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Abstract

duplication on rice root resistance to salt stress.

rice significantly increased.

Background: Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form
the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows
advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome

Results: Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and
Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days.
Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na* content, H* (proton) flux at root tips, and the
microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root
growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency
of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle
cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle,
and nuclei stability. Furthermore, Na* in tetraploid rice roots significantly decreased while root tip H* efflux in tetraploid

Conclusions: Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced
proton transport to the root surface may play a role in reducing Na* entrance into the roots.
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Background

Salt (Na") stress constitutes an important environmental
pressure, and elevated Na* levels in agricultural land
adversely affects the quantity and quality of crop plants
(Buchanan et al. 2005; Knablein et al. 2006; Atkinson
and Urwin 2012; Horie et al. 2012). Plants must cope
with two major stresses under high salinity: osmotic
stress (beginning at the early phase under salt stress),
which is caused primarily by water deficits in plant tissues,
and ionic stress (beginning at the latter phase under salt
stress), which can be caused by the accumulation of Na*
and Cl™ and by disturbance of the K'/Na" ratio in plant
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cells (Yeo and Flowers 1986; Glenn and Brown 1999;
Blumwald 2000; Munns and Tester 2008; Horie et al. 2012).
During evolution, plants have developed several mecha-
nisms to cope with salt stress at the biochemical and
molecular level (Zhu 2002; Shinozaki et al. 2005;
Kronzucker et al. 2006; Horie et al. 2009; Hauser et al.
2010). Among various mechanisms, control of ion
movement across tonoplasts (and the plasma membrane)
to maintain a low Na® concentration in the cytoplasm
is a key cellular factor for survival under salt stress
(Baisakh et al. 2012; Brini and Masmoudi 2012), and
plants are known to maintain low cytoplasmic Na® via
intracellular (Fukuda et al. 2004; Anil et al. 2005) and
extracellular compartmentalization (Anil et al. 2005).
Plants respond to salt stress by restricting the uptake
of Na*, and adjustment of the cytoplasmic compartment is
achieved by producing compatible osmolytes such as pro-
line, mannitol, sorbitol, and glycine betaine ((Greenway and
Munns 1980; Kavi Kishor et al. 2005; Yamada et al. 2005;
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Chyzhykova and Palladina 2006; Jayasekaran et al. 2006);
Xu and Shi 2007; (Munns and Tester 2008; Amirjani 2011;
Chutipaijit et al. 2011)). Ion accumulation in the cytosol
(mainly K*) and in the vacuole (Na', especially in
salt-tolerant cultivars/species) is also important for os-
motic adjustment of plant cells ((Gorham et al. 1987;
Gorham et al. 1990); Glenn and Brown 1999; (Knéblein et al.
2006)). Osmotic adjustment by solute accumulation
inside the cell is essential to reduce the cellular
Yosm against an osmotic gradient between root cells
and the outside saline solution, which eventually restores
water uptake into roots during salinity stress (Greenway
and Munns 1980).

Roots are important to plants for a wide variety of
processes and serve as the major interface between the
plant and various biotic and abiotic factors in the soil
environment (Smet et al. 2012). Plants have evolved
various strategies and mechanisms to resist salinity
stress, in which both anatomical and physiological
adaptations play key roles (Lazof and Cheeseman 1986;
Kronzucker et al. 2006). Solutes and water move radially
through the roots via a combination of apoplastic,
symplastic, and transcellular pathways. The mechanisms
by which Na* enters the shoots of plants remain unclear
(Kronzucker and Britto 2011), but apoplastic transpira-
tional bypass flow of water and solutes is known to play
an important role in rice (Yeo et al. 1987; Ochiai and
Matoh 2002). The apoplastic barriers in roots may also
play a major role (Yeo et al. 1987; Anil et al. 2005;
Gong et al. 2006). The majority of Na' that enters
the shoots of rice plants occurs through “apoplastic
bypass,” whereby Na' ions move through the apoplast via
solvent drag (Ranathunge et al. 2005), bypassing Casparian
bands (Ochiai and Matoh 2002; Gong et al. 2006). In rice,
the highly suberized endodermal barrier presents the
major resistance to radial water flow (Miyamoto et al
2001; Ranathunge et al. 2003). Casparian bands of the
endodermis and exodermis play crucial roles in blocking
apoplastic movement of ions and water into the stele of
roots through the cortex, and these apoplastic barriers
differ considerably in structure and function along the
developing root (Chen et al. 2011; Krishnamurthy et al.
2011; Zhou et al. 2011). Characterization of the hydraulic
conductivity of roots of both herbaceous and woody
species indicated that unfavorable environmental con-
ditions reduce hydraulic conductivity ((Kramer and
Boyer 1995; Steudle and Heydt 1997; Steudle and Peterson
1998; Barrowclough et al. 2000; Miyamoto et al. 2001;
Lee et al. 2005); Zimmermann et al. 2000). Furthermore,
the chemical composition of suberin in the apoplastic
barrier affects the hydraulic conductivity of roots
(Schreiber et al. 2005).

Polyploidy, which is believed to play an important
role in plant evolution and breeding, can significantly
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improve the function of resistance genes and enrich
the range of genetic variation in these genes, thus
increasing the adaptability of plants to dynamic environ-
ments (Adams and Wendel 2005; Chen and Tian 2007;
Soltis et al. 2009). The discovery and application of
polyploidy meiosis stability (PMeS) material for disrupting
a low seed set rate may be used for polyploid rice breeding
in the future. Rice plants are very important as food and
experimental models (Krishnan et al. 2009), and polyploid
rice may result in evolutionary dominance in terms
of stress resistance (Cai et al. 2004; Cai et al. 2007;
He et al. 2010; He et al. 2011). At this time, little informa-
tion is available regarding the effects of abiotic stress in
polyploid rice (Dong and Adams 2011). As cereal crops,
polyploid wheat has been examined under salt stress. In a
study on the variation in salt tolerance within a Georgian
wheat germplasm collection, the endemic hexaploid
winter wheat Triticum macha and the endemic tetraploid
wheat Triticum timopheevii were among the most tolerant
to salt stress (Badridze et al. 2009). In tetraploid wheat
genotypes, Na" exclusion correlated well with salinity
tolerance in the durum subspecies, and K*/Na" dis-
crimination correlated to a lesser degree (Munns and
James 2003). Other studies have shown that salt stress
inhibited germination in all wheat genotypes, but the
effect was more pronounced in Potohar (hexaploid,
salt-sensitive) than other genotypes (Javed, F). Studies
on cotton also showed that the subfunctionalization of
genes duplicated by polyploidy occurred in response to
abiotic stress conditions. Partitioning of duplicate gene
expression in response to environmental stress may lead
to duplicate gene retention during subsequent evolution
(Liu and Adam 2007). In other plants, some studies have
reported that citrus tetraploid genotypes are more tolerant
of moderate saline stress than the diploid genotypes, and
that citrus tetraploid rootstocks are more tolerant to salt
stress than the corresponding diploid rootstock genotypes
(Saleh et al. 2008; Mouhaya et al. 2010). In hexaploid
Acanthophyllum species, the negative effects of salinity on
some growth parameters, including protein content
and antioxidant enzymes, decreased in tetraploid species
(Meratanl et al. 2008). Rice is a salt-sensitive crop consid-
ered more sensitive to salt stress during the early seed-
ling than reproductive stage (Flowers and Yeo 1981;
Lutts et al. 1995; Hasanuzzaman et al. 2009). Few studies
have explored the effect of genome duplication on rice
development under salt stress. An earlier study reported
that the application of PMeS alleviated the low seed set
rate, leading researchers to investigate adaptability under
adverse conditions (Cai et al. 2004; Cai et al. 2007;
He et al. 2010; He et al. 2011). Some results suggested that
salt stress has a large negative impact on seed germination
and seedling growth in rice, but that genome duplication
has positive roles in modulating salt stress adjustability in
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different rice cultivars (Jiang et al. 2013). Polyploidy
is believed to facilitate increased plant adaptability to
environmental extremes, and thus characterizing the
developmental and morphological changes in roots of
polyploid rice that protect against the excessive influx
of Na" is important. This may also be promising for
screening or generating salt-tolerant polyploid rice
varieties. The present study examined the impact of
genome duplication on rice roots during saline treatment
to increase our understanding on the adaptability of
polyploid rice to salt stress and on improving the
adaptation of rice under salt stress.

Results

The effect of genome duplication on rice root growth
under salt stress

The length, fresh weight, dry weight, and number of
roots of polyploid rice cultivars were investigated to
characterize the effects of genome duplication under salt
stress. Our results demonstrated that salt stress signifi-
cantly restricted rice root growth, irrespective of being
diploid or tetraploid rice, and genome duplication im-
proved root resistance in tetraploid rice by contributing
to faster and better root growth in the presence of
150 mM NaCl (Figure 1). Root length was restricted in
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all species. Salt stress significantly decreased the length of
the longest root, irrespective of being diploid or tetraploid
rice. Moreover, compared with roots under normal
conditions, the restriction degree of root length in the
diploid was much stronger than that in the tetraploid.
The fresh weight of total roots in tetraploid rice
showed a more significant increase than in diploid
rice under salt conditions. However, the fresh weight
of total roots decreased in all rice tested after salt
treatment, and no significant difference in the dry weight
of total roots was observed, excluding HN2026-4x. In
addition, the results suggested that the total number of
roots existed no evident difference in both HN2026-4x
and Nipponbare-4x under salt stress, but significant
differences were found in the two diploid rice materials
with salt treatment (Figure 1).

Proline accumulation in the roots of diploid and
tetraploid rice under salt stress

Free proline in roots of diploid and tetraploid rice
subjected to 150 mM NaCl for 5 days was measured
(Figure 2). The amount of free proline in tetraploid
rice cultivars under salt stress varied greatly and
increased compared to diploid cultivars. The amounts
of free proline in HN2026-2x and Nipponbare-2x were
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Figure 1 Root growth in diploid and tetraploid rice cultivars under salt stress for 5 days. Data represent the mean + SD (n=30x 3
independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means
followed by common letters are not significantly different at P =0.05 using a protected least-significant difference. Note: (A) Length of the longest
root; (B) The number of roots; (C) Fresh weight of the total roots; (D) Dry weight of the total roots.
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Figure 2 Amount of free proline in roots of diploid and tetraploid rice under salt stress. Data represent the mean + SD (n=30x 3
independent biological replicatesall samples were tested in three independent experiments with each included thirty rice plants). Means
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132.09 and 98.12 pg g ', respectively. Free proline
accumulation was highest in HN2026-4x (157.91 ug g ™)
and reached 120.99 pg g™' in Nipponbare-4x. However,
the increase in free proline in Nipponbare-4x compared
with Nipponbare-2x was 23.30%. In addition, the increase
in HN2026-4x was 19.55%.

Accumulation of soluble sugar in roots of diploid and
tetraploid rice cultivars

Genome duplication led to a similar increase in different
rice cultivars in terms of soluble sugar accumulation under
salt stress, and the difference was significant between tetra-
ploid and diploid rice subjected to salt stress. However, no
significant changes were found between the two different
cultivars for tetraploid or diploid rice (Figure 3). The
amount of soluble sugar in tetraploid rice roots was similar
to that of the corresponding diploid cultivars under normal
conditions, but showed a marked decrease in the tetraploid
rice roots compared with diploid cultivars under salt stress.

The content of malondialdehyde in roots of diploid and
tetraploid rice cultivars under salt stress

Malondialdehyde (MDA) accumulated to similar levels in
all rice cultivars tested, and no significant difference was
detected between diploid and tetraploid rice cultivars
without salt stress. However, the amount of MDA in
the roots of various rice cultivars under salt stress
was significantly greater than in the control (Figure 4).
In contrast, the amount of MDA in the roots of
tetraploid rice under salt stress was significantly lower
than that in diploid cultivars, suggesting that mem-
brane integrity was higher in tetraploid cultivars than
in diploid rice (Figure 4). Genotypes Nipponbare-4x
(55.58 umol g™') and HN2026-4x (60.10 pmol g ')
accumulated less MDA in their roots compared to
the corresponding diploid cultivars under normal condi-
tion. Under salt stress, the amount of MDA in HN2026-4x
conditioned with salt was lowest among all cultivars
(Figure 4).
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Figure 3 The amount of soluble sugar in roots of diploid and tetraploid rice under salt stress. Data represent the mean + SD (n=30x 3
independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means
followed by common letters are not significantly different at P =0.05 using a protected least-significant difference.
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Figure 4 The accumulation of MDA in roots of diploid and tetraploid rice under salt stress. Data represent the mean +SD (n=30x 3
independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means
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Anatomical structure of roots in diploid and tetraploid
rice under salt stress

To increase our understanding of the root response in
polyploid rice, the anatomical structure of roots in
Nipponbare-2x and -4x cultivars were observed on
plants under salt stress for 3 and 5 days because
Nipponbare-4x was thought to be more resistant to salt.
Histological analysis indicated that genome duplication
regulated the root response to salt stress. The root
microstructure in diploid and tetraploid rice was similar
without salt stress, and no evident morphological
differences in the epidermis, cortex, vascular system, or
aerenchyma were observed to facilitate oxygen transport.
However, the diameter of the longest root in tetraploid
rice was larger than that in the corresponding diploid
(Figure 5A, Al, D). Following 3 days of stress at
150 mM NaCl, evident epidermis cell transfigurations
were detected in Nipponbare-2x. For example, it became
thinner and 57.89% of roots showed some epidermis cells
that were shelled. However, 82.75% of the investigated
roots indicated the epidermis cells in Nipponbare-4x
maintained the normal framework and became thicker
(Figure 5B, B1, E). Continuous morphological analysis
after the root was exposed to 150 mM NaCl for 5 days
revealed distinct differences between diploid and tetraploid
rice (Figure 5C, C1). The roots in Nipponbare-2x shrank
and became transfigured because of the extended water
absence under salt stress; 78.54% of epidermis cells in the
investigated roots brushed off and more aerenchyma
tissues were produced by the cortex cells compared
to 3-day roots under salt stress(Figure 5E). In addition, the
pericycle cells shrank (Figure 5C, E), while in the roots of
Nipponbare-4x, only 22.34% of epidermis cells separated
from the cortex cell. Obvious thicker epidermis cells were
in tight contact, and endo-epidermis formed a thicker
barrier protected from the aerenchyma damage and

blocked deleterious ion transport to pericycle cells.
The protective gap produced between the cortex cells and
pericycle cells, as well as the neighboring cells of pericycle
cells, were thicker, which was considered the second barrier
for the root in Nipponbare-4x. The root response in
HN2026-2x and HN2026-4x was similar to Nipponbare-2x
and Nipponbare-4x, respectively (data not shown).

6 < H2 > Ultrastructural comparison of roots in diploid

and tetraploid rice under salt stress

Ultrastructural analysis in Nipponbare-2x and -4x cultivars
roots under 150 mM NaCl stress for 3 and 5 days showed
that genome duplication improved rice adaptability,
including the epidermis cell protective mechanism,
membrane organelle, and nuclei stability. The epidermis
cells with abundant cytoplasm accumulation around the
cell wall were closely connected in diploid and tetraploid
rice without salt treatment (Figure 6A, Al). After
treatment with NaCl for 3 days, the cell wall of the
epidermis cells became loose, and some exterior parts
of the epidermis cell wall were isolated and desquamated
in Nipponbare-2x (Figure 6B). However, in Nipponbare-4x,
the epidermis cell wall became thicker and a barrier
formed around the epidermis cells (Figure 6B, Bl). A
significant difference was observed for the cortex cells
between Nipponbare-2x and Nipponbare-4x. Floccules
were discovered between the cortex cells in Nipponbare-2x
(Figure 6C), which was not observed in Nipponbare-4x
(Figure 6Cl). Membrane organelles showed an evident
transfiguration in the pericycle cells of Nipponbare-2x
(Figure 6D). In contrast, cells maintained their normal
shape surrounded by cytoplasm in Nipponbare-4x
(Figure 6D1). After NaCl treatment for 5 days, nuclei with
an abnormal shape and floccule nuclear cytoplasm
were observed in the pericycle cells of Nipponbare-2x
(Figure 6E). However, nuclei with intact membranes,
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Figure 5 The longest root microstructure, diameter, and abnormal epidermis frequency of Nipponbare-2x and Nipponbare-4x under
salt stress (Bar =50 pum). (A) Roots of Nipponbare-2x under normal conditions. (A1) Roots of Nipponbare-4x under normal conditions. (B) Root
of Nipponbare-2x under salt stress for 3 days, whereby the black arrows show the epidermis cells abnormally shelled. (B1) Root of Nipponbare-4x
under salt stress for 3 days, whereby the epidermis cells maintained a normal station and the black arrow shows regularly thicker endodermis cells.

(C) Roots of Nipponbare-2x under salt stress for 5 days, whereby the root shrank and transfigured; the black arrow suggests that the epidermis became
thinner. (C1) Root of Nipponbare-4x under salt stress for 5 days, whereby the protective gap formed between the cortex cells and pericycle cells
(white arrow) and the epidermis cells became much thicker (black arrow) and were in close contact with each other. (D) Diameter of the longest root;
(E) Frequency of roots with abnormal epidermis cells under salt stress.

Figure 6 Root ultrastructure of Nipponbare-2x and Nipponbare-4x under salt stress (Bar in E=0.2 um; others bars = 0.5 pm). (A) The
epidermis cells with abundant cytoplasm (arrow) in the diploid without NaCl treatment. (A1) The epidermis cells in tetraploid rice were similar to
the diploid under normal conditions. Arrow indicates abundant cytoplasm. (B) After NaCl treatment for 3 days the cell wall of the epidermis

cells became loose (arrow). (B1) The cell wall of epidermis cells in Nipponbare-4x became thicker and formed a barrier around the cells (arrow).
(C) Floccules (arrow) were discovered between the epidermis cells in Nipponbare-2x. (C1) The epidermis cells were normal in Nipponbare-4x, and
the arrow shows normal abundant cytoplasm. (D) Membrane organelles were indicative of evident transfiguration (arrow) in the pericycle cells of
Nipponbare-2x. (D1) Pericycle cells maintained a normal shape surrounded by cytoplasm (arrow) in Nipponbare-4x. (E) The nuclei with an abnormal
shape, whereby floccule nuclear cytoplasm was observed in the pericycle cells of Nipponbare-2x (arrow). (E1) Nuclei with intact membrane (arrow)
and dispersed chromatins were observed in pericycle cells of Nipponbare-4x.
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Figure 7 Na* content and H* flux of Nipponbare-2x and -4x under salt stress. (A) Na* content in Nipponbare-2x and -4x. (B) H* flux in
Nipponbare-2x and -4x.

smooth surfaces, and dispersed chromatin were observed
in Nipponbare-4x (Figure 6E1). These results indicated
that genome duplication promoted roots to show normal
active metabolism.

Na* content and H* flux in diploid and tetraploid rice
under salt stress

The Na® content in the whole plant including the root
and shoot was measured using inductively coupled plasma
emission spectroscopy (ICP-AES)( Figure 7A). The results
clearly indicated that Na* accumulation in Nipponbare-2x
and Nipponbare-4x did not differ from control condi-
tions, whereas Na* content in Nipponbare-2x increased
significantly compared to Nipponbare-4x under salt stress.
This low level of Na* content suggested that Nipponbare-
4x had a better protective effect against deleterious ions,

leading to higher salt tolerance. H" efflux and influx were
detected in the roots of Nipponbare-2x and Nipponbare-
4x, which was demonstrated 500 pum from the root tip
(Figure 7B). We observed that H" efflux or influx in
Nipponbare-2x and Nipponbare-4x did not differ between
control and treated conditions. At 500-1000 pm from
the root tip, H' influx was dominant, which was
similar in diploid and tetraploid rice. However, H" efflux
increased gradually as distance increased to 1000—2000 um
from the root tip, which was higher in Nipponbare-4x than
in Nipponbare-2x under both control conditions and salt
stress. Subsequently, H" efflux entered into the stable stage
beyond 2000 pm from the root tip, and a striking differ-
ence was observed between H' efflux in Nipponbare-4x
and Nipponbare-2x under salt treatment. The high H*
efflux was indicative of low pH in Nipponbare-4x.



Tu et al. Rice 2014, 7:15
http://www.thericejournal.com/content/7/1/15

Discussion

Salinity is an important environmental factor limiting
the productivity of crop plants because most crop plants
are sensitive to high concentrations of Na* in the soil
(Munns and Tester 2008; Ahmad and Prasad 2012;
Hasanuzzaman et al. 2013). Salinity at higher levels
caused both hyperionic and hyperosmotic stress, and
resulted in a series of adverse effects that ultimately
resulted in plant death (Mahajan and Tuteja 2005;
Hasanuzzaman et al. 2012; Brini and Masmoudi 2012).
As we know, osmotic stress was beginning at the early
phase under salt stress, and then ionic stress was started
at the latter stress phase (Greenway and Munns 1980;
Al-Khayri and Al-Bahrany 2002; Yamada et al. 2005;
Jayasekaran et al. 2006; Munns and Tester 2008;
Krishnamurthy et al. 2009; Szabados and Savouré 2010).
The rice roots, which are in direct contact with the soil,
must tolerate osmotic and ionic stress under saline
conditions (Smet et al. 2012). Osmotic stress in plants
occurs immediately with an increase in salt levels outside
the roots, which inhibits water uptake, cell expansion, and
lateral bud development (Steudle 2000; Munns 2002;
Ranathunge et al. 2003; Ranathunge et al. 2005; Munns
and Tester 2008). On the other hand, salt-induced
oxidative stress may disrupt the membrane structure
since the overproduction of reactive oxygen species
triggers lipid and protein peroxidation ((Dionisio-Sese
and Tobita 2000); Radic et al. 2006; (Moller et al. 2007;
Ahmad et al. 2009; Azevedo et al. 2009)). Our results
indicated that the amount of free proline in the roots
of tetraploid rice was siginificantly higher than that in
corresponding diploid cultivars, however, the amount
of MDA in roots of all tetraploid rice cultivars was
markedly less than that in the diploid cultivars, which
suggests that tetraploid rice can maintain membrane
integrity under salt treatment .Thus, we proposed that the
differences among proline and MDA between tetraploid
rice and diploid rice may contribute to salt-tolerance
in early-salt-stress response and help to combat with
later-salt-stress response in rice.

The ionic stress phase develops later when toxic ions
such as Na® accumulate in plants, particularly when
transport from root to leaves is over the threshold
((Yeo and Flowers 1986); Glenn and Brown 1999;
Zhu 2002). Roots are thought to cope with ionic stress
during high salt treatment by adapting their structures,
and determining how roots avoid the influx of excess salt
is important. Na" translocation from the root to the
shoot is an important issue in salt-stress physiology
((Flowers et al. 1977); Lauchli 1984; (Tester and Davenport
2003; Krishnamurthy et al. 2009; Krishnamurthy et al
2011)). Based on earlier physiological and morphological
studies, the initial uptake of solutes is generally believed
to occur at the epidermis or exodermis, or if soil solution
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flows apoplastically across the root cortex, the endodermis
(Enstone et al. 2003). In most plants, radial transport of
Na" into the root xylem occurs through a cell-to-cell path-
way involving xylem loading transporters (Munns 2002).
However, in rice, considerable apoplastic bypass flow of
Na* into the stele has been observed (Yeo et al. 1987;
Yadav et al. 1996; Garcia et al. 1997; Gong et al. 2006),
which is regulated by Ca®" to varying degrees among
different rice cultivars (Anil et al. 2005). Casparian bands
of the endodermis and exodermis play crucial roles in
blocking apoplastic movement of ions and water into
the stele of roots through the cortex (Steudle and Peterson
1998; Schreiber et al. 1999; Schreiber et al. 2005). In this
study, to explore the detailed resistance mechanisms to
salinity stress in rice roots, the anatomical structure and
ultrastructure of roots in Nipponbare-2x and -4x were
investigated in plants under salt stress. Our results suggest
that epidermis cells in Nipponbare-4x maintained the
normal framework after 3 days of salt treatment and
showed thicker cell walls of some cortex cells, resulting in
the formation of a barrier block near the epidermis.
However, in the epidermis of Nipponbare-2x, a series of
abnormal changes (such as becoming thinner and cellular
distortion) were observed. Continuous root morphological
analysis after 150 mM NaCl treatment for 5 days
suggested that epidermis cells in Nipponbare-4x became
thicker as the first protective barrier against Na’. As a
protective gap between the cortex cells and pericycle cells,
it may be the second protective barrier for the root of
tetraploid rice under salt stress. Based on subsequent
ultrastructure detection, membrane organelles maintained
their normal shape surrounded by cytoplasm under the
high salt treatment in Nipponbare-4x. This hypothesis
agreed with other previous results, which indicated
that excess salts adversely affect all major metabolic
activities in rice including cell wall damage, accumulation
of electron-dense proteinaceous particles, plasmolysis,
cytoplasmic lysis, and endoplasmic reticulum (ER) damage
(Steudle and Heydt 1997; Barrowclough et al. 2000;
Miyamoto et al. 2001; Lee et al. 2005). However, our
results confirmed that Na" content in Nipponbare-2x sig-
nificantly increased compared with that in Nipponbare-4x
under salt stress. The low level of Na" content suggested
that Nipponbare-4x experienced a faint absorption of
deleterious ions. We speculated that the anatomical
structure and ultrastructure of roots in Nipponbare-4x
may play critical roles in counteracting ionic stress at the
latter phase under salt stress. Polyploidy can alter plant
morphology, phenology, and physiology, increasing plant
tolerance to fluctuating environments (Adams and
Wendel 2005). We next explored which factor resulted in
Nipponbare-4x salt stress resistance by characterizing
the cellular and molecular mechanisms. Several categories
of regulatory function and transporter activity were
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over-duplicated, and the complexity of regulatory networks
and adaptability to changing environmental conditions
would be increased in polyploidy (Osborn et al. 2003;
Blanc and Wolfe 2004; Saleh et al. 2008). Adaptation
to stress by high salt content may also occur through
gene duplication, and polyploidy has been associated
with resistance to high salt concentrations in Citrus
and Sorghum. Polyploidy has been suggested to be a
general physiological adaptive response to osmotic stress
((Ceccarelli et al. 2006; Gerstein et al. 2006; Saleh et al.
2008); Dhar et al. 2011). Polyploidy was advantageous
because of the increased vigor compared with diploid and
tetraploid relatives and its ability to produce diverse gene
products under stress environments (Comai 2005).
However, how polyploid rice increases salt stress tolerance
is complicated and requires further study.

Furthermore, under salt stress, the pumping activity of
the plasmalemma H'-ATPase is inhibited and may
contribute to a weaker acidification of the apoplast, and
thus to growth inhibition (Maeshima 2001; (Mariko et al.
2009; Xu et al. 2013)). Na* sequestration into the vacuole
depends on the expression and activity of the Na'/H*
antiporter that is driven by an electrochemical gradient of
protons generated by the vacuolar H'-ATPase and H
*-pyrophosphatase (Fuglsang et al. 2011; Brini and
Masmoudi 2012). The cell wall extensibility is reduced
under salt stress due to the inhibition of pumping activity
of the plasmalemma H'-ATPase (Zorb et al. 2005). At a
2000 pm distance from the root cap, H" efflux becomes
the dominant form with stable values, and Nipponbare-4x
was significantly higher than Nipponbare-2x under salt
treatment. The plasmalemma-H"*-ATPase acidifies the
apoplast by pumping protons out of the cell, and the
decreased pH activates cell wall-loosening enzymes
that break bonds in the cell wall and enables turgor
to drive cell elongation (Michelet and Boutry 1995;
Palmgren 1998; Gaxiola et al. 2002; Cosgrove 2005;
Gaxiola et al. 2007). The high H" efflux in tetraploid rice
leading to low pH conditions may contribute to faster root
growth, but the length, fresh weight, and dry weight
of the root were restricted in diploid cultivars compared
to tetraploid rice under salt stress.

Salt stress induces various complex biochemical,
molecular, cellular, and physiological changes in plants
(Atkinson and Urwin 2012; Horie et al. 2012). Previous
studies have shown that abiotic stress conditions have
considerable effects on duplicate gene expression in
polyploids, with the effects varying in relation to gene,
stress, and organ (Blanc and Wolfe 2004). Differential
expression in response to environmental stress may
play a role in the preservation of some duplicated
genes in polyploidy (Blanc and Wolfe 2004). Recent
molecular, physiological, and molecular genetic studies
have increased our understanding on the protection
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mechanisms that plants use to cope with detrimental
effects of salinity stress ((Blumwald 2000); Zhu 2002;
(Munns 2005; Ren et al. 2005; Munns and Tester 2008;
Horie et al. 2009); Hauser et al. 2010). Correlations
between the ploidy levels and morphological traits in
wheat were significantly positive under saline conditions,
showing that values of morphological traits increased
with the number and types of genomes. Polyploidy
was significantly associated with the species performance
for all traits in the study, excluding the number of yellow
leaves and shoots under saline conditions (Rauf et al. 2010).
The expression of genes duplicated by polyploidy
(termed homeologs) in cotton can be partitioned between
the duplicates so that one copy is expressed and functions
only in some organs, and the other copy is expressed only
in other organs, indicative of subfunctionalization. These
results suggest that the subfunctionalization of genes
duplicated by polyploidy occurred in response to abiotic
stress conditions. Partitioning of duplicate gene expression
in response to environmental stress may lead to duplicate
gene retention during subsequent evolution (Liu and
Adam 2007). As several sources of improved Na*
“exclusion” are now known to reside on different
chromosomes in various genomes of species in the
Triticeae, further studies are required to identify the
underlying mechanisms controlling genes for the various
traits that could act additively or even synergistically,
which may enable substantial gains in salt tolerance
(Colmer et al. 2006). The regulation mechanism is
complicated in polyploid rice, and understanding how
duplicated genes affect rice development under salt stress
could be important for biological and agricultural applica-
tions. The results of our work suggest that tetraploid
rice has a better protective mechanism than diploid
rice against salinity, in agreement with the results of
earlier studies on the genome duplication effect in
Citrus, Acanthophyllum spp., and other plants under
salt stress (Saleh et al. 2008; Yildiz and Terzi 2008;
Mouhaya et al. 2010). Several studies have indicated
that the response of plant cells to high salt is con-
trolled by multiple genes (Bartels and Sunkar 2005;
Chinnusamy et al. 2005; Sahi et al. 2006). Polyploid
rice was believed to improve the root adaptability to
salt stress by regulating root growth and protective
structure formation, subsequently decreasing Na™ assimi-
lation. Thus, exploring the significance of protection
mechanisms in polyploid rice salt tolerance, including
morphological barriers at the molecular, cellular, and
whole plant level, is important to develop high-yielding,
salt-tolerant polyploid cultivars.

Conclusions
Rice is a very important and salt-sensitive crop. Previous
reports have suggested that polyploid rice has some
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superiority in stress resistance. However, few studies
have focused on the effect of genome duplication on rice
root response under salt stress. The objective of this
study was to investigate how genome duplication
regulates the rice root response to salt stress. Our results
demonstrated that salt stress significantly restricted rice
root growth in both diploid and tetraploid rice, and
that genome duplication improved the root growth in
tetraploid rice, with faster and better root growth in
the presence of 150 mM NaCl. Free proline accumulated
in tetraploid rice cultivars under salt stress varied greatly,
which increased compared to that in the diploid cultivars.
Genome duplication significantly decreased the MDA
content in tetraploid rice compared to diploid cultivars
subjected to salt stress, which suggests that the membrane
integrity improved in the tetraploid compared to the
diploid. Investigation of the anatomical structure of roots
under salt stress showed a high frequency of epidermis
cells maintaining their normal structure, and a gap
appeared between the cortex and pericycle cells in
tetraploid rice roots. These protective mechanisms
improved the root adaptability to salt stress. Ultrastructural
analysis showed that genome duplication also improved
the root response, including the epidermis cell protective
mechanism formation, and membrane organelle and nuclei
stability. Anatomical structure and ultrastructure of roots
in Nipponbare-4x may play critical roles in counteracting
Na" absorption, and Na* content in Nipponbare-2x greatly
increased compared to that in Nipponbare-4x under salt
stress. The high H" efflux in tetraploid rice led to low pH
conditions and may have contributed to increased root
growth, the length of the root, and the fresh and dry
weights of the root, which were restricted in the diploid
compared to the tetraploid under salt stress. Overall,
our results suggest that genome duplication improved
root resistance to salt stress and enhanced proton
transport to the root surface, which may play a role in
reducing Na" entry into the roots.

Methods

Plant materials and growth conditions

HN2026-2x and -4x and Nipponbare-2x and -4x were
used in this study. The tetraploid rice cultivars were
cultured according to our patent and as described
previously (Cai et al. 2004). Seeds were germinated
on moist tissue paper at 28°C in the dark for 2-3 days.
Seedlings were transferred to half-strength Murashige and
Skoog (% MS) medium (Murashige and Skoog 1962) in
containers. The seedlings were allowed to grow for 20 days
post-germination with continuous media aeration at 28°C
illuminated at 450 pumol m™> s~ ' using fluorescent
lighting with a day and night cycle of 12 h each. Seedlings
were then cultured in % MS medium (Murashige and
Skoog 1962) with 150 mM NaClL
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Measument of root growth under salt stress

We choosed the longest root (primary root as noted in
(Xu et al. 2013)) of every plant to measure the length,
and weighed the fresh and dry weight of total root with
precision electronic autobalance, and recorded the total
root numbers. The diameter of the longest root was
measured by vernier caliper. All samples were tested in
three independent experiments with each included thirty
rice plants.

Extraction of free proline

The proline content in roots in the presence of 150 mM
NaCl for 5 days was investigated. The free proline
content was extracted and quantified using the acid
ninhydrin method as described by Bates et al. (Bates et al.
1973). The content of free proline was calculated using the
standard curve. All samples were tested in three independ-
ent experiments with three replicates each.

MDA content

The content of MDA in roots subjected to 150 mM NaCl
for 5 days was calculated. The method was in accordance
with the results of Hodges et al. (Hodges et al. 1999).
Briefly, 0.5 g of fresh rice roots was homogenized with
5 ml of 5% (v/v) 2,4,6-trichloroanisole, and then centri-
fuged at 3000 rpm for 10 min. The supernatant was mixed
with 2 ml of 0.67% (v/v) 2,4,6-tribromoanisole, boiled for
30 min, and then cooled and centrifuged again. The
absorbance (A) of the supernatant at 532 nm, 600 nm,
and 450 nm was measured and the MDA content (C) was
calculated as follows: C (umol L™) = 6.45 (As3—Ago0) —
0.56 Ays0. All samples were tested in three independent
experiments with three replicates each.

Soluble reducing sugar content

The soluble reducing sugar content in roots exposed to
salt treatment for 5 days was measured as described
previously (Ranney et al. 1991). Briefly, 0.1 g of fresh rice
roots was homogenized with 5 ml of distilled water and
then centrifuged at 8000 rpm for 10 min. The soluble
reducing sugar content was measured as follows: 1.0 ml
supernatant and 0.5 ml 3,5-dinitrosalicylic acid were
mixed, heated in boiling water for 5 min, and cooled. The
absorbance was measured at 520 nm, and the amount of
reducing sugar was calculated from the standard curve.
All samples were tested in three independent experiments
with three replicates each.

Anatomical analysis of roots

Rice roots exposed to salt treatment for 3 and 5 days
were dissected and vacuum-infiltrated with 3% (w/v)
paraformaldehyde (Sigma, St. Louis, MO, USA) and
0.25% glutaraldehyde (Sigma) in phosphate-buffered
saline (PBS) for 30 min (pH 7.2). The fixed roots were
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renewed with fresh solution and post-fixed in 1% OsO,
(Sigma) in PBS (pH 7.2). The tissues were washed in
PBS, dehydrated in a graded ethanol series, and
embedded in EPON812 (Emicron, http://www.instrument.
com.cn/). Half-thin sections (100 nm) were examined at
every stage, and observations and photographic recordings
were performed with a BX51 microscope (Olympus, Tokyo,
Japan). Ultrathin sections (50—-70 nm) were double-stained
with 2% (w/v) uranyl acetate (Sigma) and 2.6% (w/v) lead
citrate (Sigma) aqueous solution and examined with a
transmission electron microscope (H-8100; Hitachi, Tokyo,
Japan) at 100 kV.

Measurement of Na* concentration

After seedlings were cultured in % MS medium (Murashige
and Skoog 1962) with 150 mM NaCl for 5 days, whole
plants including shoots and roots were collected and dried
at 70°C for at least 3 days, after which they were weighed.
Samples were digested with HNOj3 and the concentration
of Na" was determined using ICP-AES (IRIS Advantage;
Thermo Electron, Waltham, MA, USA). All samples
were tested in three independent experiments with
three replicates each.

Assay of H* flux in the rice root tip

H" fluxes were measured noninvasively using SIET
(SIET system BIO-003A; YoungerUSA Science and
Technology Corporation, Amherst, MA, USA). Rice plants
were equilibrated in measuring solution for 20-30 min,
and these equilibrated rice plants were transferred to
the measuring chamber, which was a small plastic
dish (3 c¢m diameter) containing 2-3 ml of fresh
measuring solution. When the root became immobilized
at the bottom of the dish, the microelectrode was vibrated
in the measuring solution between two positions
(5 pm and 35 pm from the root surface) along an
axis perpendicular to the root. The background was
recorded based by vibrating the electrode in measuring
solution not containing roots. The microelectrode was
made and silanized by Xuyue Science and Technology
Co., Ltd. (Beijing, China). All samples were tested in three
independent experiments with three replicates each.

Statistical analysis

All values are shown as the mean of five replicates, and
the average was calculated. The results were analyzed
for variance using the SAS/STAT statistical analysis
package (version 6.12; SAS Institute, Cary, NC, USA) to
determine significant differences. Means followed by
common letters are not significantly different at P = 0.05
using a protected least-significant difference.
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