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Abstract 
 
Background 
The biomedical community is rapidly developing new methods of data analysis for microarray 

experiments, with the goal of establishing new standards to objectively process the massive 

datasets produced from functional genomic experiments.  Each microarray experiment measures 

thousands of genes simultaneously producing an unprecedented amount of biological 

information across increasingly numerous experiments; however, in general, only a very small 

percentage of the genes present on any given array are identified as differentially regulated.  The 

challenge then is to process this information objectively and efficiently in order to obtain 

knowledge of the biological system under study and by which to compare information gained 

across multiple experiments. In this context, systematic and objective mathematical approaches, 

which are simple to apply across a large number of experimental designs, become fundamental 

to correctly handle the mass of data and to understand the true complexity of the biological 

systems under study. 

 
Results 
The present report develops a method of extracting differentially expressed genes across any 

number of experimental samples by first evaluating the maximum fold change (FC) across all 

experimental parameters and across the entire range of absolute expression levels.  The model 

developed works by first evaluating the FC across the entire range of absolute expression levels 

in any number of experimental conditions. The selection of those genes within the top X% of 

highest FCs observed within absolute expression bins was evaluated both with and without the 

use of replicates. Lastly, the FC model was validated by both real time polymerase chain reaction 

(RT-PCR) and variance data. Semi-quantitative RT-PCR analysis demonstrated 73% 

concordance with the microarray data from Mu11K Affymetrix GeneChips. Furthermore, 94.1% 
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of those genes selected by the 5% FC model were found to lie above measurement variability 

using a SDwithin confidence level of 99.9%.  

 
Conclusion 
As evidenced by the high rate of validation, the FC model has the potential to minimize the 

number of required replicates in expensive microarray experiments by extracting information on 

gene expression patterns (e.g. characterizing biological and/or measurement variance) within an 

experiment.  The simplicity of the overall process allows the analyst to easily select model limits 

which best describe the data.  The genes selected by this process can be compared between 

experiments and are shown to objectively extract information which is biologically & 

statistically significant.  

 
 
 
 
 
 
Abbreviations 
 
CV: coefficient of variation 
FC: fold change 
HFC: highest fold change 
LFC: limit fold change 
MAE: mean absolute expression 
RN: rank number 
RT-PCR: real time polymerase chain reaction 
RV: rank value 
SD: standard deviation 
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Background 

The complete sequencing of several genomes, including that of the human, has signaled 

the beginning of a post-genomic era in which scientists are becoming increasingly interested in 

functional genomics; that is uncovering the functional roles of different genes, and how these 

genes may interact with and/or influence one another.  However, this question no longer need be 

answered by examining individual genes/proteins, but rather by simultaneously studying 

hundreds to thousands of unique genetic elements at a time.  Already, the post-genomic era is 

beginning to subdivide into distinct 'omic' domains, such as genomics, proteomics, and 

metabolomics. This enables researchers to examine not only genetic elements, but also the 

corresponding proteins and metabolites derived from these genes.  All such 'omic' technologies 

require fresh looks at data analysis issues, and many techniques are being shown to be applicable 

to them all. To date, the most widely studied of these 'omic domains' is that of transcriptomics, 

which is able to reveal subtle differences in thousands of mRNA levels between experimental 

samples and medical biopsies.  Although mRNA is not the end product of a gene, the 

transcription of a gene is both critical and highly regulated, thereby providing an ideal point of 

investigation[1].  The development of DNA microarrays has enabled the global measurement of 

gene expression at the transcript level, and therefore a glimpse into the coordinated control and 

interactions between various genes. 

At present, two technologies dominate the field of high-density microarrays: the cDNA 

printed array and the oligonucleotide array.  The cDNA array has a long history of development 

[2] stemming from immunodiagnostic work done in the 1980s; however, it has been most widely 

developed in recent years by Stanford researchers, using the technique of depositing cDNA tags 

onto a glass slide with precise robotic printers [3].  Labeled cDNA fragments are then hybridized 
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to the cDNA probes on a chip and differences in the mRNA between samples can be identified 

and visualized using an arbitrary coloring scheme, where typically red indicates a down 

regulation and green indicates an up regulation.  The oligonucleotide array, largely developed by 

Affymetrix, Inc (Santa Clara, CA, USA) [4], involves synthesizing short (25-mers) probes 

directly onto a glass slide using photolithographic masks [5,6].  Sample processing includes the 

production of labeled cRNA, which is then hybridized to the chip, and a corresponding signal 

obtained after laser scanning.  Regardless of the array used, the output can be readily transferred 

into various commercially available data analysis programs, where the selection and clustering of 

significantly modified genes can be examined. 

Differentially expressed genes will be defined herein as gene data lying outside the normal 

distribution of differences with a control state, and which can not be ascribed to chance or 

natural variabilty. Various creative techniques have been proposed and implemented for the 

selection of differentially expressed genes; however, none has yet gained widespread acceptance 

in the analysis of microarray data. Despite this, there remains a great impulse to develop new 

data analysis techniques, in part driven by the obvious need to move beyond setting arbitrary 

fold-change cut-off which are out of context with the rest of the experimental and biological data 

at hand [7-9].  This is still the case for many studies, where selection of differential gene 

expression is performed through a simple fold-change cut-off between 1.8 to 3.0. There is an 

inherent problem with these simple selection criteria: it is far easier to see a 2-fold change in 

genes that are lowly expressed than a 2-fold change in highly expressed genes. Selecting 

significant genes based only on a single fold change across the entire range of experimental data 

preferentially selects genes that are lowly expressed [8].  Furthermore, this commonly used 

approach does not accommodate for background noise, variability, non-specific binding, or low 
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copy numbers which are characteristics of gene data generated by a microarray. Other 

approaches entail the use of the simple statistical measures such as a t-test for every individual 

gene, however due to the cost of repeating microarray experiments, the n usually remains low 

and thereby can lead to inaccurate estimates of variance [8].  

The present article describes a fold change model that takes into account both expression 

levels and fold changes for the selection of significantly differentiated genes.  This simple model 

aids the experimenter to estimate the relationship between these two parameters and thereby 

extract information which becomes relevant to the estimation of variation. Subsequently those 

gene transcripts which can be determined to be outliers can be termed differentially expressed 

genes.  An added strength to the model outlined within this document lies in is its ease of 

application to any dataset.  This model can then be considered a progressive and cyclical process, 

where the data analyst can quickly and objectively identify a list of differentially regulated genes 

with a high level of confidence. 

The development of this model was performed on data stemming from a nutritional 

experiment in a mouse model using Affymetrix Mu11K chips, where the effects of four diets 

were compared in a number of organs (pool of five mice for each sample in each organ): (1) 

control diet A in duplicate from the same pool, (2) diet B, (3) diet C, and (4) diet D.  For the 

purposes of the current report, details of the dietary input are not required and will be reported 

elsewhere. The present article will take only the data from the liver as an example for the 

development of a gene selection model. The model is further validated by RT- PCR and indicates 

a high concordance between microarray data and RT- PCR data. 
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Selection of Differentially Regulated Genes & Data Analysis 

A method of objective gene selection was sought to avoid the reliance simply on a single 

arbitrary fold-change cut-off, which is known to be overly influenced by both small and large 

absolute expression levels. The chosen method includes (A) the determination of the upper X% 

of highest fold changes within narrow bins of absolute expression levels, (B) the rejection of 

very small absolute values, and (C) the subsequent ranking of genes by a combined fold 

change/absolute difference calculation.  

 

(A) Selection of the upper X% of highest fold changes within binned absolute expression 

levels 

The data from a typical Affymetrix experiment contains an average difference (Avg.Diff) 

value, which can be described as the difference in intensity between a perfect match 

oligonucleotide and a mismatch oligonucleotide. In order to clarify this parameter in terms of the 

present model, the term "absolute expression" will be used in place of "average difference". As 

usually indicated in literature, both minimal and negative absolute expression values are set to a 

common number in order to eliminate genes with negative expression levels and to reject 

essentially uninterpretable information.  Therefore, as a first-pass filter, genes with absolute 

expression values of less than 20 were set to 20 and all genes which had a value of 20 across all 

four diets were immediately rejected. This process left 9391 genes in the liver out of the original 

13179 genes represented on the Mu11K GeneChip. An additional parameter, highest fold 

change, was then applied to these remaining genes. HFC can be defined as:  

 

eqn. 1 
Max(A,B,C,D...)
Min(A,B,C,D...)

HFC =
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where A,B,C,D, etc… represent the individual microarray results for each gene 

 

The proposed determination of HFC is highly influenced by absolute expression, and trends can 

readily be observed in our data set where HFC is negatively correlated with absolute expression. 

For example, it can be seen that with absolute expression values higher than 5000, it is unlikely 

to have HFC greater than 1.5, but with absolute expression values near 50, it is very easy to 

observe an HFC of ≥ 2. It should be noted that the present experiment is comprised of four diets 

or treatments; however, the HFC can be easily calculated for any number of experimental 

conditions. Furthermore, similar trends can be observed in numerous Affymetrix datasets we 

have examined (data not shown). 

 

An ultimate goal was to develop a model that would account for absolute values when 

filtering genes on fold change.  The selection of differentially expressed genes is essentially a 

search for outliers, i.e. gene data lying outside the normal distribution of differences relative to a 

control state, and which can not be ascribed to chance or natural variabilty. In order to determine 

those genes which are outliers, it is necessary to either measure the variability of the system or to 

make valid assumptions regarding the normal distribution of variability. In the present model we 

assume that: (1) variability in gene expression measurements are related to the absolute 

expression level; and (2) that if a broad sampling of the transcriptome is measured then only a 

small number of genes will actually be outliers even in the harshest of experimental treatments. 

Assumption (1) is a fairly general analytical concept, i.e. that the closer data is to the 

measurement threshold the higher the variability is in that measurement. Assumption (2) appears 
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to be empiricaly valid when surveying the literature for high-density microarray experiments 

which evaluate severe biological events, from caloric restriction [10,11] to apoptosis [12,13].  In 

these experiments, through various selection techniques, it was found that less than 5% of the 

total number of genes probed were differentially regulated.  Therefore, in order to develop the 

present model of gene selection, the validity of selecting outliers was evaluated for a range of 

highly variable genes, from 5% of the population on up. 

The present model was developed by binning gene expression data into tight classes 

across the range of absolute expression values, i.e. 20-50, 50-100, 100-150, etc. and then 

selecting the upper 5% of HFC values for further consideration. Binning was carried out in such 

a manner as to ensure that there was never a bin containing zero genes or fewer genes than the 

proceeding bin, therefore bin sizes were not always equal.  It is possible to search separately for 

the 5% of genes with the greatest HFCs in each class; however, in order to simplify the overall 

selection, we modeled the relationship between absolute expression, defined as MIN(diets 

A,B,C,D) value and HFC (eqn 1) in order to set a limit fold change (LFC). The relationship can 

be modeled using a simple equation of the form LFC =a+b/x (with a and b depending on the 

number of genes to be selected). Figure 1a demonstrates that as the selection criteria becomes 

more strict (top 5% � 3% � 1% of genes), the LFC curves change, yet converge at expression 

levels above 1000.  The simple equation contains two parameters that have various repercussions 

on gene selection.  Firstly, a sets the asymptote, which corresponds to the minimum highest fold 

change value that can be observed at any given absolute value.  Secondly, b affects the LFC at a 

given absolute value, and is therefore highly influenced by this latter value.  For example, the 

lower the absolute values the greater the LFC, and vice versa.   
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Using the equations in Figure 1a, the selection of genes for further consideration is then 

objective, simple, and global. A gene is selected with the HFC approach if 

MAX(A,B,C,D)/Min(A,B,C,D) > a+b/Min(A,B,C,D).  After applying the 5% LFC gene filter, 

489 genes remained in the list out of the 9391 genes potentially differentially expressed, selected 

from the original 13179 genes represented on the GeneChip. When interested in only the top 3% 

or 1% of significant genes, the total number of genes that meet the LFC requirements, and 

correspondingly the number of genes per bin, drops off rapidly (245 and 102 genes, 

respectively). 

 

(B) The rejection of very small absolute values 

Lastly, in an effort to objectively determine a minimum expression level cut-off we 

examined the final distribution of absent & present calls (Absence Call) across gene bins in the 

remaining set of genes. It was determined that Affymetrix absence/presence calls would not be 

used a priori as criteria critical to the selection of significantly regulated genes, but that it would 

rather be used as a post-selection criteria.  The absence call has been previously noted to be 

problematic, and has two potential drawbacks: 1) the assignment of an absence call is based on 

the ad hoc characterization of oligonucleotide matches & mismatches for which the validity has 

been previously challenged, and 2) is not empirically reliable for individual genes, i.e. the 

confidence in the call is not high [14].  However, it was expected that the distribution of absent 

calls across many genes at a range of absolute expression levels would not be random, and that 

the trend would be an important crosscheck for the confidence placed in changed genes at low 

expression levels. 
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As expected the distribution of absent calls demonstrated that it was predominantly the 

very lowly expressed genes (95% of genes called absent, absolute expression ≤ 207), which were 

called absent across all four diets by the Affymetrix analysis software.  This analysis also 

supports the idea that a threshold for an absolute minimum expression level could be developed 

empirically for each data set examined. In the present case, this would imply that any gene, 

which didn't have at least a value of 207 in one experimental condition needs to be rejected 

independent of the fold change measured. In practice, more than 95% of genes meeting these 

criteria would also be rejected on the basis that they were consistently marked absent across all 

experimental conditions. Therefore, such genes were eliminated in the last method of gene 

filtration. After removing these lowly expressed genes, based on these objective criteria, 329 

genes remained in the list out of the original 13179 gene probe sets. The selected genes were 

considered to be potentially differentially regulated by our dietary treatments in the sense that 

these are the most highly differentially regulated genes within the context of the present 

experiment.  

 

(C) Assignment of Gene Rank 

Following overall gene selection, a rank of "importance" or "interest level", defined as 

Rank Number (RN), based on both the magnitude of fold change and absolute expression values 

was assigned to each selected gene. The RN for each gene was determined by calculating a Rank 

Value (RV), which can be defined as: RV = HFC * (Max – Min). The RV is an abstract value 

that simply gives great importance to those genes that have a high fold change and 

simultaneously high differences in absolute expression values. After calculation of RV, gene lists 

were sorted and then assigned a simple rank of 1,2,3,4…329 in order of RV importance, where a 
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gene with a RN of 1 corresponds to the gene with the highest RV.   Both RV and RN are simply 

aids for the discussion of differential gene effects, which add the concept of relative weight or 

"importance" amongst selected genes. This concept then provides a further basis for the selection 

of genes for validation studies as is detailed below. 

 

(D) Model validation 

Real-time polymerase chain reaction 

The results obtained from a microarray experiment are influenced by each step in the 

experimental procedure, from array manufacturing to sample preparation and application to 

image analysis [15].  The preparation of the cDNA sample is highly correlated to the efficiency 

of the reverse transcription step, where reagents and enzymes alike can influence the reaction 

outcome.  All of these factors correspondingly affect the representation of transcripts in the final 

cDNA probe, which necessitate the need for validations by complementary techniques.  Analysis 

by northern blot and RNAse protection assays are commonly reported in the literature; however, 

the emerging "gold-standard" validation technique is RT- PCR [16].  As microarrays tend to 

have low dynamic range, which leads to small but significant under-representations of fold 

changes in gene expression, RT-PCR with a higher dynamic range is used more to validate the 

observed trends rather than duplicate the absolute values obtained by chip experiments 

[17,16,18]. 

Having chosen genes that lie across the ranking system, RT- PCR was performed in 

triplicate for each experimental condition (Diet A, B, C, D) using the same pooled stocks of liver 

RNA (5 mice/experiment).  Genes were compared to the endogenous controls β-actin and 

GAPDH, which were determined not to have significantly changed across the dietary treatments 



http://genomebiology.com/2001/2/12/preprint/0009.13 

by both the LFC (microarray data) and a student's t-test (RT-PCR). Subsequently, significant 

changes by RT-PCR were calculated by the student's t-test with a predefined nominal α level of 

0.05; where Diet B, C, and D were independently compared to the control diet A. The overall 

concordance of trends between the two techniques was 73% (e.g. an increase/decrease in gene 

expression seen by microarray was also seen by RT-PCR). For those genes whose results agreed 

between the two experiments, 68% of these results indicated larger fold changes by RT-PCR 

than those identified by array analysis. This concordance includes both genes determined as 

significantly changed as well as those genes determined not to have been significantly changed.  

When only those genes that were considered to be significantly changed by RT-PCR were 

examined, the concordance increased slightly to 80%.  

What is immediately noticeable through the color scheme (Table 1) is that genes with 

high RN (low RV) have little to no concordance between the two techniques; where red indicates 

no concordance and blue indicates either one or two (out of three) of the results did not agree.  

When specifically examining fatty acid synthase (FAS), a highly expressed gene, one can 

quickly see that microarray fold changes of less than 2 can be corroborated between the two 

experimental techniques, reinforcing the strength of this fold change model.   

As the selection criteria with the microarray data was that the HFC must be greater than 

the LFC model, the expectation is that the LFC trend line can be validated by RT-PCR. This is 

predominantly the case across the full dynamic range of data selected by the model; except for 

very lowly expressed genes such as the RAS oncogene. For genes with slightly lower RN (higher 

RV), such as ABCA1, and HSP5 some concordance is seen, indicating that confidence in gaining 

with these genes, and that as a group they can still be taken into account when looking for trends 

in gene expression. For genes with a RN lower than 176 (RV > 1156; e.g. USF-2) concordance 
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quickly approaches 100%, indicating high confidence when discussing gene trends or individual 

gene results. These results in total reinforce the concept that RN is correlated with confidence / 

validity within the selected gene set resulting from the LFC model. 

The genes discussed and validated in this report were identified using the 5% fold change 

model; however the fold change percentage can be varied to meet both the researcher's and 

experiment's needs.  It must be stressed that the 5% fold change model was chosen under the 

assumption that a relatively small percentage of genes will have their expression altered under 

any given condition.  Therefore, selecting a fold change model of 5% may be either too 

permissive, where false positives are selected as differentially changed, or too restrictive, where 

true positives are not selected.  Within the context of the present study, validation of the 

microarray results indicates that genes with low rank values are often more difficult to confirm 

by complementary techniques. Using the data obtained from RT-PCR, if one assumes that all 

genes with a RN below 176 (corresponding to RV > 1156) can be validated, then one would 

expect that these genes would be concentrated at higher expression levels.  However, when the 

spread of those genes with a rank of 1 to 176 is examined, it was observed that these genes 

comprise a wide range of expression levels, indicating that the fold change model is objectively 

selecting differentially regulated genes across a wide range of absolute expression levels (data 

not shown), and that confidence in that selection increases with RV.  

 

Variance Analysis with Real-time PCR 

Variability is introduced into microarray data from two sources: biological variation 

(whether in vitro or in vivo) and measurement variation (hybridization, processing, scanning, 

etc.).  In a brief effort to examine variability between individual mice, i.e. biological variability, 
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RT-PCR measurements across control mice were examined using a subset of the genes examined 

by RT- PCR.  Each gene was examined in triplicate in each of the five mice, and the variation in 

∆Ct (detection threshold) was determined.  The Ct indicates the relative abundance of any 

particular gene, and when normalized to an endogenous control (β-actin and GAPDH) allows the 

relative amounts of a gene to be calculated. RT- PCR indicated as did the microarray variance 

data, that lowly expressed genes have a higher variation; thereby hinting that biological and 

measurement variance are both influenced by absolute expression levels.  The equation of the 

line was deemed significant (with a p-value of 0.014 and 0.013 when normalized against β-actin 

and GAPDH, respectively). This again confirms the concept that highly expressed genes have 

little variance, and that small fold changes do represent a meaningful biological event. 

 

Validation of the LFC model via characterization of measurement variability 

The concept that variability and absolute expression are related has recently been examined 

by Coombes and colleagues; however, they examined only the variability of replicate spots on a 

single slide [19].  This concept has now been further extended here to the examination of 

variability between genes on different microarrays.  Measurement variance was examined 

following the development of the LFC model, and was therefore treated as a separate method for 

the confirmation of this model.  To further understand the nature of measurement variability 

within the current study, duplicate Mu11K Affymetrix microarrays for the controls were 

examined.  A pooled RNA sample from mice (n=5) fed the control diet was hybridized to two 

different chips, and the data was analyzed in order to characterize measurement variability (data 

not shown).  It was apparent from the trend that as absolute expression levels increase, the 

coefficient of variation (CV= SD/MAE) decreases.  By overlaying the trendline of the variability 
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data on those genes determined to be significantly regulated by the LFC model, the CV upper 

confidence level for these selected genes could be elucidated. 

In order to estimate the CV without taking into account extreme values of the duplicate we 

used a robust estimator, represented by the following equation: 

 

 

eqn. 2 

 

Where n = 2 and p = 0.5 (as the median CV of duplicate gene sample was used), the above 

equation enabled the CV to be determined by narrow bins of mean expression level, where 

extreme values are not accounted for.  

The mean absolute expression of 13057 data points (genes) across the four diets were 

plotted against CV, and indicated a similar trend for the variability data; where a high mean 

absolute expression results in a low CV (Figure 1b).  Applying the CV derived from the 

duplicate sample data (eqn. 2) to the quadruplicate diet data enables the calculation of the CV 

upper confidence level (by bins of absolute expression level) using the following equation:  

 

eqn. 3 

 

Where n= 4 and p= 0.001, 0.00001, 0.0000003, depending on the level of confidence desired (1-

p). 
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Equation 3 allows us to identify those genes with a variance above the measurement variability .  

This greater variability arose due to combined pool (biological) and treatment variabilities. 

This confidence level, by altering p, could then be raised or lowered according to the level 

of confidence desired; therefore, modeling the variance data provides an objective method for 

examining the variation of genes across the complete range of absolute expression values.  The 

spread of the data indicates that most of the 13000 genes are both lowly expressed and highly 

variable across the four chips.  A further examination of the data indicated that 95% of the genes 

determined to be 'absent' across all four diets by Affymetrix software had a mean absolute 

expression less than 207.    

With the LFC model, genes were initially selected if they were in the top X% of the bin 

highest fold changes; however the starting point (X%) was solely chosen based on the percentage 

of genes shown to be differentially regulated across a wide-range of published biological studies.  

However, the genes selected by the X% fold change model were then verified, with concordance 

results, by both RT- PCR and the variance data.  Genes identified by the 5% fold change model 

were overlayed on the variance data corresponding to the four diets, and the confidence level for 

the X%-data selection was determined (Figure 1b).  Concordance of 94.1%, 96.6% and 98.4% 

for the 5%, 3% and 1% fold change models, respectively, was observed with an upper 

confidence level selection of 99.9% (Figure 1b, inset table).  In addition, overall concordance 

between microarray data and RT- PCR was examined in the different fold change models; and 

indicated 73.3%, 81.5%, and 94.4% concordance for the 5%, 3%, and 1% fold change models, 

respectively (Figure 1a).  The degree of concordance with RT- PCR results and the high 

confidence level (99.9%) obtained with the variance data reinforces that the X% fold change 
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model is a simple, efficient, objective and statistically valid method for the identification of 

significantly differentiated genes.   

Conclusion 

The analysis of microarray data is a new scientific field that has enabled researchers to 

establish novel and innovative methods for analyzing the results.  Already, an evolution can be 

observed with regards to the methods of selecting significantly changed genes.  Scientists are 

moving away from the arbitrary fold change cut-off, and incorporating robust statistical concepts 

into their line of thinking.  The conclusion that highly expressed genes will rarely have a 2-fold 

change in mRNA levels, and that lowly expressed genes will commonly have a 2-fold or greater 

change, led to the development of models that would accommodate this real characteristic of 

gene expression measurements.  The fold-change model presented in this paper takes into 

account expression level in addition to fold change, and allows for the selection of genes across 

the complete range of expression levels.  Following gene selection using an initial criteria of 

X%, gene rank is introduced as a basis for choosing genes to validate the model. Therefore, a 

limited but judicious choice of model selected genes across a broad range of gene rank can then 

be used to reset X% in order to correspond with the data at hand (Figure 2). Further validation of 

this model in the current data set by RT- PCR confirmed these relationships, reinforcing that 

genes with fold changes even less than 1.8 can be consistently measured assuming adequate 

absolute expression levels. This demonstrates real changes in sample concentration of mRNA 

even at low fold-change levels.  Additionally, the variance data characterizing measurement 

variability further supports the LFC model, indicating that selected genes lie outside 

measurement variability at very high confidence limits (> 99.9% CL).  Although measurement 

variability was used here for model development, this concept can be extended to measurements 
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of either experimental or biological variability. In summary, the X% LFC model enables one to 

define experiment specific selection stringency while maintaining simplicity and objectivity for 

the detection of differential gene selection. The LFC model can be used consistently across any 

number of experiments with widely varying numbers of experimental conditions, and can 

therefore be generalized to most types of microarray data. 
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Materials & Methods  

Mice and feeding conditions:  
Mice were male Rj:NMRI mice from Elevage Janvier, Le Genest-Saint-Isle France, weighing 

10-11 g at delivery and 33-51 grams on day 42, housed 10 per cage in wire cages with bedding 

and normal light cycle. Mice received ad libitum quantities of bottled distilled water and purified 

powdered diets (7.5 g/mouse) in ceramic cups (10/group) for 42 d.  Food was maintained at -80 

°C in daily aliquots under nitrogen, thawed each afternoon before administration to mice, and 

uneaten food was discarded daily.  Experimental diets are not relevant to the current manuscript 

on differential gene selection, but will be described in more detail in a following publication 

covering the biological significance of the experiment. 

Dissection of Mice: 
After administration of the aforementioned diets to 10 mice per group; 5 mice were randomly 

selected for inclusion in the gene expression analysis experiment.  Organs were dissected 

according to standard protocols (Phoenix Laboratories), then cut into 100-150 mg subsections, 

flash frozen in liquid nitrogen, and finally stored at -80° C until gene expression analysis.  

Nucleic Acid Preparation: 
Tissue from each organ was extracted from 5 individual mice and extracted separately using 

Qiagen RNeasy mini-kits (Basel, Switzerland) according to the manufacters instructions with 

one exception: During extractions, all RNeasy columns were impregnated with DNase I (Roche, 

Basel, Switzerland) in order to remove possible genomic DNA contamination.  After extraction, 

equal amounts of material were pooled to achieve a total of 10 µg total RNA per dietary group. 

All RNA samples were first quantified by the RiboGreen RNA Quantification Kit according to 

the manufactuers instructions (Molecular Probes, Eugene Oregon) and then analyzed via agarose 

gel electrophoresis for intact 18 and 28s rRNA. All samples included in the study were judged to 
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contain high-quality RNA in sufficient amounts for hybridization. Furthermore, Affymetrix "test 

chips" were run for each pool for all organs prior to hybridization with the GeneChip. All test 

arrays gave strong signals across an array of pre-selected genes. 

Gene Expression Analysis using the Murine 11k GeneChip: 

cRNA preparation.  

15 µg total RNA was used as starting material for all samples. In all cases, a “test chip” provided 

by the manufacturer (Affymetrix, Santa Clara, CA) was run prior to using the Murine 11k 

GeneChip. In each case this confirmed that sufficient high quality RNA was present to detect 

gene expression in the various tissue samples. The first and second strand cDNA synthesis was 

performed using the SuperScript Choice System (Life Technologies) according to the 

manufacturers´instructions, but using oligo-dT primer containing a T7 RNA polymerase binding 

site. Labeled cRNA was prepared using the MEGAscript, In Vitro Transcription kit (Ambion). 

Biotin labeled CTP and UTP (Enzo) was used together with unlabeled NTP´s in the reaction. 

Following the IVT reaction, the unincorporated nucleotides were removed using  RNeasy 

columns (Qiagen).  

Array hybridization and scanning.  

Ten µg of cRNA was fragmented at 94° C for 35 min. in  buffer containing 40 mmol/L Tris-

acetate pH 8.1, 100 mmol/L KOAc, 30 mmol/L MgOAc. Prior to hybridization, the fragmented 

cRNA in a 6xSSPE-T hybridization buffer (1mol/L NaCl, 10mM Tris pH 7.6, 0.005% Triton), 

was heated to 95° C for 5 min, subsequently cooled to 40° C and loaded onto the Affymetrix 

probe array cartridge. The probe array was then incubated for 16h at 40° C at constant rotation 

(60 rpm). The probe array was exposed to 10 washes in 6xSSPE-T at 25° C followed by 4 
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washes in 0.5xSSPE-T at 50° C. The biotinylated cRNA was stained with a streptavidin-

phycoerythrin conjugate, 10  g/ml (Molecular Probes) in 6xSSPE-T for 30 min at 25° C followed 

by 10 washes in 6xSSPE-T at 25° C. The probe arrays were scanned at 560nm using a  confocal 

laser scanning microscope (made for Affymetrix by Hewlett-Packard). The readings from the 

quantitative scanning were analysed by the Affymetrix Gene Expression Analysis Software. 

 



http://genomebiology.com/2001/2/12/preprint/0009.23 

References 
 
1.  Brazma A,Vilo J: Gene expression data analysis. FEBS Lett 2000, 480: 17-24. 
2.  Ekins RP: Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 

1998, 44: 2015-2030. 
3.  DeRisi JL, Iyer VR,Brown PO: Exploring the metabolic and genetic control of gene 

expression on a genomic scale. Science 1997, 278: 680-686. 
4.  Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris 

MS,Fodor SP: Accessing genetic information with high-density DNA arrays. Science 
1996, 274: 610-614. 

5.  Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP,Fodor SP: Light-generated 
oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 
1994, 91: 5022-5026. 

6.  Barone AD, Beecher JE, Bury PA, Chen C, Doede T, Fidanza JA,McGall GH: 
Photolithographic synthesis of high-density oligonucleotide probe arrays. Nucleosides 
Nucleotides Nucleic Acids 2001, 20: 525-531. 

7.  Woolf PJ,Wang Y: A fuzzy logic approach to analyzing gene expression data. Physiol 
Genomics 2000, 3: 9-15. 

8.  Baldi P,Long AD: A Bayesian framework for the analysis of microarray expression data: 
regularized t -test and statistical inferences of gene changes. Bioinformatics 2001, 17: 
509-519. 

9.  Quackenbush J: Computational analysis of microarray data. Nat Rev Genet 2001, 2: 418-
427. 

10.  Lee CK, Klopp RG, Weindruch R,Prolla TA: Gene expression profile of aging and its 
retardation by caloric restriction. Science 1999, 285: 1390-1393. 

11.  Kayo T, Allison DB, Weindruch R,Prolla TA: Influences of aging and caloric restriction 
on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad 
Sci U S A 2001, 98: 5093-5098. 

12.  Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB, Herzenberg 
LA,Steinman L: Gene microarray identification of redox and mitochondrial elements 
that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci U S A 2000, 97: 
2680-2685. 

13.  Cardozo AK, Kruhoffer M, Leeman R, Orntoft T,Eizirik DL: Identification of novel 
cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide 
arrays. Diabetes 2001, 50: 909-920. 

14.  Pavlidis P,Noble WS: Analysis of strain and regional variation in gene expression in 
mouse brain. Genome Biol 2001, 2: RESEARCH0042. 

15.  Rajeevan MS, Vernon SD, Taysavang N,Unger ER: Validation of array-based gene 
expression profiles by real-time (kinetic) RT-PCR. J Mol Diagn 2001, 3: 26-31. 

16.  Snider JV, Wechser MA,Lossos IS: Human disease characterization: real-time 
quantitative PCR analysis of gene expression. Drug Discov Today 2001, 6: 1062-1067. 

17.  Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG,Bremer EG: 
Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 2001, 5: 
5. 



24      Genome Biology     Deposited research (preprint) 

18.  Wurmbach E, Yuen T, Ebersole BJ,Sealfon SC: Gonadotropin releasing hormone 
receptor-coupled gene gene network organization. J Biol Chem 2001, 1: 1. 

19.  Hess KR, Zhang W, Baggerly KA, Stivers DN,Coombes KF: Microarrays: handling the 
deluge of data and extracting reliable data. TRENDS in Biotechnology 2001, 19: 463-468. 
 



http://genomebiology.com/2001/2/12/preprint/0009.25 

Figure Legends 

Figure 1. The relationship between absolute value, limit fold change (LFC), and variance 

across the absolute expression range.  A) The various curves indicate the LFC required 

at different absolute values in order to be considered a significantly changed gene.  As the 

selection criteria increases, the LFC increases, indicating that the 5% fold change model 

(green line) is more permissive than the 1% fold change model (red line). The various 

fold change models produced the curves with the following equations: A) in the liver: 5% 

LFC model = 1.52 + (100/absolute value); 3% LFC model = 1.55 + (140/absolute value); 

1% LFC model = 1.70 + (185/absolute value).  B) Examining the variance of each gene 

across the four dietary treatments enables the identification of those genes determined 

significantly changed.  (•) represents genes below the 99.9% confidence level, (�) 

represents those genes selected by the 5% fold change model, and (+) represents those 

genes above the 99.9% confidence level.  The various lines represent different confidence 

levels (i. 99.9%, ii. 99.999%, and iii. 99.99997%).  As the fold change model increased 

(5%�1%), concordance between the fold change model and the variance data (at a 

confidence level of 99.9%) increased (embedded table: x(y%), where x represents the 

number of genes with concordance (and y the percentage of genes with concordance)).   

 

Figure 2.  Schemmatic representation of the cyclical nature of the LFC model.  Selecting an 

initial X% limit fold change (1) provides a starting point for the identification of those 

genes differentially regulated.  Genes can then be ranked (2) by a calculation combining 

fold change and absolute value in order to assign a degree of importance.  Validation of 

the chosen LFC model with RT-PCR (3) and/or the characterization of variance (4) 
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enables the analyst to reexamine the initial LFC model and assign a confidence level to 

the results.  Depending on the dataset, one could redefine the LFC model and repeat the 

cycle. 

 

Table 1.  Concordance data between an Affymetrix 11MuK microarray and RT- PCR.  

Through the coloring scheme, one can see that validation (confirmation by RT- PCR of 

the direction of fold change determined by microarray) of low rank value genes is not 

achieved; however as the rank value increases, concordance increases (red = genes with 

no concordance across the 3 diets; blue = genes with either one or two measurements in 

agreement; green = genes that have 100% concordance).  Overall concordance with the 

5% fold change model was 73%, which includes measurements found both significant 

and non-significant by microarray analysis.  Numbers underlined indicate the HFC that 

resulted in this gene being selected as significantly different (70% concordance with RT-

PCR results).  Starred-numbers indicate significant fold changes, determined by a 

student's T-test, in RT- PCR (80% concordance). 
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