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Introduction
The decision to provide adjuvant treatment in breast
cancer remains a clinical judgement based on classical
pathology and surgical staging. The measurement of
oestrogen receptor (ER) status is one of a very small
number of molecular markers for solid tumours that have a
large impact both on estimation of prognosis and the
choice of therapy for the individual patient. Despite great
efforts to identify better markers, the results in breast
cancer have been unimpressive. This may be because
many studies have focused on a single gene, protein or
pathway. cDNA microarrays, in contrast, offer a systematic
method to perform very extensive expression profiling
within a single cancer specimen. The enabling technology
has been the development of affordable robots that can
spot thousands of gene probes onto glass microscope
slides in high-density arrays. Fluorescently labelled tumour
cDNA and a differently labelled control sample are
hybridized together under a cover slip onto the array. The

ratio of the two intensities at each spot indicates the rela-
tive expression of that gene within the tumour. The tech-
nique is suitable for high-throughput analysis and this
opens the way for molecular rather than phenotypic tax-
onomies, which will include new prognostic and treatment
response features [1].

Perou et al use this technology to ask whether novel clas-
sifications in breast cancer can be identified from a series
of 65 paired and non-paired breast specimens that
included 36 ductal carcinomas and 2 lobular carcinomas
[2]. Their results underscore the large variability in expres-
sion phenotype between individual cancers with the same
histology and suggest a new subclassification of ER-nega-
tive breast cancer.

Microarray profiles
The analysis of Perou et al used 84 arrays, each contain-
ing 8102 probes, producing over 680,000 data points. To
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make sense of this large data set, the authors used an
exploratory analysis tool called two-dimensional hierarchi-
cal clustering. In essence, this tool reorders genes and
patient samples to reveal new groupings or clusters with
similar patterns of gene expression (see Fig. 1) [3]. The
result is displayed as a dendrogram in which the tumours
with the greatest similarity are placed closest together on
the tree. Tumours with greater differences are added to
more distant nodes and leaves as the ordering process
continues. A colour matrix summarizes the magnitude of
expression for each gene across the tumours and allows
the visual inspection of common expression patterns.

The initial clustering examined 1753 genes that showed at
least a fourfold change in expression ratio in three or more
of the samples. Despite the fact that most of the cases
were invasive ductal carcinomas, there was great diversity
of gene expression between cases and this involved many
different gene groups. This disparity between tumours is
perhaps not surprising given the complex genetic and epi-
genetic changes that occur in breast cancer secondary to
loss of normal DNA repair and checkpoint control.
However, there was very striking similarity between each
of the 22 paired patient samples. Twenty of the pairs were
collected before and after doxorubicin-based treatment in
a clinical trial of primary medical therapy for advanced
breast cancer, and two were synchronous breast primary
and lymph node metastasis. The paired samples were
consistently clustered together, indicating that, despite the
effects of time and chemotherapy treatment, each cancer
maintained an expression ‘fingerprint’. This conservation of
expression is not unique to breast cancer and has also
been shown in lymphoma and melanoma samples [4,5].
However, as shown here, ‘fingerprint’ clusters may repre-
sent the most stable features of the cancer, such as histol-
ogy or proliferative rate, that can remain constant over
many years.

Perou et al then reanalyzed the data to better discriminate
between the tumours, taking advantage of the similarity
information from the paired tumours. They defined a
‘within-between’ score to identify genes that showed sig-

nificantly greater variation in expression between separate
cases as compared to within each pair samples. These
scores were then used to recluster the complete set. The
reclustering with this ‘intrinsic’ subset of 496 genes sug-
gested four new breast cancer classifications: ER+ with
luminal epithelial cell expression; ER− with basal epithelial
expression; Erb-B2+ and ER−/ER low; and normal breast
with basal epithelial and adipose cell expression. Most
breast cancers arise from luminal ductal epithelium and
only 3–15% of cases are thought to arise from basal
(myoepithelial) epithelium. The differing origins can be dis-
tinguished by examining specific cytokeratins, and the
microarray findings were confirmed by performing
immunohistochemistry on paraffin material from the parent
tumours. This suggestion that ER− cancers may encom-
pass two separate groups is very intriguing, especially as
there is some independent evidence that basal epithelial
cancers have a worse outcome [6]. Correlation with clini-
cal and outcome data for this series, however, is not yet
available, and it is possible that this clustering may not be
found in a larger series. Perou et al did, however, identify
the same classification by reclustering with a separate set
of genes only expressed by epithelial cells (this new set
had a 25% overlap with the intrinsic group). It is also likely,
given the large size of the data set, that other important
patterns will be discovered. Indeed, two-dimensional hier-
archical clustering is only one of several mathematical
methods that can be used to cluster the data set and has
the disadvantage that its agglomerative method can
prevent the identification of complex gene relationships.

Conclusion
The validation of gene cluster information presents a key
challenge for the best use of microarray data. There is no
method at the present time for calculating the significance
of a particular cluster prediction. The use of microarray
technology is also expensive, both in amount of tumour
material required and reagent costs. It will not be feasible
for many investigators to extend this approach to very
large series to improve correlation with clinical features or
predictive value. An alternative approach may be to inten-
sively investigate highly selected sample sets (chosen for

Variation in expression of 1753 genes in 84 experimental samples. Data are presented in a matrix format: each row represents a single gene, and
each column an experimental sample. In each sample, the ratio of the abundance of transcripts of each gene to the median abundance of the
gene’s transcript among all the cell lines (left panel), or to its median abundance across all tissue samples (right panel), is represented by the
colour of the corresponding cell in the matrix. Green squares, transcript levels below the median; black squares, transcript levels equal to the
median; red squares, transcript levels greater than the median; grey squares, technically inadequate or missing data. Colour saturation reflects the
magnitude of the ratio relative to the median for each set of samples (see scale, bottom left). (a) Dendrogram representing similarities in the
expression patterns between experimental samples. All ‘before and after’ chemotherapy pairs that were clustered on terminal branches are
highlighted in red; the two primary tumour/lymph node metastasis pairs in light blue; the three clustered normal normal breast samples in light
green. Branches representing the four breast luminal epithelial cell lines are shown in dark blue; breast basal epithelial cell lines in orange, the
endothelial cell lines in dark yellow, the mesenchymal-like cell lines in dark green, and the lymphocyte-derived cell lines in brown. (b) Scaled-down
representation of the 1753-gene cluster diagram; coloured bars to the right identify the locations of the inserts displayed in c–j. (c) Endothelial cell
gene expression cluster; (d) stromal/fibroblast cluster; (e) breast basal epithelial cluster; (f) B-cell cluster; (g) adipose-enriched/normal breast; 
(h) macrophage; (i) T-cell; (j) breast luminal epithelial cell. The Figure and legend are reproduced here, with permission, from [2]. The
"supplementary information Figure 4" referred to above is also part of [2], and can be accessed there.
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different outcome or response to treatment) in order to
generate candidate clusters. A minimal set of genes can
then be chosen [7] for validation on tissue microarrays [8].
These arrays are pathology slides that contain up to 600
minute paraffin sections, each from a different patient.
High-throughput testing can be performed for each candi-
date marker in a manner analogous to expression arrays,
using either immunohistochemistry or fluorescent in situ
hybridization. These analyses should ideally be carried out
on patient material garnered from prospective, randomized
clinical trials so that statistical analysis is based on high-
quality, independent data.

A disadvantage of profiling macroscopic specimens, as
performed in this article, is that gene expression is aver-
aged across all cells in the sample. The authors of the
present study highlight the fact that their methods were
sensitive enough to detect expression signatures from
admixed non-cancer cells. Patterns unique to infiltrating
lymphocytes and vascular endothelium, for example, were
present as discrete clusters and could be correlated with
signatures from lymphocyte and vascular cell lines (Fig. 1).
It is inevitable despite this sensitivity that heterogeneity
within the cancer itself will be diluted, which is important
because there is considerable variation in chromosomal
dosage between breast cancer cells when examined by
fluorescent in situ hybridization. Striking changes in copy
number can be seen within a single histological section
and between primary cancers and their metastases (Gray
et al, unpublished data). These dosage changes will give
rise to clonal differences in gene expression. Whether dis-
tinct subclones within the cancer determine the prognosis
will have to be addressed by analyzing microscopic biop-
sies from laser capture microdissection or fine needle
sampling. Robust amplification methods that can preserve
RNA expression ratios from such small samples are evolv-
ing [9]. It has recently been shown that comparative
genome hybridization for chromosomal dosage may be
performed at much higher resolution by hybridizing
labelled genomic DNA to microarrays (array CGH)
[10–12], and this is feasible from very small amounts of
genomic DNA. Given the inherent variability of expression
arrays [13], combining both techniques for the analysis of
microscopic biopsies may offer a more rigorous frame-
work for preliminary analysis of expression data [14].

Should this new classification of ER-negative cancers
become part of the clinical assessment of breast cancer?
Not yet, despite the interesting associations found in this
work, because there is no independent evidence that new
prognostic markers have been identified. We should not,
however, have to wait too long for independent corrobora-
tion because the number of microarray profiles in the liter-
ature will rapidly increase along with the use of tissue
microarrays. More fine brushwork should then allow the
cancer portraits to reveal their underlying character.
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