0.161, 0.159, 
0.163 and 0.161 for GBLUP, Gaussian kernel, K-Kernel 
and C-Kernel, respectively. These values were not sig-
nificantly different based on a paired t-test. From these 
results, we conclude that alternative kernels control type 
I errors as well as GBLUP.

Statistical power was calculated as the percentage of 
true QTN detected at the significance threshold of 0.01 
based on a sample of 5000 markers taken successively as 
true QTN using the same test settings as previously. On 
average, for the maize panel (Table 2) there was no dif-
ference in statistical power between the kernels in spite 
of large differences in fit to the data (Fig. 1). For the rice 
panel (Table 2), on average, alternative kernels provided 
an increase in power of about 5 % compared to the stand-
ard mixed model. Across traits, the gain in power with 
alternative kernels that was assessed by using a paired t 
test was highly significant (P values of 10−10, 10−12 and 
10−3 for the Gaussian kernel, K-kernel and C-kernel, 
respectively).

The gain in power was similar on average for differ-
ent true QTN sizes but large differences were observed 
between traits in the rice panel. For a few traits, gains in 
power were above 10 % (Fig. 3).With the Gaussian kernel 
and K-kernel, the power was always greater than with the 
base model.

With the Gaussian kernel and K-kernel (Fig.  3a, b), a 
significantly improved fit to the data of the alternative 
kernel measured by reduction of the AIC was associated 
with an increase in power. This trend was not as clear for 
the C-kernel (Fig.  3c). However, in all three cases, the 
correlation between power gain and AIC reduction was 
significant at the threshold of 0.1. This suggests that the 
Gaussian kernel and K-kernel can be used for routine 
GWAS to increase statistical power and control type 
I errors, and that selection of the model can be simply 
based on the examination of the QQ plots and the AIC to 
select the kernel.

Table 2  Average statistical power of  the different kernels 
across QTN size and traits

All models included a Q matrix (average fraction of true QTN detected)

Dataset Baseline Gaussian K-kernel C-kernel

Maize panel 0.700 0.699 0.700 0.700

Rice panel 0.523 0.549 0.547 0.532



Page 8 of 11Heslot and Jannink ﻿Genet Sel Evol  (2015) 47:93 

Prediction accuracy
Similarly, if an alternative kernel better describes the 
true genetic architecture, it should also increase pre-
diction accuracy in cross-validation. Figure  4 presents 
the percentage of gain in accuracies with the two cross-
validation schemes as a function of the AIC reduction 
(complete cross-validation results are available in Addi-
tional file  1: Table S2). With stratified cross-validation, 
the C-kernel was never more predictive than the base-
line GBLUP. For a number of traits, in stratified cross-
validation, the Gaussian kernel and K-kernel performed 
better than GBLUP. On average, gains were small but, for 
some traits, gains in cross-validated accuracy were up to 

10–15  %. With stratified cross-validation, as expected, 
a large reduction in AIC implied a gain in accuracy for 
both the Gaussian kernel and K-kernel (correlation 
higher than 0.6 and P value less than 10−6 in both cases) 
but not for the C-kernel (non-significant correlation). 
This provides further evidence that both the Gaussian 
kernel and K-kernel are not overfitting the data. With 
leave-one-cluster-out cross-validation, accuracies were 
on average much lower, especially for the most diverse 
datasets. The correlation between the AIC reduction and 
the observed gain in accuracy was less clear but still sig-
nificant for the Gaussian kernel and K-kernel (correla-
tion higher than 0.27 and P value significant at the 5  % 
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threshold). The correlation was not significantly different 
from 0 for the C-kernel (P value = 0.9).

Discussion
Genetic heterogeneity of breeding populations
The results of the likelihood ratio tests support the 
hypothesis that alternative covariance estimators better 
describe the true genetic architecture of the trait. The 
tests results are supported by simulations of the null-
distribution of the test statistics. The fact that this new 
covariance estimator better describes the true genetic 
architecture of the trait in some cases is evidence of sig-
nificant heterogeneity of the trait architecture. The new 
model provides a way to investigate genetic heterogene-
ity and find the relevant scale to apply genomic selection 
or detection of marker-trait associations. The increase 
in GWAS power and stratified cross-validation accuracy 
are evidence that the alternative covariance estimators 
are not overfitting the data and, thus, further support the 
findings on genetic heterogeneity.

There are several non-exclusive explanations for the 
significantly improved fit to the data with alternative 
covariance estimators. The most obvious one is marker 
density, but most datasets used here have a high marker 
density. Another explanation is the presence of non-addi-
tive effects. Improved fit to the data with the Gaussian 
kernel compared to GBLUP can be explained by epistatic 
interactions in inbred individuals [20] but this better fit 
is not sufficient to conclude that epistasis is pervasive. 
Another explanation, which is the initial motivation for 
this work, is that the K-kernel accounts for uncertainty in 
the coefficients of Ĝ for distantly-related individuals

Alternative kernels for genetic evaluation and GWAS
GWAS with a mixed model is standard practice but there 
are few published reports of alternative kernels to control 
background effects. Stich et  al. [30] tested a number of 
alternative formulae to calculate kinship for GWAS and 
showed that they all seemed equivalent. For two datasets, 
we showed that alternative kernels can provide similar or 
improved control of type I errors and increase power. An 
alternative kernel can be selected with the AIC for the 
Gaussian kernel and K-kernel. Because the Gaussian and 
K-kernel can better describe the true genetic architecture 
of the trait, they can better control false positive results 
and increase power. The K-kernel has also the advantage 
of helping to identify the relevant scale to apply GWAS. 
If for a given trait and population, h = 1 (several sub-
populations with independent trait architecture), GWAS 
should probably be performed in each sub-population 
independently.

For the C-kernel, results suggest that the reduction 
in AIC is not a good predictor of an increase in power. 

This result contrasts with that reported in [21] for which 
an average gain in power of about 30  % was found for 
three datasets (humans, dog, maize). The main differ-
ence between their study and ours was that the number 
of markers was much smaller than in our datasets. In 
the rice dataset, the improved fit of the C-kernel to the 
data did not translate into increased power or prediction 
accuracy. Because of the high diversity of the rice data-
set, the number of markers might be too small to cor-
rectly estimate the kinship, which explains the observed 
performance of the C-kernel. This does not exclude the 
possibility that the C-kernel performs well by shrinking 
more for low-heritability traits (Z. Zhang, personal com-
munication). To assess the impact of marker density on 
C-kernel performance, we sampled 10 times a subset of 
markers on the maize panel dataset and computed the 
log-likelihood ratio test for the C-kernel. For that data-
set and trait (flowering time), the test was clearly more 
in favor of the C-kernel at low than at full marker density 
(Additional file 2: Figure S3). However, in situations with 
a low marker density, the optimality properties of the 
kernel proposed in [14] are better understood.

For genomic prediction, the K-kernel or Gaussian ker-
nel provided a small increase in accuracy in stratified 
cross-validation depending on the trait. Figure 4 suggests 
that the C-kernel was never really useful even when the 
reduction in AIC was large. Figure  4 also indicates that 
the alternative kernel should only be used when the AIC 
reduction is large compared to that with GBLUP. In the 
cross-validation reported here, model parameters were 
selected simply on log-likelihood. Cross-validation accu-
racies could be improved by using the AIC to decide 
which model to use.

Results of the leave-one-cluster-out cross-validation 
were poor, with none of the alternative kernels perform-
ing better than GBLUP. This might be expected because 
those kernels make additional hypotheses on relation-
ships compared to GBLUP. If a cluster is fully removed 
from the training set, the model cannot reliably identify 
those parameters on the relationship between the train-
ing and validation sets. However, it might prove useful in 
across-breed predictions, if training data are available on 
both breeds and the focus is on prediction accuracy in a 
given breed. In that context, training data in the breed of 
interest would provide information on how informative 
the other breed is for the validation set.

Implications for the design and optimization of training 
populations
Results from [31, 32] suggest that across-breed predic-
tions in animal breeding are favorable when popula-
tions are closely related, marker density is high and 
within-breed training populations are small. If the true 
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covariance G was available, across-breed predictions 
should always be beneficial. This does not seem to be the 
case empirically and is further confirmed by data on dairy 
cattle in [3], which show that the expected accuracies 
from the mixed model do not always match the observed 
accuracies. This has profound implications for the design 
and optimization of training populations. The deci-
sion to add distantly-related individuals to the training 
population, only when the training population is small 
and marker density is high, seems somewhat arbitrary. 
The K-kernel that we propose here makes that decision 
in a single-step analysis. If h = 1, it is beneficial to ana-
lyze the data in distinct sets. Otherwise, the data can be 
analyzed together, but the K-kernel allows the less related 
individuals to contribute less information to the predic-
tion than GBLUP. The K-kernel can be used to identify 
an optimal training set as well as provide a way to better 
use distantly related individuals for training. This model 
is a refinement of the multi-trait model proposed by [22, 
23] that deals with genetic heterogeneity between breeds 
and allows identification of which sets of sub-populations 
to use.
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