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Studying microbial functionality within the
gut ecosystem by systems biology
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Abstract

Humans are not autonomous entities. We are all living in a complex environment, interacting not only with our
peers, but as true holobionts; we are also very much in interaction with our coexisting microbial ecosystems living
on and especially within us, in the intestine. Intestinal microorganisms, often collectively referred to as intestinal
microbiota, contribute significantly to our daily energy uptake by breaking down complex carbohydrates into simple
sugars, which are fermented to short-chain fatty acids and subsequently absorbed by human cells. They also have an
impact on our immune system, by suppressing or enhancing the growth of malevolent and beneficial microbes. Our
lifestyle can have a large influence on this ecosystem. What and how much we consume can tip the ecological
balance in the intestine. A “western diet” containing mainly processed food will have a different effect on our
health than a balanced diet fortified with pre- and probiotics.
In recent years, new technologies have emerged, which made a more detailed understanding of microbial communities
and ecosystems feasible. This includes progress in the sequencing of PCR-amplified phylogenetic marker genes as well
as the collective microbial metagenome and metatranscriptome, allowing us to determine with an increasing level of
detail, which microbial species are in the microbiota, understand what these microorganisms do and how they respond
to changes in lifestyle and diet. These new technologies also include the use of synthetic and in vitro systems, which
allow us to study the impact of substrates and addition of specific microbes to microbial communities at a high level of
detail, and enable us to gather quantitative data for modelling purposes.
Here, we will review the current state of microbiome research, summarizing the computational methodologies in this
area and highlighting possible outcomes for personalized nutrition and medicine.
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Background
The gut is an essential part of the human body. It has so
much influence on our well-being that it even has been
dubbed a “second brain” by the media [1, 2], and in recent
years this “superorgan” inhabited by trillions of microor-
ganisms has triggered a large amount of scientific interest.
The microbial communities residing in the different

parts of the gut are among the main contributors to its
functioning and therefore also directly influence health.
The recent availability of high-throughput methods
(metagenomics and other omics) have improved our in-
sights into these ecosystems dramatically. Figure 1
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summarizes the current state of meta-omics (all nucleotide
sequencing approaches, as well as metaproteomics and
meta-metabolomics) research with an intestinal focus (for
details regarding the literature search methodology, see
Additional file 1). Not surprisingly, the largest body of re-
search has been focused on humans (Fig. 1d), but other
(model) organisms including pigs, rodents (mice, rats) and
fishes (mainly zebrafish) have also been investigated.
Non-model organisms are also under investigation, but for
different purposes such as the potential biotechnological
applicability of lignin degradation by termite gut microbial
species [3].
Over the trajectory of the human gut, the microbiome

has a varying degree of complexity [4, 5] (Fig. 1b). In
general, microbial density increases from the duodenum
until it reaches its maximum in the colon and faeces. At
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Fig. 1 The gut in the focus of meta-omics science. An overview of
a main sampling sites and b microbial complexity is given, together
with c an overview over the physiology. d The number of the studied
hosts and e methods to improve gut health are indicated. All data was
retrieved via PubMed searches for the corresponding terms. For the
exact search terms, please see Additional file 1
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the same time, these two parts are also the most studied
parts (Fig. 1a). While the high complexity of the com-
munity at these specific sites makes them interesting re-
search sites, other parts of the (healthy) human gut
remain grossly under-sampled, which is mainly due to
inaccessibility. Along the trajectory of the human gut,
the focus of microbial metabolic activities changes pro-
foundly, with the small intestine having a higher capacity
to degrade simpler carbohydrates [6], whereas in the
colon mostly complex carbohydrates are degraded [7].
Most human omics studies are observational, aimed at

studying microbial diversity and function as well as host-
microbe interactions; however, a number of studies directly
aim at improving gut health (and in proxy, individual
health, Fig. 1e). These interventional studies can be broadly
classified into two categories: pre-clinical and clinical inter-
ventions. Pre-clinical interventions focus mostly on im-
proving gut health via changes in nutrition. In this field,
the concept of probiotics (administering of beneficial
bacteria [8]) is probably the most widely known, also in the
eye of the general public, due to a wide array of commer-
cially available products. Most interventional studies have
focused on these probiotics, with a smaller part investigat-
ing the benefits of prebiotics (substrates enhancing the
growth of beneficial bacteria in the gut; for a review, see
[7]). Clinical interventions in response to conditions associ-
ated with a chronic disruption of intestinal homeostasis
such as ulcerative colitis, and IBS with for example faecal
transplants and bariatric surgery, have only been reported
in a few publications [9, 10].
With all these studies, many important factors have

been discovered regarding the ecology of the human
microbiome.

The human microbiota: symbiosis, competition and other
relationships
Our microbiota is an important part of our personal eco-
system, which is assumed to be composed of more than a
trillion microbial cells [11], approximately equalling the
amount of human cells in our body [12]. Whereas the
microbial ecosystems associated with some niches of the
human body like for example the vagina [13] have a low
complexity with only a few different inhabitants, most body
sites contain hundreds of different microbes [11]. Like in
macro-ecology, they perform different roles and thus can
have different relationships with each other and with the
host. In the microbiota, a broad range of different interac-
tions exist, ranging from mutualistic and commensal to
predatory relationships, and competition for the same
niche exists. The nature of these relationships has an im-
pact on the habitat itself, and imbalances with respect to
the abundance and function of specific members can lead
to an imbalance of the whole ecosystem. Many bacteria
like for example Akkermansia muciniphila [14] have a
good symbiotic relationship with their host. They degrade
the carbohydrates supplied by the host, and other bacteria
benefit from the breakdown products of this degradation
process. This leads to the production of host beneficial
compounds like short-chain fatty acids (SCFA; mainly
acetate, propionate, butyrate) [15], which can be for ex-
ample used by human colonocytes as energy source [16] or
directly be incorporated into the human metabolism as
additional carbon sources [17]. In other cases, this symbi-
osis applies to nutrition-derived carbohydrates that are not
(fully) digested by host-derived enzymes in the small intes-
tine such as resistant starch and other complex carbohy-
drates [7]. These might only be broken down by specific
combinations of microorganisms for further catabolization.
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This can be exemplified by consortia of Bifidobacteria [18],
which lead to the liberation of otherwise inaccessible sub-
strates from for example indigestible plant biomass like cel-
lulose components. In both scenarios, the liberated
substrates can be further metabolized by other bacteria
(e.g. [19]) to host beneficial compounds. Parasitic relation-
ships also exist, like for example between Actinomyces
odontolyticus and TM7 [20], where the parasitizing TM7
might eventually kill its microbial host. There are also
predatory relationships, e.g. bacteria of the genus
Bdellovibrio prey on other bacteria as source of
energy and therefore help to regulate the diversity
and balances of bacterial populations [21, 22]. Imbalances
in the ecosystem might lead to bacterial overgrowth, which
makes the ecosystem in general less resilient to perturba-
tions [23]. Blooms of bacteria, e.g. Clostridium difficile,
which infects more than half a million individuals per
year and leads to 29,000 deaths in the USA alone [24],
will have a directly noticeable impact. The produced
toxins in such an outbreak will not only affect the
microbiota [25] but will also lead to a direct disease
state of the host [26]. Therefore, understanding of in-
ternal and external factors that affect composition and
functioning of this ecosystem, such as for example nu-
trition intake, antibiotic intake, symbiotic or predatory
relationships, are essential for being able to characterize
and predict the state and functioning of this ecosystem.
All of these challenge the intrinsic emergent commu-
nity properties such as resilience, stability and its
efficiency to provide nutrients for the host.

Metabolic syndrome and the microbiome
The metabolic syndrome is a complex disorder with high
associated cost and is mainly characterized by four
sub-pathologies: Obesity, elevated blood sugar/insulin
resistance/diabetes type II, elevated blood pressure and
dyslipidemia [27, 28]. Although genetics [29] and lifestyle
[30] play major roles, the microbiome also contributes to
all of these main sub-pathologies.
Obesity might provide the most direct link. It has been

shown that gut microbiota composition in obese and lean
individuals is significantly different [31]. The microbiome
is an important factor in carbohydrate degradation and up-
take. Microbial metabolism on average contributes to up
to 10% of the daily calorie intake [32], and potentially in
obese subjects, this contribution could be increased [33].
This is mainly due to the degradation of carbohydrates,
which due to the lack of necessary catabolic enzymes, are
not directly accessible for the human host. These carbohy-
drates are converted by the microbiota into SCFA, thereby
directly contributing to the energy intake of the host [34].
Since not all microorganisms are capable of such conver-
sions, species diversity and abundance will directly influ-
ence the types of carbohydrates that can be converted into
SCFA and therefore how much of the non-digestible car-
bohydrates will be utilized by the host-microbe holobiont.
While some bacteria are specialized in carbohydrate break-
down, like for example Bacteroides thetaiotaomicron [35],
others mainly rely on their peers to scavenge nutrients
[36]. A microbial community consisting mainly of carbo-
hydrate degraders will therefore be more beneficial for the
host providing valuable nutrients. It is tempting to specu-
late that in case of obesity this beneficial trait has turned
disadvantageous and might contribute to an increased risk
towards metabolic syndrome-associated pathologies.
Such differences in microbial composition have also

been causally linked to obesity. It has been shown that
transplantation of an “obese microbiome” into germ-free
animals causes an increase in body fat as compared to
control animals inoculated with a “lean microbiome”
[33, 37, 38], indicating that the increased capacity to
harvest energy is transferred with the microbiome.
The involvement of the gut microbiome in the second

most prevalent pathology, elevated blood sugar/insulin
resistance leading to diabetes type II, can be explained
via an indirect route, starting from inflammation. Even
without an obvious disease phenotype, low-grade inflam-
mation might be present [39], caused by yet unidentified
bacteria. This inflammation is hypothesized to be one of
the causes of the metabolic syndrome [39, 40] and to be
an early stage of Inflammatory Bowel Disease, including
Ulcerative Colitis and Crohn’s Disease [41]. An invasion
of bacteria into the intestinal tissue causes the presence of
endotoxins (LPS, flagellin) in the blood stream, leading to
chronic inflammation in the intestinal tissue. It has been
suggested that as a physiological response to inflammation
the blood glucose level is increased to serve as additional
energy source for the various immune cells [42]. Since the
inflammation is chronic, so will be the elevated glucose
levels. In the long term this might lead to insulin resist-
ance and type II diabetes [43].
The connection between the composition of the

human gut microbiota and the third and fourth path-
ology, elevated blood pressure and dyslipidemia, is
less well characterized [44]. It has been demonstrated
with cross-over experiments that gut microbiota from
rats with elevated blood pressure will transfer this
physiological trait to receiving rats [45]. It has also
been shown that inflammatory processes [46] and effects
on the nervous system [47] will affect blood pressure, but
a full understanding of these relationships is still missing.
For dyslipidemia, the relationship is also rather unclear,
due to its strong association with obesity [48]. The
clearest mode of action until now are effects of the
microbiota on bile acid metabolism, which is critical
for the absorption of lipids [49], but the observed
associations are currently not linked to known
mechanisms [50, 51].
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Top down: how to investigate the microbiome
In contrast to macro-ecology, in microbial ecology, it is
possible to capture nearly the whole biodiversity of a
habitat by sequencing its associated total DNA and/or
specific phylogenetic marker genes. Different omics
techniques can give the researcher information about
species diversity and abundance, about their metabolic
capabilities and associated symbiosis or pathogenicity
factors. Technically, there are different ways of obtaining
this information but the ultimate goal of omics ap-
proaches is to answer the following set of questions:
Who is there, what can they do and what are they
actually doing?
While in macro-ecology, specimen can normally be

collected and studied in captivity; this is usually not the
case for microbial ecosystems. It is assumed that we can
only cultivate less than 1% of the bacterial diversity [52].
The rest, the so called “dark matter” cannot be readily
captured by cultivation [53], although much progress
has been made in recent years with high-throughput cul-
turing, the so called “culturomics” [54]. While bacteria
make up most of the diversity of the human microbiota,
archaea are also present in humans [55], as well as a
high diversity of phages [56]. Fungi and protozoa also
exist in this ecosystem, but are less well studied [57].
Why the majority of this biodiversity cannot be cultured
is not clear, but different hypotheses exist. One of these
hypotheses is that these organisms cannot survive on
their own because of community dependencies. They are
for instance microorganisms that live in a strict syn-
trophic relationship and are sharing nutrients and me-
tabolites [58]. Syntrophic relationships might be due to
excretion and uptake of common metabolites, but also
more intricate cross-feeding networks have been re-
ported to exist [6, 59, 60]. Other types of non-metabolic
interactions also exist but are less easily quantifiable.
Biofilms, which occur frequently in human-associated
microbiomes [61], are often not the product of a single
species, but of a community [62]. They are not con-
trolled by direct metabolic dependencies but by other
mechanisms like quorum sensing [63].
Omics approaches towards understanding of the who
and what of microbial communities
To answer the “who”, the “what can they do”, the “what
are they actually doing” and “how do they respond to a
diet or otherwise environmental change”, different ap-
proaches can be used. To answer the “who”, low-cost
amplicon sequencing of 16S ribosomal RNA (16S rRNA)
encoding genes can be utilized. The 16S rRNA gene is
present in all prokaryotes and slowly mutating due to
structural and catalytic constraints. Some of the secondary
structure elements, called regions V for variable 1 to 9, are
less constrained and therefore over time accumulate
mutations more rapidly than other more conserved
regions. Together, sequence variation within conserved
and variable regions can be transformed into an evo-
lutionary distance, allowing interference of the phyl-
ogeny of all members within a microbial community.
As knowing the community composition in most studies
is a prerequisite, next generation sequencing (NGS) of
PCR amplicons targeting a selection of these variable re-
gions is the most widely used approach. Despite the fact
that no genomes are sequenced, this is often falsely re-
ferred to as “metagenomics”. This should be avoided
and proper terminology should be used [64].
Nevertheless, making use of the currently available in-
formation from genomes and metagenomes, species
identification in part also allows for predictions of
functional capabilities [65, 66], albeit with inherent
limitations with respect to their accuracy especially
for understudied environments that are less well rep-
resented in currently available (meta)genome data-
bases [67]. To more comprehensively answer the
question “what can they do”, metagenomics can be
used. Metagenomics significantly increases both the
amount and the complexity of the data. Besides the
“who”, and the “what can they do”, community re-
sponses to diets or otherwise environmental changes
can be studied by metatranscriptomics to answer the
question “what are they doing”. Sequencing the full
transcriptome of the community provides by proxy
insights in which pathways/processes are actually ac-
tive. The logical progression of technology also leads
to metaproteomics, which due to lack of precisely
matching reference genomes [68] is still not very
widely used and despite interesting results [69, 70]
still remains to represent a niche discipline [71].
Meta-metabolomics (also called metabonomics [64],
although this term has been used for a different pur-
pose [72]) is currently an even less used technique.
A large body of research applying abovementioned

omics approaches is published in well-known journals.
Figure 2a provides data up and until 2016. PubMed lists
after the initial publications starting in the early 2000s
an increasing amount of publications per year, reaching
to more than a 1000 per year at the moment (Fig. 2b).
The focus of most of these publications is on
DNA-based approaches, including 16S rRNA gene se-
quencing and true metagenomics. This trend is
followed distantly by metatranscriptomics, metapro-
teomics and meta-metabolomics. Since by far the ma-
jority of these publications are within the scope of
some form of high-throughput nucleotide sequencing
(16S rRNA gene, metagenomics, metatranscriptomics),
in the following paragraphs, we will focus on these
omics approaches.
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Fig. 2 a Journals with the most gut-related meta-omics publications. b Overview of gut-related omics publications per year. 16S rRNA gene
sequencing and metagenomics are combined, since these cannot be easily distinguished via title/abstract searches due to the erroneous labelling
of amplicon sequencing approaches as metagenomics by many researchers. All data was retrieved via PubMed searches for the corresponding
terms. For the exact search terms, please see Additional file 1
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Differences within the omics technologies
The methods used for amplicon sequencing, metage-
nomics and metatranscriptomics are summarized under
the term NGS technologies (also called second generation
technologies; for a review see [73]), including highly auto-
mated technologies represented by Illumina sequencing
machines like HiSeq or MiSeq, the Roche 454, Ion
Torrent and SOLiD technologies. These technologies are
a follow-up of Sanger sequencing, which still has the
highest level of accuracy but has a rather low throughput
due to limited parallelisation possibilities. NGS technolo-
gies allow millions of fragments to be sequenced in a sin-
gle run. The DNA is randomly sheared, and all resulting
fragments are sequenced with fluorescent nucleotides,
which emit at incorporation in the new formed DNA
strand certain light wavelengths. These can automatically
be recorded by current systems and allow high-
throughput sequencing information by generating millions
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of short reads. One lane on a typical Illumina HiSeq ma-
chine can generate up to 360 million reads, currently with
lengths up to 350 bases. The limitation in this approach is
mainly the used DNA polymerase for the extension of the
newly formed DNA fragments, which tends to lose preci-
sion with increasing read length, making longer reads
more error prone. Especially in metagenomics obtaining
longer read lengths is important. Besides providing more
information per single read, which is in general desirable
in many cases, specifically for metagenomics it will (i) lead
to a higher chance of uniquely assigning reads to a single
microbial taxon leading to a better resolution in strain and
species separation, (ii) make it easier to capture gene func-
tionality and (iii) allow for a higher confidence during the
assembly of the data, especially in those cases when the
community harbours phylogenetically close species.
The new sequencing technologies (third generation

sequencing) from Pacific Biosciences (PacBio) and
Oxford Nanopore are ameliorating this problem. Both
technologies can produce very long reads, up to 60,000
bases (PacBio) and more (Nanopore). PacBio circum-
vents the loss of precision of the polymerase by repeat-
edly sequencing the same DNA fragment [74]. Oxford
Nanopore channels single-stranded DNA through a pore
which carries an electric current, and measures the
change in current as the DNA passes by, with each of
the bases causing a different change. This technology
does not lose precision with increased length, but generat-
ing longer fragments and stably channelling them is the
limitation [75]. Current drawbacks of both technologies as
compared to the second generation technologies are a
higher error rate, requirement of a significantly larger
amount of template DNA and higher sequencing costs.
PacBio [76–81] and Oxford Nanopore [82] have already
been used in microbiota sequencing and their use will
most likely increase when the technologies further mature.

Extraction of information from 16S rRNA amplicon
sequencing data
The 16S rRNA molecule shows a high degree of structural
and sequence conservation in all prokaryotic organisms.
Being part of the ribosome, it is a crucial part of the trans-
lation machinery. Because the specific secondary structure
and function constraints evolutionary drift, it is, albeit with
some limitations [83], possible to work with “universal” or
species-independent primers and therefore amplicon se-
quence analysis remains the standard approach to investi-
gate microbial diversity. If two or multiple complete rRNA
gene sequences have more than 97% identity, they belong
to the same species. The 97% identity threshold is due to
historical reasons because this value was found to be in
agreement with DNA-DNA hybridization results, but
otherwise no coherent species definition exists [84, 85]. In
order to make clear that the actual species/genotype is
often not known and might actually differ, 97% identity
clusters of rRNA sequences are also referred to as
“operational taxonomic units” (OTU).
The 16S rRNA gene is approximately 1500 nucleotides

in size and for the highest confidence the complete se-
quence is required. Due to the read length limitations of
second generation technologies researchers have therefore
investigated, which sequence range of the rRNA showed
the highest degree of variability and will therefore result in
the best resolution [84, 86]. Using second generation se-
quencing techniques, these regions (variable regions
V1-V9) are therefore preferentially sequenced (for a re-
view see [87]). Here, region-primer combinations need to
be carefully matched as these choices can have a high
impact on the results [88].
In eukaryotes, like for example fungi, the situation is

more complicated. Sequencing 18S rRNA genes does
not provide the required resolution, and often internal
transcribed spacers (ITS) are sequenced instead [89].
After the amplicon sequencing data has been generated,

the next step is to derive corresponding information
regarding community composition. In general, since se-
quencing of single phylogenetic marker genes (fragments)
requires less throughput than whole genomes, also the
costs per sample are considerably lower, providing the ne-
cessary statistical power for a more detailed analysis [90].
Using second generation sequencing techniques, there

are multiple considerations involved, e.g. how similar the
sequences are expected to be in the variable regions of
choice, which reference database to use (SILVA [91], RDP
[92] or Greengenes [93]), the significance of base-calling
error rates intrinsic to high-throughput sequences data
[94] and how erroneous sequences can be detected. Due
to these challenges, sophisticated pipelines for taxonomic
assignment have been developed, like for example Qiime
[95], Mothur [96], Phyloseq [97], MICCA [98] and
NG-Tax [99], the latter of which has been developed in
our laboratories and provides computationally efficient
and accurate taxonomic assignments and quantification of
OTUs per sample with improved robustness against
choice of region and other technical biases associated with
16S rRNA gene amplicon sequencing studies.
A range of different methods coming from macro-

ecology is used to investigate a habitat’s diversity. The
species richness or mean species diversity of a sample is
often referred to as alpha-diversity and the amount of
variation in species composition among the samples
(beta-diversity) can also be investigated. A range of dif-
ferent alpha-diversity measures is being used, including
those that account for species richness (defined as the
absolute count of individual populations per habitat),
phylogenetically weighted richness (Faith’s Phylogenetic
Diversity [100]), and species diversity, including
Shannon index [101] and Simpson index [102] (for a
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review, see [103]). Diversity indices also try to incorpor-
ate the evenness of the species distribution [104] be-
cause different conclusions need to be drawn if an
ecosystem is dominated by a single species with a pleth-
ora of other rare species, or if the distribution is rather
even. Another important aspect is under-sampling. To
estimate if the true richness of species has been cap-
tured, different methods like rarefaction analysis, Chao1
[105] or ACE [106] estimators can be used (for a review,
see [107]).
Analyses of beta-diversity make use of a number of

different measures of pairwise community similarity,
including for example Jaccard index [108], Bray Curtis
dissimilarity [109] and UniFrac distance [110], the latter
of which is phylogenetically weighted.
In most cases, a first look at the data is done with un-

constrained multivariate statistical approaches such as
Principle Component and Principle Coordinate Analysis
(PC(o)A). These two methods try to fit highly dimen-
sional data (e.g. a high amount of samples and different
species in them) into a plot with two (or three) dimen-
sions, trying to display as much of the variation in the
data as possible. Factors that are potentially related to the
observed variation, including for example environmental
conditions, time points or the objective of the research,
can be projected a posteriori, and their significance can be
tested post hoc.
Several of these statistical tools are standardly embed-

ded in sequence analysis pipelines like Mothur [96],
Qiime [95] or Phyloseq [97] and allow to capture mea-
sures of alpha- and beta-diversity. Choices can be made
between default analysis routines and more customized
procedures where users can adjust specific settings.
With these methods, it has been found that for example

the alpha-diversity in the microbiota of obese subjects is
significantly reduced in contrast to the alpha-diversity in
lean subjects [111]. Other successful studies in this field
have already revealed that gut microbiota is transmitted
vertically and that obese mice have a considerably less di-
verse microbiota than their lean counterparts [112].
Furthermore, it has been shown that the gut microbiota
changes during human development starting at birth and
is different depending on geographic location [113],
during long-term dietary interventions [114] or when
consuming specific diets even during a single day [115].
Extraction of functional information from metagenome data
In principle, full genomic information can be captured
with metagenomics. Seminal projects in this area like
MetaHit [11] and the human microbiome project [116]
made great efforts to sequence the metagenomes of di-
verse cohorts with many subjects to investigate the full
functional capacity of the different microbiomes. The
amount of data required makes deeper sequencing ne-
cessary, which complicates the workflow to extract
information from metagenomics data (Fig. 3).
High-throughput sequencing data is noisy, and quality

control is a critical first step (review see [117]). One crucial
step for which settings have not yet been universally agreed
upon is the quality trimming [118], and no consensus
advice can be given.
For simple read mapping there are a number of strat-

egies that can be applied. BLAST [119] or Diamond
[120] can be used to match reads directly to KEGG, to
quantify the functions based on the number of matching
reads (e.g. applied in [38]). A higher resolution is ob-
tained when reads are mapped to a set of reference ge-
nomes [111, 121], which also allows for a taxonomic
classification of observed functions [122]. If the phylo-
genetic distance between the reference set and the sam-
ple is small this has the advantage of speeding up the
analysis. Furthermore, associated functional annotations
can be directly utilized, making a separate annotation
step unnecessary. A major drawback for this type of
workflow is that only known species can be analysed,
whereas new strains with novel functions, horizontal
gene transfer and other evolutionary events will not be
captured, and micro-diversity will be lost.
An alternative approach therefore is to assemble reads

into larger contigs and extract genomes directly from
metagenome data [123] (Fig. 3). Today obtaining a high
quality single genome can still be a challenge [124], and
with a community genome assembly approach these
challenges can multiply. Examples are chimeric assem-
blies between genomes due to presence of multiple
strains of the same species (although miss-assemblies
should not occur very often [125]), and a low coverage
of low abundant species. At this point, it is also import-
ant to consider the mapping rate after the assembly.
While we expect for a single organism that after the gen-
ome assembly most of the reads will map to the assembly,
this can deviate for metagenomics. This is mainly due to
the species richness and species evenness of the commu-
nity under investigation. A complex species-rich sample of
high evenness (i.e. similar abundance of many community
members) will require more data to assemble the top-
ranking species than a sample where a few high-ranking
species have much higher abundances. Therefore species
richness and species evenness need to be taken into ac-
count to evaluate if the mapping rate is appropriate for
further analysis.
Some of these challenges have been tackled with specific

metagenome assemblers like MetaVelvet [126], which take
different properties of the sequencing data into account
like for example the different abundances of the poten-
tially present species. Currently, a community-derived as-
sembly will also not lead to closed genomes. The next
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(See figure on previous page.)
Fig. 3 Overview of the different steps in the meta-omics analysis workflow. The different workflows are depicted, from left to right for 16s amplicon
data, metagenomics data and metatranscriptomic data. The main steps for 16s amplicon data is the definition of OTUs together with taxonomic
assignment, followed by statistical analysis. For metagenome data, first steps involve quality control steps, followed by a metagenome assembly. The
workflow splits afterwards into two directions, one being the taxonomic assignment, the other one the definition of metagenomic bins and the
functional annotation. Genes can be predicted from the genome assembly, which can be functionally profiled. With the coverage information of the
genes, it is also possible to define genome bins. After this step is done, the same statistics as for 16s amplicon data can be performed, as well as
differential expression/abundance analysis together with pattern detection through machine learning, and finally analysis of the metabolism. The
workflow for metatranscriptomic data is in general the same, except that rRNA, which does not provide any information in this setting, needs to be
removed before most of the steps, and that no binning is possible with transcriptome data
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challenge is therefore to determine which of the assem-
bled contigs/scaffolds belong to a single species. This
process has been termed binning, and several tools such
as MaxBin [127] or MetaCluster [128] have been devel-
oped to determine the amount of bins required and to as-
sign contigs to bins. To do so, these tools take different
types of information into account, such as k-mers fre-
quency in the data or contig read coverage. The quality
control of this step is critical, since this process is also error
prone, especially when phylogenetically close organisms of
similar abundance occur in a community.
The most widely used method to test for correctness

of binning is based on single copy marker genes, like in
for example CheckM [129]. Based on the presence of
these necessary genes, both the coverage of a genome in
a bin as well as the amount of contamination from other
genomes can be determined. A problem with this ap-
proach is that it is limited to contigs/scaffolds containing
these core functions.
Next the taxonomic origin of the various bins can be

determined (Fig. 3). All programs and workflows which
can perform this are reference based, but work with dif-
ferent mechanisms. One approach is to use BLAST
[119] to compare all the metagenomic contigs against a
database, like the NCBI NT database, or specialized da-
tabases like for example the human microbiome project
[11]. The accuracy of the taxonomic assignments is pro-
portional to the similarity score of the alignments. One
of the first programs to deal with this problem is
MEGAN [130], which also gives the user a graphical
interface for direct analysis. The biggest drawbacks of
this method are that (i) it can be computationally pro-
hibitive to use a large database and (ii) that closely re-
lated species cannot be differentiated from each other. A
computationally more efficient alignment free method
for the taxonomy determination is to compare the
k-mer profiles of the metagenomics contigs with k-mer
profiles obtained from a reference database. This has
been implemented in tools like Kraken [131] or
PhyloPythia [132] (for a review of programs, see [133]),
To understand the underlying causes of a community

change and potential effect, functional profiling needs to
be performed (Fig. 3). This part of the analysis is for a
metagenome mainly different to a single genome in
regards to the quantity, but the basic processes are the
same. First gene prediction needs to be performed with
gene callers like example prodigal [134], which have spe-
cial settings for this kind of data. A low-level profiling
can be obtained with a COG analysis [135]. The COG
ontology consists of limited number of broad categories,
which allow the detection of extensive changes. When
more data is available a higher resolution can be ob-
tained. These can be for example (i) EC number predic-
tion, which can be obtained via PRIAM [136] and can be
linked to metabolic pathways using databases like KEGG
or Metacyc [137], (ii) lists of carbohydrate active en-
zymes [138] can be obtained via dbCAN [139] and (iii)
full domain profiles including GO terms [140] via for ex-
ample InterproScan [141] or via second generation an-
notation tools [142]. With these so called full functional
profiles, it is possible to reconstruct the metabolism of
the bin [143–145], and bin-specific auxotrophies or spe-
cial metabolic capabilities can be investigated. If some-
one wants to draw statistical conclusions for the
difference in the metabolism by for example investigat-
ing for overrepresented functions (e.g. GO enrichment
[146]), it should not be forgotten that, even for genomic
information, replication is necessary [147]. If it is not
possible to obtain all this data, due to lacking computa-
tional resources, also web services like IMG/M [148] or
EBI metagenomics [149] can be used, which normally
also have a user friendly interface, but only offer a lim-
ited depth of analysis.
Extraction of functional information from
metatranscriptome data
The transcriptome approach will allow the investigator
to focus on functions that are actually expressed in a
given sample. A highly abundant species may show a
low expression of functions of interest and vice versa
(e.g. [150]). In fact, since DNA is also highly stable, the
metagenomics approach might also take non-viable cell
populations into account, which could falsify the conclu-
sions, but also separate measures, like removal of non-
viable cells, can be taken to prevent this [151]. Thus, the
metatranscriptome provides a more accurate account of
actual functionality.
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Most relevant steps, including QC, are the same as
for single organism transcriptomics (for a review, see
[117]; workflow, see Fig. 3). Not mentioned in [117],
but necessary for metatranscriptome data is the in
silico removal of spurious rRNA reads [152] as
in vitro removal of rRNA prior to sequencing will
most likely not remove all of it.
Like in metagenomics mRNA reads can either be

mapped or de novo assembled. Mapping can be done
if a set of reference genomes is available. If binning
has been performed before, then the transcriptome
should not be mapped to the different bins separately.
If bins were separated before mapping, then the as-
signment of reads would be skewed if phylogenetically
related bins are present (incorrect multiple assignment of
reads). If no reference metagenome is available, it can be
attempted to map the RNAseq data to related datasets. In
this case again, the absolute mapping rate of the data
needs to be cautiously taken into account, because an
unsuitable reference (due to large phylogenetic dis-
tance or missing species) will exhibit low mapping
rate and will prevent a full analysis of the data.
Alternatively, a de novo transcriptome assembly can
be performed. Specific metatranscriptome assemblers
have been developed to deal with the complexity of
such data (for a review, see [153]). Subsequent map-
ping of the same mRNA reads onto the de novo as-
sembly allows for differential expression analysis,
which can be performed with known tools like for
example edgeR [154] or DESeq2 [155].
In many regards, metatranscriptome analysis can func-

tion as a substitute for a metagenomics analysis while
adding an additional layer of information. For instance,
metatranscriptome analysis has already revealed that ac-
tivity of carbohydrate degrading enzymes can be under-
estimated if only genomic information is considered, or
how the activity of the gut microbiome responds to dif-
ferent diets [156, 157]. In principle, similar conclusions
could also be obtained from a combined metagenomics/
metaproteomics approach [158] albeit at lower
resolution.
A pure transcriptome assembly has the drawback that

binning is not possible, since many of the binning ap-
proaches rely on the fact that in a metagenome all con-
tigs from one species will exhibit similar coverage, which
is not the case for a transcriptome. It will also not be
possible to assemble very long contigs, because many
intergenic regions will not be transcribed. Important
changes at the ecosystem level can be assessed by ana-
lysing the expression levels of the microbiota in the
community provided that species abundances are also
taken into account; a 50% increase in abundance might
appear as a 50% higher gene expression, but in this case
does not reflect a transcriptional response on a per-
microbe basis, but rather a compositional response at
community level.

From information to understanding
As exemplified above many computational tools and
pipelines exist that are able to extract biological informa-
tion from high-throughput data. Understanding the
unique chemical and functional capabilities of the hu-
man microbiome and deciphering the biological roles of
individual species is much more difficult. Linking micro-
bial activities with gene expression and enzyme func-
tionalities is just the first step. In early years of genomic
research, “hairball” graphs had their appearance in many
publications, showing connectivity within the available
pile of data, rather than focusing on the biologically in-
formative parts. With the increasing number of samples
being analysed for example from patients, from repli-
cates, from different conditions, different types of se-
quencing data combined with different types of
computationally derived data such as EC number and
domain predictions, which methods can be used to gain
useful information?
The most obvious approach, especially with pure

abundance data, is looking for correlations (also possible
via regression [159]). It can be assumed that correlating
species/OTUs have a symbiotic relationship with each
other and/or with a third OTU, whereas anti-correlation
can (but does not have to) indicate antagonistic behav-
iour. There are, however, several pitfalls. For example,
OTUs, which are present only in very few samples, will
be highly correlated due to the common absence in mul-
tiple samples. While this general conclusion can be true,
it needs to be considered that absence in sequencing
data does not have to mean absence of the organism. It
can also indicate abundance below the detection thresh-
old, or simply a failure in detecting the organism with
the current pipelines.
The same methods described above for the analysis of

16S rRNA gene amplicon sequence data can also be uti-
lized for metagenomics data. Multivariate visualization
tools such as PCA can be used to see if specific sample
groups, e.g. defined by specific interventions or states of
health, cluster together, or if other factors are more
prevalent in explaining the observed variation in the
data. Nevertheless, for the in-depth analysis, more so-
phisticated methods should be used such as for example
pattern recognition, which enables the researcher to find
useful information in big data. This field is broadly clas-
sified into two approaches, i.e. supervised and unsuper-
vised learning. In supervised learning, the researcher
tries to classify unknown samples into categories for
which already known samples exist. If, for example, sam-
ples from lean and obese subjects have been obtained,
an algorithm can be trained to determine if samples of
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unknown origin were obtained from a lean or obese per-
son. While supervised learning has been already used in
microbiome research with great success, e.g. [160, 161]
(for reviews of the methodologies, see [162, 163]), and is
currently researched for the application in many differ-
ent fields and termed “life changing” for the general
public (e.g. deep learning [164]), this approach is often
hampered by the fact that samples from different studies
are not comparable due to different methodological ap-
proaches with respect to for example DNA extraction or
sequencing method and depth.
Unsupervised learning, also called clustering, does

not rely on prior information. Clustering algorithms,
including hierarchical clustering, k-means and dbscan,
try to find unknown patterns in the given data, e.g. dif-
ferent patterns of gene expression over multiple condi-
tions. This approach has also been used for example to
determine the enterotypes [165] but also suffers from a
wide array of challenges. The choice of clustering
algorithm is not trivial and depends on the structure of
the data, which can often not be determined in an easy
way [166]. Furthermore these algorithms often rely on
user-defined parameters such as the amount of clusters
to find. Determining the best parameter set is its own
research field, given that more than 30 different algo-
rithms for this purpose exist [167], and not all are ap-
plicable to all clustering algorithms [166]. If at the end,
wrong parameters are chosen; it might lead to errone-
ous conclusions, like for example if not the optimal
amount of clusters (in this case, enterotypes [168]) is
selected. Otherwise, a cluster might be split into
multiple, or multiple distinct clusters might be treated
as one.
Having said that many of these algorithms have been

implemented in different programs like ELKI [169] or
WEKA [170] and can also be utilized by inexperienced
users, although the final evaluation still often requires
expert knowledge.
If useful patterns have been obtained after the machine

learning, the last level is the biological understanding
and interpretation. Simple approaches include just map-
ping extracted functional information such as EC num-
bers and KO numbers to pathway databases like KEGG
[171]. More sophisticated solutions try to automatically
extract the useful information from these networks, e.g.
MetaModules [172]. If also other non-metabolic func-
tions should be investigated, then a broader type of clas-
sification can be used. The most common analysis is the
GO enrichment analysis, which aims to identify overrep-
resented functions in the dataset [146].
It also needs to be considered that the microbiome

data does not have to stand on its own. If clinical or nu-
tritional data is available, these can be used as well.
Correlating such metadata with microbiome data has
shown that factors like age or stool consistency are
highly related to microbiome composition [173], as well
as the hosts genetics [174]. Furthermore, it is also pos-
sible to revert this and use microbiome data together
with clinical data to predict a persons’ glycemic response
to food intake [175].
Since this type of data can be highly connected,

visualization of this connectivity might be necessary for
a better understanding. While some visualization forms
are standard, for example depicting the distribution of
species/OTUs per sample in a bar chart, and metabolic
networks as networks, sometimes more sophisticated
methods are necessary. For analysis purposes, the Krona
library [176] can be a useful visualization tool to explore
quantitative hierarchical relationships between taxonom-
ical groups. In many cases, there are no standard recipes
for the analysis workflow, and custom solutions have to
be developed. For these cases it is necessary to consider
what type of data should be shown, and with which
method they are obtained. Several visualization methods
are available [177, 178], but standard packages for many
of these are not necessarily developed yet or easily
accessible.

Bottom up: mechanistic insights into the microbiome
The next step after collecting data and investigating the
communities is building models and testing hypotheses.
While with single species this is very well doable, micro-
bial communities pose more challenges to the re-
searcher. For a single culturable species, it will be
possible to collect the necessary data. It is possible to re-
construct the full metabolism (according to current
knowledge), manually curate it, and measure a vast array
of metabolites. In contrast, all these factors pose chal-
lenges in a community like the intestinal microbiota.

The sum is more than its parts
A community is more than an accumulation of multiple
single organisms. The different microbes interact within
a dynamic environment; they will behave differently, de-
pending on who is in the surrounding, and what they
are doing. Even for a single species, species abundance
can lead to emergent properties for example via quorum
sensing, which can alter the behaviour of individual cells
and the entire population dramatically [179]. In biofilms,
the formation itself is an emergent property, which would
not be possible to observe if only single cells are consid-
ered. It also leads to the change in behaviour of the differ-
ent cells, as some will get advantages in this environment
(protection), whereas the cells on the surface are less pro-
tected, but also have more access to nutrients. Other
forms of symbiotic relationships can also lead to emergent
properties where for example some species in the commu-
nity provide the means to overcome amino acid



Hornung et al. Genes & Nutrition  (2018) 13:5 Page 12 of 19
auxotrophies or vitamin deficiencies of others or of the
host [180–182]. Another unrelated example from the
oceanic microbiome is the detoxification the environment
[183]. This case is commensalistic, since a big part of the
microbial community benefits from the ability of one
member to detoxify oxygen radicals, giving the other
members a benefit, which lead in this case to genome
streamlining by loss of genes related to oxidative stress.
The authors even expanded their observation into the
“Black Queen Hypothesis”, stating that this streamlining
together with a dependency on helper organisms with
leaky beneficial functions might be an universal concept.
This is only possible to observe at the community level,
and the investigation of a single species would not lead to
such conclusions.
Numerous additional examples exist, also in the gut

environment (for a more complete review, see [184]).

How to predict the sum from its parts
How should the behaviour of such a community be pre-
dicted? The apparent approach is to model the metabolism
of the whole community as a single entity or
“supra-organism”, neglecting species boundaries [185].
While this can give an idea about the metabolic capabil-
ities, it is an oversimplification and will miss critical steps
like metabolite exchanges and interdependencies between
organisms. The extension of this approach would be to
model single organisms, and connect these models to one
community model.
Producing a good model of a single organism is the

first step in this process. There exist high-throughput
methods, like ModelSEED [186], Pathway Tools [187] or
KBase [188], which can automatically construct a gen-
ome scale metabolic model (GSMM) from the given
genomic information. Although such reconstructions
can be of high quality, it is still likely that the model will
contain errors or gaps, which need to be solved by
manual curation [189].
If different models for the relevant organisms can be

obtained, the next challenge is combining them. If the
models are based on different databases/coming from
different sources, then this could result in incongruences
in the final model. While this should in general be
avoided, it is sometimes necessary, because high quality
models of different organisms exist (e.g. Homo sapiens
[190], Escherichia coli [191]), and it is not feasible to in-
tegrate this work into the high-throughput frameworks.
For such cases, an integration of different model sources
needs to be performed. The challenge is to match all the
metabolites that need to be shared between all relevant
models. Due to different problems, like the lack of
unique identifiers, matching these names is not a trivial
task, can be very error prone and requires the applica-
tion of specialized tools (e.g. [192]).
Different hypotheses can be tested after a multi-organism
model has been finally generated (e.g. [193, 194]). One of
the first approaches should be to investigate ecological
compatibility. This can be done for example via reverse
ecology [195], by matching the metabolites in the different
organisms to each other to see possible interconnections
and metabolic dependencies. More advanced challenges
are to actually simulate this metabolism. Finding the target,
the objective function of a model, will depend on the
underlying biology. Maximization of biomass is often used
in single-organism models [196] (among others) and has
also been used in multi-organism models (e.g. [193, 197]).
This is not applicable in all cases because for example com-
petition or parasitic relationships can exist in an ecosystem
and often the objective is not to maximize the biomass of
the competitors in the surrounding. Therefore, more so-
phisticated methods like D-OptCom [198] have been devel-
oped, which break the community optimization problem
into multiple single problems. These consist of smaller
optimization problems for each community member, and
the main problem is to optimize the community. Others
have extended this to even include spatial structures [199].
This allows the simulation of each bacterium’s growth inde-
pendently, giving a more realistic result than simulating
community growth.
Metabolic models are not the only models which can be

employed, metabolism is also not the only type of process
which can be simulated, and the bacterial level is not the
only scale which can be considered. Different kinds of kin-
etic models of the metabolism have been developed, some
especially for the gut [200, 201], and also for related eco-
systems [202], but this field is still in its infancy. The men-
tioned models also simulate metabolism, predicting the
flow of carbohydrates into acids or extracellular polysac-
charides, including different non-metabolic parameters
like peristaltic movement of the gut. Also non-metabolic
models exist, with the focus on antibiotic resistance in the
gut [203] or the succession of organisms in the gut [204].
As it can be seen, the field is still far away from a compre-
hensive virtual gut model. In fact, already the whole cell
model [205] is extremely complex, and contains for ex-
ample different scales which might be lacking full integra-
tion into the model. With all the different factors to
consider, integrating more data into the models with
proper feedback systems, until up to the ecosystem level,
will probably be a research objective for many years to
come [206].

How to change the sum, and its parts
Modelling cannot be only done in silico. With synthetic
biology, artificial model systems of the gut environment
have been created [207]. These models vary in their
complexity and capabilities to simulate the environment.
It is important to differentiate which part of the gut is
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modelled, if there need to be multiple compartments,
and if for example each of them needs to be pH con-
trolled. These systems were shown to simulate parts of
the gut appropriately [208], and [209] showed the contri-
butions of intestinal movement to the development of
inflammation in the gut.
But since these systems do not (yet) perfectly model the

gut, final proof has often to be provided from animal
models. Gnotobiotic animals [210] offer the possibility for
controlled interventions. In contrast to the in vitro sys-
tems, the in vivo system will be able to incorporate all the
necessary factors to evaluate gut functioning. Inoculation
of the sterile animals with a defined microbiota (“synthetic
ecology”) allows studying the niches of specific bacteria
[211, 212], the development of the microbiota over time
[204], during development [213] and the interactions be-
tween different bacteria [58, 60, 214]. Gnotobiotic animal
models have also been used, as mentioned earlier, to show
that the microbiota does not only change with obesity, but
that it also contributes to it [33, 37, 38, 215].
At the end, it still needs to be taken into account that

animal models do not represent humans, and ways to in-
fluence our gut microbiota in a rational way are only par-
tially understood. One of these rational methods is the
gastric bypass. It is one of the last resorts for morbidly
obese patients to lose weight, will have a significant effect
on a subject carbohydrate consumption and will alter the
gut microbiota in different ways [216–219] (mainly an
increase in Gammaproteobacteria), due to different chan-
ging factors like for example the distribution of bile acids.
This is the most drastic method for a targeted microbiota
change besides antibiotics and faecal transplantation. The
latter has been used to treat severe diseases like
Clostridium difficile infection (e.g. [220, 221]) or
Ulcerative Colitis [222]. Faecal transplantation replaces a
patient’s gut microbiome with that of healthy donors,
however, mechanisms underlying success or failure of the
treatment have not yet been fully understood in all cases.
The main factors do not only include the gut microbiota
itself or the host genetics [174], but potentially also other
factors like excreted metabolites [223, 224]. Due to the dif-
ficulties of understanding the mechanisms, it has not yet
been possible to rationally design a medicine from this
therapy, which would simplify the production and legal is-
sues [225, 226], but progress is likely to be made within
the coming years [184, 227].
Microbiome changes do not only have clinical impact.

Pre-clinical applications are also possible. Nutritional
methods can be rationally employed, without having dra-
matic impact on the everyday life and include mainly
pre- and probiotics. The substances and microorganisms
consumed are not new, and have been already consumed
for millennia, e.g. as fermented milk products. But also
their mode of action is not fully understood, and in
some cases their usefulness is even debated [228].
Probiotics like Lactobacillus and Bifidobacterium (e.g.
[229, 230]) might act in different ways. Tested hypoth-
eses are that they might change the gut environment to
make it inhospitable for pathogens [231, 232], produce
antimicrobial compounds like SCFAs [233–235], alter
the composition by releasing compounds from otherwise
indigestible substrates (e.g. prebiotics) [229, 236] or re-
verse/prevent dietary effects [237, 238]. But even in such
controlled setups it is too simple to attribute changes to
single organisms, since the breakdown of prebiotics (lead-
ing to “postbiotics”, which might be the actual bioactive
compound) can involve multiple organisms (see for ex-
ample the summary about quercetin in [239]).

Conclusions
The currently available body of research has shown that
it is important to take the ecosystem as a whole into ac-
count to understand its health implications. Recently,
this trend is increasingly being picked up. After the first
human genomes were sequenced, it was believed that it
would change how medicine works. It was thought that
every aspect of a human would be understood and that
all treatments would be personalized [240, 241].
Although personal genome sequencing is still on the rise
[242], this prediction has not turned out to be fully true
[243], although it should be noted that there have also
been significant successes (see for example table 1 in
[244]). While we for sure do not yet fully understand the
human genome [245], we need to be aware now that it
is not the only factor. The personal well-being is not
only influenced by our genetic traits. Our complete eco-
system, the whole holobiont, needs to be taken into ac-
count. It is already clear that we cannot understand
obesity if we do not understand our microbiome, and if
we do not understand its connections to the host. With
discoveries like the enterotypes [165] (caution for the
results [168], as they have been discussed widely, with
the notion that gradients are more likely than separate
clusters), the next step after the personal genome might
even be the personalized metagenome (and the first
companies are even trying to market it). If people have
different microbiomes, they might need to be treated dif-
ferently to combat for example obesity. With enough
data, and the understanding of its meaning, it might also
be possible to prevent this lifestyle epidemic, in combin-
ation with personalized nutrition, as it is even already
becoming potentially feasible [175]. We might also be
able to go further, and even prevent diseases. The pre-
ventive measures are normally not part of the regular
mainstream medicine, but ideas exist how incorporate
preventive measures, pioneered as “4P medicine”
(predictive, preventive, personalized, participatory)
[246, 247]. If we know a person’s microbiome, we will
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be able to predict if they are for example more prone
to obesity or other risk factors (which is for some
disease states already possible [160, 161]). If we under-
stand the functionality, we will be able to take countermea-
sures with dietary interventions like pre- and probiotics.
Since all these ecosystems are different, this approach will
need to be personalized. Not only to take the personal gen-
ome and the personal microbiome into account, but also
the compatibility with lifestyle, because even the best treat-
ment might not suffice if a subject consumes by default a
high fat “western diet” without any exercise. And this is all
not possible, if the population does not participate. This ap-
proach will rely on everyone’s personal data, which needs
to be acquired. And it will only work, if the results are
communicated clearly.
All of these points are future challenges. We do not

yet fully understand the microbiome. With diet we are
taking counter measures, but not always in rational
ways. Medicine is already personalized, but not all treat-
ments have the necessary data to be personalized. And
while communication can already work (e.g. the whole
“quantified self” movement is relying on achievements
being communicated back), it is not always the case, and
wrong communication, resulting in wrong expectations,
will even discourage the users (e.g. [248]). The re-
searchers in the microbiome field need to be aware that
this hype can also happen to the microbiome [249, 250].
Current microbiome research aims to overcome some

of these challenges. Obesity research is likely to contribute
in the close future to a better understanding of the under-
lying mechanisms, and the 4P medicine might partially
become achievable in not too distant future, leading to
better health and combating epidemics like obesity.
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