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Abstract

By using the classical fixed point theorem for operators on a cone, in this paper, some
results of one and two positive solutions to a class of nonlinear first-order periodic
boundary value problems of impulsive dynamic equations on time scales are
obtained.
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1 Introduction
The theory of dynamic equations on time scales has been a new important mathematical
branch [1-3] since it was initiated by Hilger [4]. At the same time, the boundary value
problems of impulsive dynamic equations on time scales have received considerable at-
tention [5-21] since the theory of impulsive differential equations is a lot richer than the
corresponding theory of differential equations without impulse effects [22—-24].

In this paper, we concerned with the existence of positive solutions for the following
PBVPs of impulsive dynamic equations on time scales

x2(t) + pt)x(o (b)) = f(t,x(0(2))), te]:=[0,Tln,t #tx,
x2(tf) —x() = L(x(8)), k=1,2,...,m, (1.1)
x(0) = x(c (1)),

where T is an arbitrary time scale, T > 0 is fixed, 0, T € T, f € C(J x [0,0), [0, 00)), Ix €
C([0,00),[0,00)), p: [0, T]r — (0, 00) is right-dense continuous, & € (0, T)1, 0 < t; < --- <
tw < T, and, for each k = 1,2,...,m, x(t}) = limy,_, o+ x(tx + 1) and x(¢;) = limy_,o- x(tx + h)
represent the right and left limits of x(¢) at ¢ = #.

By using the Guo-Krasnoselskii fixed point theorem, Wang [18] considered the existence
of one or two positive solutions to the problem (1.1).

In [20], by using the Schaefer fixed point theorem, Wang and Weng obtained the exis-
tence of at least one solution to the problem (1.1).

When Ii(x) =0,k =1,2,...,m,[25, 26] considered the existence of solutions to the prob-
lem (1.1) by means of the Schaefer fixed point theorem; when p(t) = 0, the problem (1.1)
reduces to the problem studied by [12, 19].
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Motivated by the results mentioned above, in this paper, we shall obtain the existence
of one and two solutions to the problem (1.1) by means of a fixed point theorem in cones.
The results obtained in this paper improve the results in [18] intrinsically.

Throughout this work, we assume knowledge of time scales and the time-scale notation,
first introduced by Hilger [4]. For more on time scales, please see the texts by Bohner and
Peterson [2, 3].

In the remainder of this section, we state the following fixed point theorem [27].

Theorem 1.1 ([27]) Let X be a Banach space and K C X be a cone in X. Assume 1, Q2
are bounded open subsets of X with 0 € Q; C QCQand ®:KN(QP\Q)— Kisa
completely continuous operator. If
(i) there exists uy € K\{0} such that u — ®u # luy, u € K N9, A > 0; du # tu,
ueKNoRy, t=>1,o0r
(ii) there exists ug € K\{O} such that u — ®u # lug, u € K N9, A > 0; du # tu,
ueKNoQ,, t>1,
then ® has at least one fixed point in K N (Q22\21).

2 Preliminaries
Throughout the rest of this paper, we always assume that the points of impulse # are right-
dense foreach k=1,2,...,m.
We define
PC = {x € [O,U(T)]T — R:x € C(Ji,R),k=0,1,2,...,m and there exist
x(¢7) and x(¢; ) with x(£;) = x(t), k = 1,2,...,m},
where xy is the restriction of x to Ji = (¢, txe1]lT C (0,0 (1)), k=1,2,...,m,and Jy = [0, t1]T,

bs1 = U(T)
Let

X={x:2€PC,x(0)=x(c(T))}
with the norm ||x|| = SUP;e(0,0(T)]y |x(£)|, then X is a Banach space.

Lemma 2.1 Suppose M >0 and h: [0, T|y — R is rd-continuous, then x is a solution of

o(T) m
x(t) = /0 G(¢,9)h(s)As + Z G(t, ti) Ik (x(tx),  t€[0,0(T)]p

k=1
where

em(st)ey (0 (1),0)
G(t,s) = { ep(a(1),0-1 0<s<t=<o(T),

epm(st)
(0,017 0<t<s<o(T),

if and only if x is a solution of the boundary value problem
x5(t) + Mx(o (t) = h(t), te],t#t,

x(t) —x(t) = k(x(t), k=12,...,m,
x(0) =x(o (7).
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Proof Since the proof is similar to that of [18], Lemma 3.1, we omit it here. O

Lemma 2.2 Let G(t,s) be defined as in Lemma 2.1, then

eM(U(T)r O)
— <Gt < ———— lt,s€|0,0(T)|..
e, 0-1 = 009 = 01 Freltscloo®l
Proof It is obvious, so we omit it here. O
Remark 2.1 Let G(¢,s) be defined as in Lemma 2.1, then f;m G(t,s)As = Ai/[

Let m = mingepo, 11, p(£), M = maxeo,r1; p(t), then 0 < m < M < oco. For u € X, we con-
sider the following problem:

x2(t) + Mx(o (t) = Mu(o (t)) — p(Oulo (1) +f(t, u(o (1)), te],t#t,
x(tf) —x(ty) = Ix(&)), k=1,2,...,m, (2.1)
x(0) = x(c (T)).

It follows from Lemma 2.1 that the problem (2.1) has a unique solution:

o(T) m
w0= [ GlInE)ss+ Y 6m(se), e[0T,
0 k=1
where h,(s) = Mu(o (s)) — p(t)u(o (2)) + f (s, u(o (s))), s € [0, T]r.
We define the operator ® : X — X by
o(T) m
D)) = / Gt ) (s)0s + Y Gt t)I(ulta)),  t€[0,0(T)],.
0 k=1
It is obvious that fixed points of ® are solutions of the problem (1.1).
Lemma 2.3 ®: X — X is completely continuous.

Proof Since the proof is similar to that of [18], Lemma 3.3, we omit it here. d

Let
K={ueX:u(t)=8|ul,te[0,0()]}

where § = m € (0,1). It is not difficult to verify that K is a cone in X.

From Lemma 2.2, it is easy to obtain the following result.

Lemma 2.4 ® maps K into K.

3 Mainresults
For convenience, we denote
ft,u) f(t,u)

f0 = lim sup max s f°° = lim sup max ,
u—0% te[0,T]1 u U—0o0 te[0, Tt u
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t,u . . . t,M
fo = lim inf min 14 ), foo = lim inf min M,
u—0* te[0,T]T u u— o0 te[0,T]T u
and
I (u I (u
Io = lim 45_2, I = lim k)
u—0*t Y u—>o0 Y

Now we state our main results.

Theorem 3.1 Suppose that

(H1) fo>M,f>® <m, I =0 forany k; or
(Hy) foo > M, O <m, Iy = 0 for any k.

Then the problem (1.1) has at least one positive solution.

Proof Firstly, we assume (H;) holds. Then there exist ¢ > 0 and 8 > & > 0 such that

ft,u)=M+e)u, tel0,T]r,uc(0,a], (3.1)

lem(o(T),0) —1]e

Ik(u) < mu, ue [/3, OO) for any k, (3.2)

and
flt,u) <(m-e)u, tel0,Tlr,uc|B,o00). (3.3)
Let Q) = {u € X : ||lu|| <}, where r; = «. Choose ug =1, then g € K\{0}. We assert that
u—du#iuy, ueKNa,ir>0. (3.4)
Suppose on the contrary that there exist Z € K N 32, and A > 0 such that
i — DU = Auy.
Let ¢ = mingejo,0(7))p #(t), then ¢ > §||%|| = 67, = B, and we have from (3.1)

u(t) = P@) () + A

a(T) m
/ Glt,)ha(s) s + 3 Gt b ((e0)) + 7
0

k=1

a(T) _
2/ G(t,)[M-p(t) + M + e|u(o(£)) As + A
0

M _
> M) T te[o,0(T)],.
Therefore,
= min ﬁ(t)>(M+8) FA>
&= tel0,0(T)lp - M ¢ &

which is a contradiction.
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On the other hand, let 2, = {u € X : ||u|| < ry}, where ry = ?
Then u € KN 9y, 0 <88 =6 ul|l <u(t) < B, and in view of (3.2) and (3.3) we have

a(T) m
®(u)(t) = /0 Gt s)h(s)As + 3 Gt )i (t0)

k=1

o(T)
< / G(t,s) [M -pt)+m-— e]u(a (s))As
0

“ lem(o(T),0) —1]e
* ;G“’ W S tmen( (1), 0) )

- (M_8)||Lt||+ em(0(T),0) i[eM(U(T),O)—l]EHMH

- M em(o(T),0) -1 pmy 2Mmep (o (T),0)
M— &

St

< lul, te[0,0(T)]y

which yields || ®(u)]| < [J«].
Therefore

QuFtu, ueKNo,t>1.
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(3.5)

It follows from (3.4), (3.5), and Theorem 1.1 that ® has a fixed point z* € K N (Q3\21),

and u* is the desired positive solution of the problem (1.1).
Next, suppose that (H;) holds. Then we can choose ¢ > 0 and 8’ > &’ > 0 such that

ft,u) > (M + 8’)14, tel0,T]r,uc [ﬁ/, oo), (3.6)

lem(o(T),0) —1]¢
) = e (1),0)

ue (O,o/] for any k,

and

ftu) < (m - 8’)u, tel0,T]r,uc (O,a’].

(3.7)

(3.8)

Let Q3 = {u € X : ||u|| < r3}, where r3 = «’. Then for any u € K N 93, 0 < §||ull < u(t) <

lull =o'
It is similar to the proof of (3.5), by (3.7) and (3.8) we have

PuFtu, ucKNoQyt>1 (3.9)

Let Q4 ={u e X:|ul|l <ry}, wherery = %/.Then forany u € KN 0y, u(t) > 8|lull =6ry =

B’, by (3.6) , it is easy to obtain

u—dufruy, uekNaQsr>0. (3.10)

It follows from (3.9), (3.10), and Theorem 1.1 that ® has a fixed point z* € K N (Q4\23),

and u* is the desired positive solution of the problem (1.1).

O
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In particular, we have the following results, which are main results of [18].

Corollary 3.1 Suppose that

(H1) fo =00,f* =0, I =0 forany k; or
(H) foo =00,/° =0, 1 =0 for any k.

Then the problem (1.1) has at least one positive solution.

Theorem 3.2 Suppose that

(Hz) fO<m, f* <m,Iy=0,Ix=0;
(Hy) there exists p > 0 such that

min{f(t, u)—pt)ultel0,T)r,ép <u < p} > 0. (3.11)
Then the problem (1.1) has at least two positive solutions.

Proof By (Hs), from the proof of Theorem 3.1, we see that there exist 8”7 > p > a” > 0 such
that
duFtu, ueKnNoQs,t>1, (3.12)
duFtu, ueKNoQe,t>1, (3.13)

where Qs ={ueX:|u|| <rs}, Qs ={ueX:|ul|<rsl, rs=a’,re = ﬂT//
By (3.11) of (H4), we can choose ¢ > 0 such that

ftu)—p)u=>cu, tel0,T]r,ép <u<p. (3.14)

Let Q7 = {u e X: ||lu| < p}, forany u € KNIy, §p = 8||lull < u(t) <|ull = p, from (3.14),
it is similar to the proof of (3.4), and we have

u—-du#iuy, ueKNoa;,A>0. (3.15)

By Theorem 1.1, from (3.12), (3.13), and (3.15) we conclude that ® has two fixed points
w* e KN (Qe\Q7) and u™* € K N (27\Ns), and »** and u™** are two positive solutions of
the problem (1.1). |

Similar to Theorem 3.2, we have the following.

Theorem 3.3 Suppose that

(Hs) fo>M, foo > M;
(Hg) there exists p > 0 such that

max{f(t,u) - pQ)u | t € [0, Tl1,8p <u<p}<0;

lenm(o(T),0) - 1]

M= Bmen o (1),0) ™

3p <u<pforanyk.

Then the problem (1.1) has at least two positive solutions.

Page 6 of 7
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Remark 3.1 If (H3) in Theorem 3.2 is replaced by f° = 0, f*° = 0, or if (Hs) in Theorem 3.3
is replaced by f = 00, foo = 00, then the results of Theorem 3.2 and Theorem 3.3 are also
hold.
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