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Analysis of cell-based RNAi screens<p>cellHTS is a new method for the analysis and documentation of RNAi screens.</p>

Abstract

RNA interference (RNAi) screening is a powerful technology for functional characterization of
biological pathways. Interpretation of RNAi screens requires computational and statistical analysis
techniques. We describe a method that integrates all steps to generate a scored phenotype list
from raw data. It is implemented in an open-source Bioconductor/R package, cellHTS (http://
www.dkfz.de/signaling/cellHTS). The method is useful for the analysis and documentation of
individual RNAi screens. Moreover, it is a prerequisite for the integration of multiple experiments.

Rationale
RNA interference (RNAi) is a conserved biological mecha-
nism to silence gene expression on the level of individual
transcripts. RNAi was discovered in Caenorhabditis elegans
when Fire and Mello [1] observed that injecting long double-
stranded (ds) RNAs into worms led to efficient silencing of
homologous endogenous RNAs. Subsequent studies showed
that the RNAi pathway is conserved in Drosophila and verte-
brates, and can be used as a tool to downregulate the expres-
sion of genes in a sequence specific manner [2,3]. Long
dsRNAs are commonly used in Drosophila and C. elegans. In
mammalian cells, long dsRNAs induce an interferon
response, and therefore short 21 mer RNA duplexes (small
interfering RNAs [siRNAs]) are effective in silencing target
mRNAs [4,5].

Cell-based RNAi screens open new avenues for the systematic
analysis of genomes. Traditionally, genetic screens by ran-
dom mutagenesis have been successful in identifying and
characterizing genes in model organisms that are required for
specific biological processes [6]. These led to the discovery of
many pathways that were later implicated in human disease.

However, the identification of genes whose mutation leads to
an altered phenotype can be cumbersome and slow. Rapid
reverse genetics by RNAi allows the systematic screening of a
whole genome whereby every single transcript is depleted by
siRNAs or dsRNAs. Genes with unknown functions can then
be classified according to their phenotype. The speed of
reverse genetic screens using high-throughput technologies
promises to accelerate significantly the functional characteri-
zation of genes [7]. RNAi screens have been successfully used
in C. elegans to elucidate whole organism phenotypes and for
cell-based assays in fly, mouse, and human cells [8-17]. Fig-
ure 1 outlines the main steps in cell-based high-throughput
screening (HTS) experiments.

The analysis of data sets generated by high-throughput phe-
notypic screens poses new methodological challenges. The
richness of phenotypic results can range from single numeri-
cal values to multidimensional images from automated
microscopy. Whereas analysis of functional genomic datasets
generated by transcriptome and proteome analysis has
attracted considerable interest, analysis of high-throughput
cell-based assays has lagged behind. Each study has been con-

Published: 25 July 2006

Genome Biology 2006, 7:R66 (doi:10.1186/gb-2006-7-7-r66)

Received: 27 March 2006
Revised: 7 June 2006
Accepted: 25 July 2006

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2006/7/7/R66
Genome Biology 2006, 7:R66

http://genomebiology.com/2006/7/7/R66
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16869968
http://creativecommons.org/licenses/by/2.0
http://www.dkfz.de/signaling/cellHTS
http://www.dkfz.de/signaling/cellHTS
http://www.biomedcentral.com/info/about/charter/


R66.2 Genome Biology 2006,     Volume 7, Issue 7, Article R66       Boutros et al. http://genomebiology.com/2006/7/7/R66

Genome Biology 2006, 7:R66

Experimental steps in a cell-based HTS assayFigure 1
Experimental steps in a cell-based HTS assay. A cell-based HTS assay consists of a set of experimental steps, shown in the left part of the figure, which are 
recorded in a set of corresponding data structures, shown in the right part of the figure. HTS, high-throughput screening.
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ducted using unique custom-tailored analytical methods.
Although this may be appropriate within the context of a sin-
gle study, it makes the integration or comparison of datasets
difficult if not impossible. The documentation and minimal
information required for reporting RNAi experiments remain
unresolved issues [18]. Nevertheless, as the number of RNAi
screens performed by different groups increases, it will be
instrumental that reliable tools are developed for their inte-
gration and comparative analysis.

We present a software package for the construction of analy-
sis pipelines for genome-wide RNAi screens. Step by step, it
leads from raw data files to annotated phenotype lists and
documentation (Figure 2). Comprehensive data visualization
and quality control plots aid in identifying experimental out-
liers. The data can be normalized for systematic technical var-
iations, and statistical summaries are calculated. Quality
metrics of the experiment help in assessing the strength of the
results. The complete analysis is documented as a computer-
readable living document. A navigable presentation of the
results is produced as a set of HTML pages that is amenable,
for example, for provision as supplemental information
alongside publication of the study.

Example data
We demonstrate the analysis methodology using a published
example dataset from a genome-wide RNAi screen for dsR-
NAs that cause cell viability defects in cultured Drosophila
cells [9]. In these experiments, Kc167 cells were treated with
dsRNAs from a library consisting of more than 20,000 dsR-
NAs. After 5 days cell viability was determined using a lumi-
nescence readout by a microplate reader. The library was
provided in an arrayed format, in which each location in a 96-
well or 384-well microplate uniquely identifies the dsRNA.
The cell viability screen was performed in duplicate, and raw
results are available as plate reader outputs containing rela-
tive luminescence readings. Details of the screening proce-
dure are described elsewhere [9], sequence information is
available from our website [19], and the data are provided as
part of the examples in the documentation of the cellHTS
package. The analysis we present here generally follows the
analysis performed for the original report [9].

Additionally, we provide a sample dataset of a dual channel
experiment. This type of experimental design is used to meas-
ure, for instance, the phenotype of a pathway-specific
reporter gene against a constitutive reporter that can be used
for normalization purposes. Typical examples for such exper-
imental setups are dual-luciferase assays, whereby both fire-
fly and Renilla luciferase are measured in the same well. In
principle, multiplex assays can consist of many more than two
channels, such as in the case of flow-cytometry readout [20]
or other microscopy-based high-content approaches.

Data import and assembly
In this section we discuss the information that is necessary to
describe a cell-based HTS experiment. In addition to the pri-
mary data files, descriptions of the experimental setup, the
configuration of screening plates, and annotations for the
RNAs need to be provided. A schematic representation of a
screening setup and the corresponding files is shown in Fig-
ure 1. The input data consist of several tabular files: the anno-
tation of the library, a screen description file, a plate list file,
a plate configuration file, the primary data, and - if available
- a log file of the screening procedure.

The screen description file contains a general description of
the screen, its goal, the conditions under which it was per-
formed, references, and any other information that is impor-
tant for the analysis and biological interpretation of the
experiment. The purpose of this file is similar to that of the
experiment design section of a MIAME-compliant dataset
[18].

The plate configuration file contains information about the
common layout of the plates in the experiment, and it assigns
each well to one of the following categories: sample (for wells
that contain genes of interest), control, empty, and other. This
information is used by the software in the normalization,

Analysis steps for a cell-based HTS assayFigure 2
Analysis steps for a cell-based HTS assay. The main steps in the 
computational analysis of a cell-based HTS assay. HTS, high-throughput 
screening.
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quality control, and gene selection calculations. By default,
two types of controls are considered: 'pos' for positive con-
trols and 'neg' for negative controls. Optional parameters
allow the definition of further types of controls. Table 1 shows
some lines from the plate configuration file of the example
dataset. Whereas generally the same plate configuration will
be used for the whole experiment, a column named batch can
be used to define multiple plate configurations.

In the example dataset, the primary data are provided as a set
of individual files, one for each replicate measurement per
each plate. Each file contains the coordinates for each well
and a luminescence value as measured by a plate reader. An
example input file is shown in Table 2. When different report-
ers are employed, there is usually a separate set of files for
each reporter.

The names of all primary data files are contained in the plate
list file, together with their plate identifier, the replicate
number, and - if there are several reporters - the identifier
name of the reporter. The first lines of the plate list file for the
example dataset are shown in Table 3.

The library annotation file lists the set of RNAi probes in the
library together with the identifiers of plates and wells into
which they were arrayed. The primary identifier should relate
to the molecular entity; for example, it could be the siRNA or
dsRNA sequence itself or a unique identifier. In addition, fur-

ther information can be provided, such as predicted target
gene annotation collected from public databases. The first
lines of the library annotation file for the example data are
shown in Table 4.

The screen log file can be used to flag individual measure-
ments for exclusion from the analysis. Each row corresponds
to one flagged measurement, identified by the filename and
the well identifier. The type of flag is specified in the column
Flag. Most commonly, this will have the value 'NA', indicating
that the measurement should be discarded and regarded as
missing (for instance, because of contamination). The first
few lines of the screen log file for the example dataset are
shown in Table 5.

Using cellHTS, the first processing step is to aggregate all of
these files into an R/Bioconductor data object. The files are
checked for completeness and correct formatting. Details of
the procedure are described in the documentation of the cell-
HTS software.

Normalization and transformation of the data
Single channel experiments
Figure 3a shows box plots of signal intensities in the first rep-
licate set of the example data, grouped by plate. In the exper-
iment the assignment of dsRNAs to plates was quasi-

Table 1

Plate configuration file

Batch Well Content

1 B01 Neg

1 B02 Pos

1 B03 Sample

1 B04 Sample

Lines from the example plate configuration file. Each 384-well plate 
contains dsRNAs against GFP as a negative control in well B01 and 
against the mRNA for the antiapoptotic IAP protein as a positive 
control in well B02. ds, double-stranded; GFP, green fluorescent 
protein; IAP, inhibitor of apoptosis.

Table 2

Primary data file

Well coordinate Luminescence value

A01 887763

A02 958308

A03 1012685

A04 872603

A05 1179875

The first five lines of an example intensity measurement file. In total, it 
has 384 rows, one for each well in the microtitre plate.

Table 3

Plate list file

Filename Plate Replicate

FT01-G01.txt 1 1

FT01-G02.txt 1 2

FT02-G01.txt 2 1

FT02-G02.txt 2 2

FT03-G01.txt 3 1

The first five lines of the example plate list file. In total, it has 114 rows, 
corresponding to 57 plates with two replicates each. The reporter 
column is omitted because there is only one reporter in this 
experiment.

Table 4

Library annotation file

Plate Well HfaID GeneID

1 A03 HFA00274 CG11371

1 A04 HFA00646 CG31671

1 A05 HFA00307 CG11376

1 A06 HFA00324 CG11723

The first lines of the example library annotation file. It lists the set of 
dsRNAs in the library (here, identified by an internal Amplicon ID and 
by the CG identifier of the target gene) together with the specification 
of the plate and well into which they were arrayed.
Genome Biology 2006, 7:R66
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randomized, and so the distribution of signal intensities
should not be significantly different between different plates.
However, as shown in Figure 3a, the absolute intensity values
can vary between plates (for example, when they are read on
different days or because of differences in the plate reader set-
tings). Therefore, a more biologically significant measure of
the effect is the signal relative to a typical value per plate, such
as the plate median. This can be calculated through plate
median normalization, which is provided as a function in the
cellHTS package. Plate median normalization calculates the
relative signal of each well compared with the median of the
sample wells in the plate:

Here xki is the raw intensity for the kth well in the ith result file,
and yki is its normalized intensity. The median is calculated
among the wells annotated as sample in plate i. Equation 1 is
motivated by the measurement model:

xki = λicki,  (2)

where cki is a measure of the true biological effect and λi is a
plate-dependent technical gain factor representing, for exam-
ple, reagent concentrations or instrument settings. The
median term in the denominator of Equation 1 is an estimate
for λi. The box plots of the resulting normalized values are
shown in Figure 3b.

Generally, the purpose of normalization is to adjust data for
unavoidable, unwanted technical variations in the signal
while preserving the biologically relevant ones. There could
be systematic spatial gradients within the plates, so-called
edge effects caused by evaporation in wells during the screen-
ing experiment, or systematic differences in reagent concen-
tration caused by pipetting errors. Some of these variations
can be adjusted through post hoc data normalization, and it is
possible to employ additional or alternative normalization
methods in a cellHTS workflow. Clearly, such variations can
be corrected only to a certain extent, and the quality plots
described below can also be used to flag those parts of the
experiment that need to be repeated.

Multiple channel experiments
The accuracy and interpretability of screening experiments
can often be improved by using multiple independent report-
ers. For example, one reporter, R1, could monitor the total
number of viable cells in a well, whereas another reporter, R2,
could monitor the activity of a particular pathway. Such
experimental setups are typically used in screens for signaling
pathway components, where a pathway inducible readout is
normalized against a constitutive reporter [8,15,16]. In this
way, it becomes possible to distinguish between changes in
the readout caused by depletion of specific pathway compo-
nents versus changes in the overall cell number. An example
analysis of the dual channel dataset described above is pro-
vided in the vignette 'Analysis of multi-channel cell-based
screens' of the cellHTS package.

As an example of the analysis of a high-content screening
dataset, the vignette 'Feeding the output of a flow cytometry
assay into cellHTS' of the prada package [20] shows how to
import the summary scores for each well of a cell-based
screen with flow cytometry readout into cellHTS.

Further flexibility is provided by the modular, user-extensible
design of cellHTS. Researchers can add additional functions,
for example for normalization, taking advantage of the exten-
sive statistical modeling and visualization capabilities of the R
programming language to develop analysis strategies that are
adapted to their biological assay and question of interest.

Quality metrics
The cellHTS package generates various visualizations that
help in assessing the quality of the data. We calculate numeric
summaries and quality metrics on two levels: on the level of
individual plates and the complete screen. Quality metrics on
the level of individual plates can already be used while the
experiment is being performed, for example to identify prob-
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Plate normalization. Box plots of signal intensities in the first replicate set 
of the example data, grouped by plate. (a) Raw data and (b) after 
normalization.
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Table 5

Screen log file

Filename Well Flag Comment

FT06-G01.txt A01 NA Contamination

FT06-G02.txt A01 NA Contamination

FT06-G01.txt A02 NA Contamination

The first lines of the example screen log file. It can be used to flag 
individual measurements for exclusion from the analysis.
Genome Biology 2006, 7:R66
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lematic plates that need to be repeated or to control experi-
mental procedures. Quality assessment of the whole
screening experiment helps with the choice of analysis meth-
ods and is a necessary prerequisite when data from multiple
screens are to be combined into an integrative analysis of
phenotype profiles [21,22].

Per plate quality metrics
Figure 4 shows three plots that we produce for every 384-well
plate. Figure 4a shows a false color representation of the nor-
malized intensities from a single replicate. This visualization
allows the user to quickly detect gross artifacts such as pipet-
ting errors. Figure 4b shows the distributions of results from
a single plate. The signal distribution of the normalized signal
should be approximately the same between replicates as well
as between different plates. Usually, one expects to see a sin-
gle, well defined peak, and this is required by the subsequent
analysis. If the histogram shows an unusual shape or has mul-
tiple peaks, this can indicate a problem. In addition, the pack-
age cellHTS reports the dynamic range, calculated as the ratio
between the geometric means of the positive and negative
controls. Figure 4c shows the scatterplot between two repli-
cate plate results. It allows assessment of the reproducibility
of the assay. Ideally, all points should lie on the identity line
(x = y), and large deviations indicate outliers. There are dif-
ferent ways to quantify the spread of the data around the x =
y line. The package cellHTS reports the Spearman rank corre-
lation coefficient; for the data shown in Figure 4c, the corre-
lation coefficient is 0.91.

There are various kinds of experimental artifacts that can be
observed at this stage, such as pipetting errors, evaporation of
liquid in wells (edge effects), and contamination. Depending
on the quality of the data, the screening of individual plates
may be repeated; alternatively, individual well positions that
appear to be outliers may be flagged for exclusion from sub-
sequent analysis.

Experiment wide quality metrics
Figures 3 and 5 show four types of plots that are useful in ana-
lyzing the experiment's overall quality. When the dsRNAs are
randomized between plates and experiments are performed
under identical conditions, the box plots of raw data (Figure
3a) should show approximately the same location and scale.
Variations can occur, for example when experiments were
performed using different batches of reagents. In the example
dataset, four of the 384-well plates shown in Figure 3a have
much lower median intensities than the others. To an extent,
such deviations can be adjusted by normalization, and the
box plots for the plate median normalized data are shown in
Figure 3b. Calculated statistical parameters, such as dynamic
range, can be used to judge whether individual plates need to
be repeated.

Figure 5a shows a screen image plot of the z-scores (see next
section, below) for the more than 20,000 measurements in

the experiment. Strong red colors correspond to a large posi-
tive z-score, which in this experiment is indicative of reduced
cell viability. The screen overview can highlight problematic
measurements, for example a row of relatively low measure-
ments (indicated in red), which might have been caused by
the same pipetting or plate reader artifact that was already
indicated by Figure 4a. These wells can be flagged and
excluded from the analysis.

Figures 5b and 5c look specifically at the controls. For each
plate, Figure 5b shows the normalized intensities from posi-
tive (red dots) and negative (blue dots) controls. Figure 5c
shows the distributions of positive and negative control val-
ues across plates, represented by density estimates. Whereas
the negative controls scatter around 1.1, the positive controls
have an average of about 0.1, which indicates a strong cell via-
bility phenotype. A popular parameter in HTS experiments to
assess the quality of assays is the ratio of the separation
between these two peaks to the assay dynamic range, as meas-
ured using the so-called Z' factor [23]:

where µpos and µneg are the mean values of positive and nega-
tive controls, and σpos and σneg are their standard deviations.
For Normal distributed data, the expression (σpos

2 + σneg
2)1/2

would be more natural than σpos + σneg in the numerator, but
the definition given in Equation 3 is what has been used in the
literature and in practice. In the cellHTS software, we use
robust estimators for µ and σ. Z' is dimensionless and is
always 1 or less. The obtained values can be used as a rough
estimate of the quality of the cell-based assay. Zhang and cow-
orkers [23] gave the following classification: Z' = 1, an optimal
assay; 1 > Z' ≥ 0.5, an excellent assay that allows quantitative
distinction of obtained phenotypes; 0.5 > Z' > 0, an assay with
limited quantitative information; and Z' ≈ 0, a 'yes/no' type
assay. Although this categorization certainly depends on the
choice of positive and negative controls, it can provide guid-
ance when designing cell-based assays. The sample dataset,
for example, had a calculated Z' factor of 0.81.

Scoring and identification of candidate modifiers
As a next step in the analysis, phenotypes must be scored for
their statistical significance. This step calculates a single
number, a score, for each dsRNA as a measure of evidence for
a generated phenotype. Furthermore, a list of top scoring
dsRNAs can be selected as the 'hit list' of the screen.

As a first step, we transform the normalized measurements
into z-scores:

′ = −
+
−

( )Z 1 3 3
σ σ
µ µ
pos neg

pos neg
,

z
y M

Skj
kj= ±

−
( ), 4
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where ykj is the normalized value for the kth well in the jth rep-
licate, and M and S are mean and standard deviation of the
distribution of the y values. In the cellHTS software we use
the robust estimators median and median absolute deviation
to estimate M and S. The choice of the sign (±) in Equation 4
depends on the type of the assay. We want a strong effect to
be represented by a large positive z-score. For an inhibitor
assay, such as in the example data, a strong effect is indicated
by small values of ykj, and hence we use a minus sign in Equa-
tion 4. For an activator assay, for which a strong effect is indi-
cated by large values of ykj, we would use the plus sign.

To aggregate the values from the replicate experiments into a
single number per well, there are different options, and the
choice depends on the number of replicates available and the
type of follow-up analysis. The least stringent criterion is to
take the maximum of the z-scores from the replicates; the
most stringent one is the minimum and another option is the
root mean square.

Gene annotation
The Bioconductor project, into which the cellHTS package is
integrated, offers a variety of methods to associate the
dsRNAs used in the screen with the annotations of their tar-
get genes and transcripts from public databases and with
other genomic datasets. These annotations can then be mined
for interesting patterns. Many of the methods that were ini-
tially developed for gene expression microarrays can be
adapted directly. Two basic approaches for the integration of
gene annotation data are provided by Bioconductor: down-
loadable, versioned annotation packages that reside on the
user's computer; and clients to public bioinformatics web
services, such as provided by the EBI [24].

Plate-wise quality plotsFigure 4
Plate-wise quality plots. (a) Plate plot of signal intensities. A false color 
scale is used to represent the normalized signal. This visualization helps in 
quickly detecting gross artifacts that manifest themselves in spatial 
patterns. In the data shown here the values in the top row were 
consistently low, which could be traced back to a pipetting problem. (b) 
Histogram of the signal intensities. (c) Scatterplot between two replicate 
plate results. Ideally, all points lie on the identity line (x = y).
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Experiment-wide quality plotsFigure 5
Experiment-wide quality plots. (a) Overview of the complete set of z-
score values from a genome-wide screen of 21,306 dsRNAs. The dsRNAs 
were contained in 57 plates, laid out in eight rows and eight columns, and 
the 384 z-score values within each plate are plotted in a false color 
representation whose scale is shown at the bottom of the plot. (b) Signal 
from positive (red dots) and negative (blue dots) controls (y axis) plotted 
against the plate number (x axis). (c) Distribution of the signal from 
positive (red line) and negative (blue line) controls, obtained from kernel 
density estimates. The distance between the two distributions is quantified 
by the Z' factor. ds, double-stranded.
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For the example dataset, the vignette 'End-to-end analysis of
cell-based screens: from raw intensity readings to the anno-
tated hit list' of the cellHTS package demonstrates how to
obtain a comprehensive set of annotations for the targets of
the Drosophila RNAi library using the biomaRt package [25],
which provides an interface from R to the biomart web service
[26] of the Ensembl project [24].

Analysis for enrichment of functional groups
One of the immediate questions after analysis of an RNAi
screen is which biological processes are represented by the
high scoring genes. More generally, one can consider any type
of previously known gene list, which we term a category, and
ask whether the genes of a category exhibit particularly
extreme phenotype scores.

To search for Gene Ontology (GO) categories [27] that are
enriched for high-scoring genes, we employ the Category
package by Robert Gentleman in Bioconductor. Such an anal-
ysis is straightforward; for each possible category of interest,
it compares the distribution of scores of genes in the category
with the overall distribution. For this comparison, it uses the
difference of the means, as well as the statistical significance
of the difference as measured by a t-test. The result is shown
in Figure 6. Interesting categories are those in the upper right
region of the plot; they have both a large difference in means
as well as a small P value. Table 6 shows selected categories
from this plot. In the case of the example dataset, the catego-
ries include components of the ribosome (GO:005840; P = 2
× 10-19) and proteasome (GO:000502; P = 1 × 10-8). Com-
pared with the original analysis [9], we introduced some tech-
nical improvements, such as the use of median and median
absolute deviation instead of mean and standard deviation,
but for the presented dataset the phenotypic ranking is simi-
lar and biological conclusions are the same.

Reports and living documents
The results of an analysis with the cellHTS package are pro-
vided in three forms. First, they may be presented as a hyper-
linked set of HTML pages that provides access to the input
files, all quality-related plots and quality metrics, and the
final scored and annotated table of genes. Plots are provided
both in PNG and in PDF format. The pages can be browsed
with a web browser. We encourage readers to view the exam-
ple report provided on our website [28].

Second, the cellHTS package facilitates the production of a
compendium describing the analysis of an RNAi screen. A
compendium is a living document that not only reports the
result of the computations that were performed to transform
a set of input data into an end result, but it also contains the
data as well as the human-readable textual description and a
machine-readable program of all computations necessary to
produce the plots and result tables [29-33]. Readers initially
will be presented with a processed document, just like a nor-
mal report; however, if they wish they can rerun the analysis,
investigate intermediate results, and try variations of the
analysis. The cellHTS package contains compendia for the
analyses of the example data discussed in this report. It uses
the vignette and packaging technology available from the R
and Bioconductor projects [31,34,35]. All plots shown here
are directly taken from the compendium and can be repro-
duced by users of the package.

Third, the results can be further processed using other soft-
ware tools. A result with the scores and annotation for all dsR-
NAs is provided in tabulator delimited text format, which can
be imported by spreadsheet programs. Moreover, the com-
plete output of the analysis is stored in a single R object,
which can be saved into a file and loaded later for subsequent
analysis. The file format is compatible across all operating
systems on which R runs.

An example session is presented in Figure 7.

Table 6

Category analysis

n zmean P GO category Description

113 2.5 2 × 10-19 5840 (CC) Ribosome

81 1.8 4 × 10-9 5829 (CC) Cytosol

45 2.8 1 × 10-8 0502 (CC) Proteasome complex

284 1.2 3 × 10-18 6412 (BP) Protein biosynthesis

96 0.9 1 × 10-5 6397 (BP) mRNA processing

24 2.2 0.0002 4298 (MF) Threonine endopeptidase activity

57 0.8 0.0009 8135 (MF) Translation factor activity, nucleic acid binding

Selected GO categories whose member genes had particularly high z-scores. GO, Gene Ontology; n, number of genes annotated with that category 
and targeted by the RNAi library; P, P value for the null hypothesis that the mean z-score of the dsRNAs for this category is the same as that of all 
dsRNAs; RNAi, RNA interference; zmean, mean z-score.
Genome Biology 2006, 7:R66
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A more detailed version with explanation of the input and
output of each step and the command options is provided in
the documentation of the package cellHTS.

Concluding remarks and outlook
We present a methodology for analysis of cell-based RNAi
screens that leads from primary data to a scored and anno-
tated gene list. These steps include data import, normaliza-
tion for technical variability and quality metrics and plots on
the level of individual screening plates and the complete
experiment. Results are provided in a hyperlinked HTML
report that includes the visualizations, a tabulator delimited
scored gene table and a single, comprehensive R data object
suitable for subsequent follow-up analyses. The software is
available through the free and open source Bioconductor
package cellHTS.

Minimal information about RNAi experiments
We have here assumed a working definition of the minimal
information about a cell-based RNAi experiment necessary
for the analysis. This includes the information in the screen
description file and raw instrument readings, as well as infor-
mation about the plate configuration, which is necessary to
visualize spatial effects in phenotype distribution. This is
intended as a starting point for discussion; it is certain to be
incomplete and will develop with the technology and scien-

tific questions. For example, sequence information on siR-
NAs or long dsRNAs are necessary to assess potential off-
target effects and to annotate the targets when genome anno-
tations change.

There are currently no standard experimental protocols for
high-throughput RNAi experiments and, because of rapid
developments in RNAi reagents and cell-based assays, we do
not expect a limited set of standard protocols to emerge soon.
Nevertheless, many of the analysis steps appear to be generic
and applicable to many different experiments. Our package is
intended to provide tools for creating such an analysis work-
flow. The analysis functions are customizable, and if needed
they can be combined with other functions provided by the
user or from other external packages. As the field matures
and the community adapts a set of tools that it finds useful,
standard analytical methods may emerge [36].

Specificity and off-target effects of RNAi experiments
The interpretation of large-scale RNAi data relies on annota-
tion of reagents and their specificity. Off-target effects from
dsRNAs or siRNAs, which downregulate other transcripts in
addition to their intended target, can be caused by relatively
short sequence matches. Recent reports have shown that off-
target effects can have significant effects on phenotypic read-
outs. Sequence similarity as small as heptamers with perfect
matches in the 3'-untranslated region can mediate transla-
tional inhibition of mRNAs through a miRNA pathway [37].
Such effects can have an impact on the annotation of screen-
ing results, and phenotypes should be treated with caution
until further confirmation can be provided. In addition to
improved design algorithms both for dsRNA and siRNA
libraries that may minimize off-target effects, a calculated
estimate of potential off-target effects could be a useful fea-

Example cellHTS sessionFigure 7
Example cellHTS session.

## read screen description, the index of plate 

## measurement files and the plate result files 

x = readPlateData("Platelist.txt", name="My Experiment") 

## add plate configuration and screen log 

x = configure(x, confFile="Plateconf.txt", 

logFile="Screenlog.txt", 

descripFile="Description.txt") 

## add reagent and target annotation 

x = annotate(x, "GeneIDs_Dm_HFA_1.1.txt") 

## normalize 

x = normalizePlates(x, normalizationMethod="median") 

## calculate z-score 

x = summarizeReplicates(x, zscore="-", summary="mean") 

## create the HTML linked (web) report 

writeReport(x) 

## save the data object for further use 

save(x, file="MyExperiment.rda")

Volcano plot to identify enriched GO categoriesFigure 6
Volcano plot to identify enriched GO categories. Volcano plot of the 
category analysis. It shows the negative decadic logarithm of the P value 
versus the mean z-score for each tested GO category. Categories that are 
strongly enriched for high-scoring hits are marked in red; details on some 
of these are shown in Table 6. GO, Gene Ontology.
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ture in future releases of cellHTS to rank and evaluate scored
phenotype lists.

Outlook
Genome-wide RNAi experiments can be classified as follows:
for screens, the goal is the identification of one or few new
core components in a specifically assayed process followed by
their in-depth genetic and biochemical characterization
[17,38]; and for surveys, the aim is the systematic mapping of
phenotypic profiles and possibly genetic interaction networks
[21,22,39]. Although the individual data points in surveys are
rarely independently confirmed and can suffer from higher
rates of false negatives and false positives, the fusion of mul-
tiple, consistently processed datasets and other large-scale
datasets might ultimately provide deeper insights into biolog-
ical systems [40].

Software implementation and availability
The package cellHTS is available as a freely distributable and
open source software package with an Artistic license. It is
integrated into the R/Bioconductor [35] environment for sta-
tistical computing and bioinformatics, and runs on major
operating systems including Windows, Mac OS X, and Unix.

Additional data files
The following additional data are included with the online
version of this article: The R package version 1.3.23 of 5
August 2006 in "source" format (for Unix and Mac OS X;
Additional data file 1). The R package in "Windows binary"
format (for MS Windows; Additional data file 2). These file
archives also contain the example data. A PDF document
demonstrating a full end-to-end analysis of the example cell-
based screening data (Additional data file 3). A PDF docu-
ment demonstrating the analysis of multi-channel cell-based
screens (Additional data file 4).
Additional data file 1R package version 1.3.23 of 5 August 2006 in "source" formatR package version 1.3.23 of 5 August 2006 in "source" format (for Unix and Mac OS X). This file archive also contains the example data.Click here for fileAdditional data file 2R package in "Windows binary" formatR package in "Windows binary" format. This file archive also con-tains the example data.Click here for fileAdditional data file 3Full end-to-end analysis of the example cell-based screening dataA PDF document demonstrating a full end-to-end analysis of the example cell-based screening data.Click here for fileAdditional data file 4Analysis of multi-channel cell-based screensA PDF document demonstrating the analysis of multi-channel cell-based screens.Click here for file
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