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Abstract

Epidemiological studies show a positive association between adequate sleep and good health. Further, disrupted
sleep may increase the risk for CNS diseases, such as stroke and Alzheimer’s disease. However, there has been
limited progress in determining how sleep is linked to brain health or how sleep disruption may increase
susceptibility to brain insult and disease. Animal studies can aid in understanding these links. In reviewing
the animal literature related to the effects of sleep disruption on the brain, we found most of the work was
directed toward investigating and characterizing the role of various brain areas or structures in initiating and
regulating sleep. In contrast, limited effort has been directed towards understanding how sleep disruption
alters the brain’s health or susceptibility to insult. We also note many current studies have determined the
changes in the brain following compromised sleep by examining, for example, the brain transcriptome or to
a more limited extent the proteome. However, these studies have utilized almost exclusively total sleep
deprivation (e.g., 24 out of 24 hours) paradigms or single short periods of limited acute sleep deprivation
(e.g., 3 out of 24 hours). While such strategies are beneficial in understanding how sleep is controlled, they
may not have much translational value for determining links between sleep and brain health or for determining
how sleep disruption may increase brain susceptibility to insult. Surprisingly, few studies have determined how the
duration and recurrence of sleep deprivation influence the effects seen after sleep deprivation. Our aim in this review
was to identify relevant rodent studies from 1980 through 2012 and analyze those that use varying durations of sleep
deprivation or restriction in their effort to evaluate the effects of sleep deprivation on the brain transcriptome and to a
more limited extent the proteome. We examined how differences in the duration of sleep deprivation affect gene and
protein expression to better understand the full consequences of repeated sleep disruption on the brain. Future
research needs to consider and emphasize how the type and extent of the sleep deprivation exposure impacts the
conclusions reached concerning the influence of sleep disruption on the brain.
We identified relevant studies between 1980 and 2012 by searching the electronic databases of PubMed, Medline
(Ovid), Embase (Ovid), and Web of Science using the terms “sleep” AND “disrupt”, “deprivation”, “restrict”, “fragment”,
“loss”, “disturb”, “disorder”, “dysfunction”, “brain”, “cortex”, striatum”, hypothalamus”, “hippocampus”, “gene”, “protein”,
“genomics”, “proteomics”, “polymerase chain reaction”, “pcr”, “microarray”, “molecular”, “rodent” “rat”, “rats”, “mouse”,
“mice”. All searches were limited to rodent studies in English and the reference lists of retrieved articles were searched
for additional pertinent studies.
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Introduction
Sleep, one of the most conserved behaviors, consumes ap-
proximately one third of a person’s life, yet the purpose of
sleep is still not fully understood. In an effort to under-
stand the function of sleep, researchers predominately
study the effects of sleep deprivation (SD) and sleep re-
striction (SR) in humans and animals. Initially, increased
sleepiness was thought to be the main consequence of
sleep loss and its presence accounted for the various ef-
fects of sleep loss such as cognitive impairment. Conse-
quently, researchers did not focus on the possible short
and long-term pathophysiological consequences of sleep
loss that could impact overall health (Kushida 2006).
Much of the early emphasis was on neurobehavioral re-
covery following sleep loss and ways to treat and hasten
recovery (Kushida 2006; Lamond et al. 2007). More re-
cently, epidemiological studies have suggested that a per-
son’s overall health is influenced by sleep patterns
throughout life, with a positive association seen between
shortened sleep duration and morbidity and mortality
(Qureshi et al. 1997; Ayas et al. 2003; Ferrie et al. 2007;
Ikehara et al. 2009; Luyster et al. 2012). People who report
habitually short sleep durations, defined as sleep durations
less than six hours each night, have an increased preva-
lence of type 2 diabetes, hypertension, obesity, cardiovas-
cular disease, and stroke (Qureshi et al. 1997; Ayas et al.
2003; Schultes et al. 2005; Spiegel et al. 2005; Gottlieb
et al. 2006; Ferrie et al. 2007; Cappuccio et al. 2008; Chen
et al. 2008; Ikehara et al. 2009; Kim and Jo 2010;
Sabanayagam and Shankar 2010; Luyster et al. 2012;
Chaput et al. 2007). Further, a study in Finland found
that workers engaged in shift work (SW), that is, work
outside regular daytime hours, had a higher incidence of
stroke suggesting some aspect of shift work increases the
vulnerability of the brain (Nurminen and Karjalainen
2001). Disrupted sleep is often a byproduct of SW result-
ing in shift workers being more likely to have shorter
sleep durations than people who work regular daytime
hours (Luckhaupt et al. 2010). According to the 2010
National Health Interview Survey (NHIS), over 40 mil-
lion employed U.S. adults report habitually short sleep du-
rations. Furthermore, the American Academy of Sleep
Medicine and the Sleep Research Society define this the
prolonged state of shortened or mistimed sleep as chronic
sleep deficiency and recently reported their concern for its
increase in the population and the probable negative
health outcomes as a result (Luyster et al. 2012). Despite
the increasing research emphasis on understanding sleep
unfortunately the function of sleep remains elusive. Al-
though, adequate sleep appears to be necessary for good
health the relationship(s) between sleep and health remain
unclear and difficult to objectively measure.
Cognitive impairment due to sustained wakefulness

or SR has been the focus of much research in the sleep
research arena. Many studies, including dose–response
studies have evaluated the cumulative build-up of cogni-
tive performance deficits with extended SD or SR (Van
Dongen et al. 2003). Despite the advances in determin-
ing the cognitive consequences of insufficient sleep
the physiological function of sleep is still not well charac-
terized or understood. Advancement over the last 20 years
in “omics” methods, such as transcriptomics utilizing real-
time polymerase chain reaction (PCR) and cDNA micro-
arrays, as well as proteomics to a lesser extent has aided
in a better understanding of the differences between sleep,
waking, and sleep deprived states at the molecular level.
Many studies demonstrate differences in the molecular
characteristics of brain following various forms of sleep
disruption. Microarrays, specifically, have become widely
used in sleep research to evaluate and compare transcrip-
tomic profiles of sleep-wake and sleep deprived states with
an initial emphasis on characterizing the sleep and awake
states. Together, these studies have yielded thousands of
candidate genes involved in sleep homeostasis and/or
function (Terao et al. 2003a; Terao et al. 2003b; Cirelli
et al. 2006; Terao et al. 2006; Mackiewicz et al. 2007;
Maret et al. 2007; Kilduff et al. 2008; Mackiewicz et al.
2009; Thompson et al. 2010; Veasey 2010; Datta et al.
2011; Mongrain et al. 2011). Many of these genes are now
considered sleep-state regulated and belong to classes of
genes involved in specific cellular functions, such as syn-
aptic maintenance and plasticity (Taishi et al. 2001; Nelson
et al. 2004; Maret et al. 2007; Das et al. 2008; Mallick and
Singh 2011; Tadavarty et al. 2011; Franco-Perez et al.
2012; Singh et al. 2012; Volkow et al. 2012), metabolism
(Basheer et al. 2001; Kong et al. 2002; Mackiewicz et al.
2003; Nikonova et al. 2010; Petit et al. 2010; Everson and
Szabo 2011; Martins et al. 2011; Barf et al. 2012), stress re-
sponse (Meerlo et al. 2002; Terao et al. 2003b; Sgoifo et al.
2006; Brown and Naidoo 2010; Kalinchuk et al. 2010), and
neuroprotection (Weil et al. 2009; Mongrain et al. 2010;
Dattilo et al. 2011; Wisor et al. 2011). From this research,
several theories of the physiological function of sleep have
developed that have the potential to begin to explain the
link between sleep habit and overall health. It is important
to note, however, that many of these studies only looked
at the molecular consequences of the sleep state after one
episode of short-term sleep deprivation. How the duration
and frequency of sleep deprivation influences the out-
come has received little attention as factors important
to consider, especially when analyzing and interpreting the
results. Evaluating the data from the studies in a duration-
dependent construct will provide insight into how the
brain reacts to sleep deprivation as it cumulates. There-
fore, this review aims to analyze the existing literature on
sleep deprivation’s effect on the transcriptome by using
duration of sleep deprivation as the chief independent
variable. Although the review concentrates on the impact
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of sleep deprivation on the brain transcriptome, proteomic
studies are included when warranted. To begin the data
sources and study selection criteria are described and
followed by a brief background on methods used to iden-
tify and assess sleep.

Data sources and study selection
An extensive search of the electronic databases of PubMed,
Medline, Embase, and Web of Science was conducted
to identify animal studies (1980–2012) that assessed the
effects of SD on gene and protein expression in the brain.
The terms “sleep” AND “disrupt”, “deprivation”, “restrict”,
“fragment”, “loss”, “disturb”, “disorder”, “dysfunction”,
“brain”, “cortex”, striatum”, hypothalamus”, “hippocam-
pus”, “gene”, “protein”, “genomics”, “proteomics”, “poly-
merase chain reaction”, “pcr”, “microarray”, “molecular”,
“rodent” “rat”, “rats”, “mouse”, “mice” were used in the
searches. The reference lists of included studies were also
searched for pertinent papers. The first and last author
determined the inclusion/exclusion criteria. The animal
studies were limited to rat and mouse studies for easier
generalizability across studies. All methods utilized to
cause SD were included. However, studies modeling sleep
disorders, such as sleep apnea and insomnia, were ex-
cluded. Furthermore, gene expression needed to be deter-
mined for multiple, not single, genes in order to provide a
more complete profile of the SD transcriptome. Any paper
investigating the impact of sleep on a brain region was ac-
cepted, but cortex became the focal point since it was the
region of interest in the majority of studies. Publication
dates for the searches ranged from 1980 to July 2012, and
all searches were restricted to English.

Identifying and assessing sleep
Sleep is widely defined as a rapidly reversible state of
greatly reduced responsiveness and immobility (Siegel
2005; Allada and Siegel 2008). The advent of the electro-
encephalogram (EEG) signify the beginning of modern
sleep research. By placing electrodes on the scalp, the
EEG records the voltage changes produced by ionic cur-
rents within the thousands of neurons in the cerebral
cortex. The voltage changes are recorded continuously,
resulting in data in the form of a wave. Wave pro-
files, determined by the wave’s amplitude and frequency,
reflect neuronal activity and correspond with levels of
consciousness, including stages, or depth, of sleep. EEG
recordings can be used in mammals as a way to identify
sleep and its various stages.
More recently, a set of distinct behaviors has become

accepted for defining sleep given the difficulty of trans-
planting electrodes to record EEGs in many species. One
behavior required is reduced motor activity and is usu-
ally accompanied by a species-specific sleep posture. A
second recognized sleep behavior is a reduced or total
lack of response to stimuli during sleep that regularly
evokes a response when awake. Thirdly, sufficient stim-
uli should cause the rapid reversal from sleep to wake
states. The ability to quickly reverse back to the wake
state is important as it differentiates sleep from coma.
Finally, a balance between sleep and wake states, termed
sleep homeostasis, needs to be apparent. The existence
of sleep homeostasis is supported by the presence of
sleep propensity and recovery sleep. Sleep propensity,
also termed sleepiness, is the likelihood of an individual
to fall asleep. Sleep propensity increases as wakefulness
continues. Recovery sleep is the longer and deeper sleep
that occurs after SD. A species exhibiting all these be-
haviors are considered to have sleep-like states. By in-
cluding behavior criteria to identify sleep, researchers
have been able to identify several other species that en-
gage in sleep-like states, such as the fruit fly Drosophila
melanogaster (Hendricks et al. 2000; Shaw et al. 2000),
zebra fish Danio rerio (Zhdanova et al. 2001; Yokogawa
et al. 2007), and roundworm Caenorhabditis elegans
(Van Buskirk and Sternberg 2007; Raizen et al. 2008).
Sleep function and homeostasis are primarily investi-

gated through SD studies where various techniques are
implemented in an attempt to prevent the animal from
sleeping (Table 1). For instance, some SD techniques
place the rodent on a constantly rotating drum or plat-
form (“disk-over-water” or DOW) where the animal
must continuously walk to avoid water and cannot sleep
(Rechtschaffen et al. 1999; Coenen and van Luijtelaar
1985). Less physically demanding methods place the ro-
dent inside an automated running wheel or on a plat-
form (“moving platform”) that is activated at sleep onset
via EEG monitoring (Fenzl et al. 2007). The gentle hand-
ling method, where the rodent is lightly prodded or
brushed when sleep is observed, is considered to be one
of the least stressful methods and reduces the amount of
physical activity required of the rodent (Fenzl et al.
2007). Unfortunately, this method is not automated and
can be taxing on the researcher when implemented for
long periods of time. Consequently, gentle handling is
usually only used for short term (i.e., acute) SD studies
of 8 hours or less. Each technique introduces its own set
of extraneous variables into the study and the reader
should know that although these methods can produce a
substantial amount of sleep deprivation none of these re-
sult in total SD. Even the EEG monitoring methods have
some “lag-time” between the recognition of a sleep state
and waking the animal. Further, sleep processes such as
microsleeps, local sleep, increased hippocampal spike
rates and increases in the EEG recording amplitude can
intrude during the deprivation period even though the
procedures are successful in keeping animals awake for a
large period of time (Friedman et al. 1979; Vyazovskiy
et al. 2011). For example, EEG monitoring of rats deprived



Table 1 Studies evaluating the consequences of sleep deprivation on the brain
Reference SD method Conditions Species; sex Age Time of sacrifice* Expression method Brain area

Naidoo N. et al., 2005.
(Naidoo et al. 2005)

Gentle handling 3 h, 6 h, 9 h and 12 h SD -
beginning at lights-on

C57/B6 mouse; ♂ 10 weeks Immediately after SD WB CTX

Maret S. et al., 2007.
(Maret et al. 2007)

Gentle handling 6 h SD - beginning at
multiple time points

C57BL/6 J; AKR/J;
DBA/2 J Mouse; ♂

12-13 weeks During last 30 min of SD MA, QPCR Whole Brain

Conti B. et al., 2007.
(Conti et al. 2007)

Gentle handling 24 hours SD Sprague–Dawley
rats; ♂

Adult (250-300 g) Immediately after SD MA PFC, FCTX, AMY,
HYPO, HIPP, DRN,
LC

Thompson C. et al., 2010.
(Thompson et al. 2010)

Gentle handling 6 h SD; 4 h RS after
6 h SD - beginning at
lights-on

C57BL/6 J mouse;♂ 9-11 week Immediately after SD or RS MA, ISH ORB, SCN, HCRT,
TMN, PMCo, ENT,
LC

Cirelli C. and Tononi G., 1999.
(Cirelli and Tononi 1999b)

3 h SD; 3 h spontaneously
asleep (S); 3 h spontaneously
awake (W)

Wistar Kyoto (WKY)
rats; ♂

MA CTX

Cirelli C. et al., 2004.
(Cirelli et al. 2004)

Gentle handling 8 h SD - beginning at lights-on;
spontaneously asleep (S);
spontaneously awake (W)

WKY rats; ♂ Immediately after SD,
6 am for W rats

Microarray (pooled
samples); real-time
qPCR (pooled samples)

CTX

Cirelli C et al., 2006.
(Cirelli et al. 2006)

Gentle handling for
s-SD; DOW for l-SD

8 h SD (s-SD) - beginning at
lights-on; 7d SD (l-SD)

WKY rats; ♂ Adult (300-450 g) Immediately after SD MA, QPCR CTX

Mackiewicz M., et al., 2007.
(Mackiewicz et al. 2007)

Gentle handling 3 h, 6 h, 9 h and 12 h SD -
beginning at lights-on

C57BL/6 J mice; ♂ 10-12 weeks Immediately after SD MA CTX, HYPO

Nikonova E., et al., 2010.
(Nikonova et al. 2010)

Gentle handling h3 and 12 h SD - beginning
at lights-on

C57BL/6 J mice; ♂ 8-10 weeks Immediately after SD WB, QPCR CTX

Terao A., et al., 2003.
(Terao et al. 2003a)

Gentle handling 6 h SD; 4 h RS after 6 h SD -
beginning at lights-on

C57BL/6 J mice; ♂ 10-12 weeks Immediately after SD or RS WB, QPCR BF, TH, HYPO, CTX,
CB, P, MD

Cirelli C. and Tononi G., 2000.
(Cirelli and Tononi 2000a)

Gentle handling 1-9 h SD – beginning at
lights-on

WKY rats; ♂ Adult (300 g) Immediately after SD DD, RPA Right CTX, Right
HIPP

Cirelli C. and Tononi G., 2000.
(Cirelli and Tononi 2000b)

Gentle handling 8 h SD; spontaneously asleep
(S); spontaneously awake (W)

WKY rats; ♂ Adult (300-350 g) Immediately after SD; end
of light period for S; end
of dark period for W

DD, RPA CTX

Taishi P. et al., 2001.
(Taishi et al. 2001)

Gentle handling 8 h SD; 2 h RS after 8 h SD Spague-Dawley
rats; ♂

Adult (320-350 g) Immediately after SD or RS RT-PCR, QPCR CTX, HIPP

Terao A., et al., 2006.
(Terao et al. 2006)

Gentle handling 6 h SD; 2 h RS after 6 h SD -
beginning at light onset

Wistar rats ♂ 2-3 months Immediately after SD or RS MA CTX, BF, HYPO

Cirelle C. and Tononi G., 2004.
(Cirelli and Tononi 2004)

Gentle handling for
short-term SD; DOW
for long-term SD

8 h SD (s-SD); 7d ( l-SD) -
beginning at lights-on

WKY rats; ♂ Adult (300-450 g) Immediately after SD RPA, QPCR Right CTX (also
liver and muscle)

Cirelle C. and Tononi G., 1998.
(Cirelli and Tononi 1998)

Gentle handling 3 h SD; 3 h spontaneously asleep
(S); 3 h spontaneously awake (W)

WKY rats; ♂ Adult (300-350 g) Immediately after SD;
During dark phase for W rats

DD, RPA Left CTX

Mackiewicz M., et al., 2003.
(Mackiewicz et al. 2003)

Gentle handing 12 h SD beginning at
lights-on (7 am)

Fischer rats ♂ 2 months
(180-200 g)

Multiple time points
throughout day – all
with time-matched controls

WB CTX, LC, DRN,
TMN, VDB, HDB,
VLPO

*Most of the studies had multiple times of sacrifice; therefore specific times were not listed. Instead, time of sacrifice in relation to when SD occurred is provided. All studies did include time-matched controls.
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of sleep by the gentle-handling method indicate they are
kept awake ~ 94% of the deprivation period (Leenaars et al.
2011). Thus, the technique used to produce a protracted
awake state needs to be carefully considered in evaluat-
ing the impact of sleep deprivation on various outcomes.
It is certain that the choice of a sleep deprivation method
ultimately influences the classes of genes responsible
for specific cellular functions (e.g., plasticity, etc.) due to
the differences in activity, stress, etc. associated with a
given deprivation technique. Investigators in choosing a
deprivation procedure must balance the benefit(s) of the
technique (i.e. increased animal processing for automated
techniques) with the cost (e.g., an increased stress re-
sponse) of its use.

Established hypotheses
The regulation of the sleep-wake cycle has been one of the
central questions of sleep research. The presence of sleep
or sleep-like states across phyla suggests that sleep is a be-
havior essential to survival. Additionally, sleep deprivation
can cause death sooner than food deprivation in both rats
(Rechtschaffen et al. 1983) and Drosophila (Shaw et al.
2002), further supporting sleep’s necessity. As such, sleep
must be regulated and maintained. Unfortunately, the pre-
cise mechanisms underlying sleep behavior are still not
fully elucidated.
The most established and accepted model explaining

the alteration between sleep and wake is the two-process
model of sleep regulation (Borbely 1982; Borbely and
Achermann 1999). Presented in the early 1980’s, this
model posits that two distinct processes control the alter-
ation: the circadian clock and the sleep homeostat. Circa-
dian mechanisms, termed Process C, involve sustained
rhythmic oscillations for sleep propensity across a 24 hour
period. Process C is based in the suprachiasmatic nucleus
(SCN) and has been well characterized. Circadian clock
genes are the main modulators of Process C and regulate
sleep tendency to occur at ecologically appropriate times.
Additionally, clock genes have been shown to modulate
other behaviors, such as feeding, seeming to play a role in
regulating basic survival behaviors (McGlincy et al. 2012).
Interestingly, sleep deprivation and limited sleep influ-
ences the expression of the clock genes themselves (Wisor
et al. 2002; Franken et al. 2006; Moller-Levet et al. 2013).
The homeostatic mechanisms, termed process S, regu-

late sleep propensity across the sleep-wake cycle, in that
the drive to sleep increases as wakefulness continues.
Accordingly, sleep propensity decreases at sleep onset.
Studies using EEG have shown an increase in delta power
after longer periods of wakefulness, providing support for
the regulatory role of Process S (Dijk and Beersma 1989;
Franken et al. 2001; Dijk and Lockley 2002) in the sleep-
wake cycle. One important distinction between these two
processes is that the sleep-wake ratio drives Process S
mechanisms, whereas Process C is self-sustaining, inde-
pendent of the sleep-wake ratio. It should be noted that
chronic sleep restriction initially instigates enhanced sleep
and slow wave activity during the opportunity for sleep
but these effects of sleep restriction habituate rapidly (Kim
et al. 2013).
Process S is also called the sleep homeostat because it

regulates the level of sleep propensity. The mechanisms
involved in Process S are less characterized but suggest a
restorative and/or repairing function of sleep. Thus, the
two-process model of sleep regulation suggests that Process
S is responsible for the function of sleep and Process C is
responsible for influencing the timing of sleep. A number
of hypotheses on the function of sleep have been proposed
based on this model of dualistic control.

Energy hypothesis
The function of sleep, according to Benington and Heller’s
energy hypothesis, is to restore the brain energy stores that
are depleted during wakefulness (Benington and Heller
1995). Wakefulness is associated with increased neur-
onal activity and consequently, increased energy demands.
These demands are thought to result in depletion of energy
stores during wakefulness. One important energy source
for neuronal activity is ATP, which is required for neuronal
depolarization. ATP is produced in the inner mitochon-
drial membrane by the oxidative phosphorylation system
(OXPHOS). Mitochondrial (Nadh2 and Cox1) and nu-
clear (Cox4 and Atp5a) genes encoding proteins in-
volved in OXPHOS, such as Nadh2, are upregulated after
only 3 hours of sleep deprivation (Cirelli and Tononi
1999a; Terao et al. 2003a; Nikonova et al. 2010) (Table 2,
Additional file 1: Table S1). These observations support the
theory that wakefulness increases the demand for energy.
Accordingly, energy store depletion should induce sleep.

Therefore, it is believed that the increased demand for ATP
is initially produced by increasing the activity of OXPHOS.
However, as wakefulness continues, ATP stores become de-
pleted and sleep is initiated. Increased ATP expenditure
would produce increased levels of adenosine, which has
been shown to promote sleep (Porkka-Heiskanen et al.
1997). Furthermore, extracellular levels of adenosine in the
cerebral cortex have been shown to increase with sustained
wakefulness. Accordingly, adenosine may act as modulator
of the sleep-wake cycle and promote sleep when energy
levels become depleted. Interestingly, extracellular ATP is
believed to also play a role in initiating sleep. Extracellular
ATP binds to type 2 purine receptors causing glia to release
cytokines (e.g., IL1, TNF) which also act through adenosine
to promote sleep (Clinton et al. 2011; Frank 2012).

Synaptic homeostasis hypothesis
Sleep appears to promote brain plasticity including memory
enhancement and stabilization. Although the mechanism
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for this property of sleep is unknown there are a number
of hypotheses for this including the synaptic homeo-
stasis hypothesis or SHY. SHY proposes that sleep
regulates synaptic weight and makes the following 4
predictions: 1) synaptic potentiation in several cortical
structures is associated with wakefulness; 2) synaptic po-
tentiation has been tied to the regulation of slow-wave
sleep; 3) synaptic downscaling is associated with slow-
wave activity; 4) synaptic downscaling is tied to the benefi-
cial effects of sleep on neural connections as evidenced by
performance (Tononi and Cirelli 2003).
During wakefulness, genes encoding proteins involved

in synaptic plasticity, specifically long-term potentiation
(LTP), are upregulated during wakefulness and down
regulated during sleep. The plasticity-related genes Arc,
brain-derived neurotropic factor (BDNF), Homer1a, and
nerve growth factor-induced gene A (NGFI-A; also known as
Egr1) are among the best documented plasticity-related
genes to be state-dependent. Specifically, these genes have in-
creased expression during wakefulness and sleep deprivation
(Cirelli and Tononi 2000b, a; Cirelli et al. 2004). Moreover,
a positive correlation was shown in rats between BDNF
expression and exploratory behavior, even when duration
of wakefulness was controlled (Huber et al. 2007). Conse-
quently, synaptic potentiation of cortical networks occurs
during wakefulness through BDNF, resulting in a net
increase of synaptic strength (Tononi and Cirelli 2003).
Although considered state-regulated, Arc, Homer 1a, and
NGFI-A have not been shown to be associated with ex-
ploratory behavior.
Additionally, BDNF expression increase was associated

with increased slow-wave activity (SWA) during subse-
quent sleep (Huber et al. 2007). According to this hypoth-
esis, synaptic potentiation is also linked to SWA in that
synaptic downscaling occurs during this time. Downscal-
ing refers to a proportional reduction in the strength of all
synapses onto the same neuron. Therefore, downscaling
results in a decrease in synaptic weight without interfering
with the relative differences in synaptic strength important
for memory traces. Taken together, BDNF counteracts the
increase of synaptic strength during waking with a subse-
quent increase of SWA during sleep, resulting in synaptic
downscaling. In this way, BDNF is thought to be a possible
modulator of the homeostatic sleep response at the mo-
lecular level.
Downscaling of synaptic strength would benefit neur-

onal function by limiting energy expenditure. Metabolic
demands due to neuronal repolarizations following post-
synaptic potentials account for approximately 44% of the
energy required for the cerebral cortex (Howarth et al.
2012). Increased synaptic strength also increases energy
need. Therefore, synaptic downscaling that occurs during
sleep maintains energy efficiency of the cerebral cortex.
However, there are some concerns about SHY despite
experimental evidence supporting this elegant hypothesis.
See Frank (Frank 2012) for a comprehensive review of the
strengths and weaknesses of the SHY hypothesis.

Macromolecular biosynthesis hypothesis
In 2007, a microarray study found that the most abundant
group of genes upregulated in the cortex and hypothal-
amus of mice during sleep encoded proteins involved in
macromolecule biosynthesis (Mackiewicz et al. 2007). For
example, heme biosynthesis in the cortex is one pathway
upregulated during sleep. Some of the genes upregulated
in this pathway encode enzymes of the heme biosynthesis
pathway, proteins that regulate heme level, and heme con-
taining proteins. Structural components of ribosomes,
translation initiating factors, and transcripts involved in
tRNA activation are among the subcategories of upregu-
lated genes involved in protein synthesis (Mackiewicz
et al. 2007). Another biosynthetic pathway upregulated
during sleep is protein synthesis. Therefore, sleep seems
likely to be the primary state for synthesis of proteins and
other macromolecules.
Furthermore, genes encoding enzymes of the cholesterol-

synthesis pathway increase progressively during sleep. Spe-
cifically, these upregulated genes encode proteins involved
in cholesterol uptake and transport, as well as chaperones
and transcription factors responsible for regulating tran-
scription of cholesterol-related genes (Mackiewicz et al.
2007). The increase in cholesterol biosynthesis is likely to
increase the amount of membrane cholesterol. Cholesterol
is a component of the cell membrane and modulates
the membrane’s fluidity over the range of physiological
temperatures. Furthermore, cholesterol aids in signal
transduction through its structural role in membrane
microdomians called lipid rafts. Additionally, transcript
levels for genes encoding proteins involved in lipid rafts,
such as flotilin, are also upregulated during sleep. Lipid
rafts modulates signal strength by corralling neurotrans-
mitter receptors with other signaling molecules, increasing
the likelihood that they interact (Simons and Toomre
2000). Taken together, sleep is important for membrane
stability and signal transduction. These observations sug-
gest that the function of sleep is to repair and replenish in
preparation for the upcoming demands of wakefulness.

Molecular consequences of prolonged sleep deprivation
Acute sleep deprivation up to 6 hours results in gene ex-
pression resembling those seen during wakefulness. How-
ever, as sleep deprivation is prolonged, gene expression
patterns begin to suggest increased cellular stress. Cellular
stress can occur when there is an interruption in physio-
logical balances (McEwen 2006), such as those necessary
for protein and calcium homeostasis in the ER (Naidoo
et al. 2005). Sleep deprivation studies consistently result in
increased expression of transcripts associated with stress



Table 2 Genes shown in the literature to be upregulated in the cortex after sleep deprivation
3 hours 6 hours 8 hours 12 hours 24 hours 7 days total SD

Immediate early
genes/transcription
factors

Arc (Cirelli and Tononi 2000a;
Cirelli 2002) Fosb (Cirelli and
Tononi 1998; Cirelli 2002) Egr1
(Cirelli and Tononi 1998; Cirelli
2002) Homer1a (Mackiewicz et al.
2007; Maret et al. 2007)

Arc (Terao et al. 2006; Thompson et al.
2010; Maret et al. 2007) Fosb (Maret et al.
2007; Terao et al. 2003a) Fra-2 (Terao et al.
2003a; Terao et al. 2006; Maret et al. 2007)
Junb (Terao et al. 2003a) Egr1 (Terao et al.
2003a; Terao et al. 2006) Egr2 (Maret et al.
2007) Egr3 (Terao et al. 2003a; Terao et al.
2006; Maret et al. 2007) Homer1a (Maret
et al. 2007; Mackiewicz et al. 2007)

Arc (Taishi et al. 2001; Cirelli 2002; Cirelli
and Tononi 2000a, b; Cirelli et al. 2006)
Fosb (Cirelli et al. 2006) Fra (Cirelli et al.
2006) CHOP (Cirelli and Tononi 2000b;
Cirelli 2002; Cirelli et al. 2004) IER5 (Cirelli
and Tononi 2000b; Cirelli 2002) Egr1
(Cirelli and Tononi 2000b; Cirelli 2002;
Cirelli et al. 2006) Ngf1-b (Cirelli and
Tononi 2000b; Cirelli 2002; Cirelli et al.
2006) Egr2 (Cirelli et al. 2006) N-ras (Cirelli
2002; Cirelli and Tononi 2000b) Stat3
(Cirelli and Tononi 2000b; Cirelli 2002)
Homer1a (Cirelli et al. 2006)

Homer1a
(Mackiewicz et al.
2007)

Egr2 (Conti et al.
2007) Homer1a
(Conti et al. 2007)

Arc (Cirelli et al. 2006) Fosb (Cirelli
et al. 2006) Fra (Cirelli et al. 2006)
Egr1 (Cirelli et al. 2006) Ngf1-b
(Cirelli et al. 2006) Egr2 (Cirelli
et al. 2006) Homer1a (Cirelli et al.
2006) Ania-1 (Cirelli et al. 2006)

Energy metabolism/
energy balance

Cox1 (Cirelli 2002; Cirelli and
Tononi 1998, 1999a, b, 2000b;
Cirelli et al. 2004; Cirelli and
Tononi 2004; Naidoo et al. 2005)
Cox4 (Cirelli et al. 2004; Nikonova
et al. 2010) Atp5a (Cirelli et al.
2004; Cirelli and Tononi 2004)
Nadh2 (Cirelli 2002; Cirelli and
Tononi 1998, 1999a, b)

Nrf-1 (Nikonova et al. 2010) Glut1 (Cirelli 2002; Cirelli and Tononi
2000b) Vgf (Cirelli 2002; Cirelli and
Tononi 2000b; Cirelli et al. 2006) Ucp2
(Cirelli et al. 2004; Cirelli and Tononi
2004)

Cox1 (Nikonova
et al. 2010) Cox4
(Nikonova et al.
2010) Atp5a
(Nikonova et al.
2010) Ucp2
(Nikonova et al.
2010)

Vgf (Cirelli et al. 2006)

Chaperones/heat
shock proteins/
stress response

BiP (Maret et al. 2007; Terao et al. 2006;
Mackiewicz et al. 2007; Naidoo et al. 2005)
Erp72 (Terao et al. 2006) Grp94 (Maret
et al. 2007; Terao et al. 2006) Hsp90ab1
(Maret et al. 2007) Hspb1 (Maret et al.
2007) Gadd45a (Mackiewicz et al. 2007)
Gadd45b (Maret et al. 2007) Calr
(Mackiewicz et al. 2007; Maret et al. 2007)
Dnajc3 (Mackiewicz et al. 2007) Dnajb5
(Mackiewicz et al. 2007) Dnajb11
(Mackiewicz et al. 2007) Dnajc1
(Mackiewicz et al. 2007) Hsp105
(Mackiewicz et al. 2007) Hspa1a
(Mackiewicz et al. 2007) Hspa1b
(Mackiewicz et al. 2007) Nrf2 (Nikonova
et al. 2010)

BiP (Cirelli and Tononi 2000b; Cirelli
2002; Cirelli et al. 2004; Naidoo et al.
2005) PERK (Cirelli et al. 2004) Erp72
(Cirelli and Tononi 2000b; Cirelli 2002)
Hspa9 (Cirelli and Tononi 2000b; Cirelli
2002) Grp94 (Cirelli and Tononi 2000b)
Hsp60 (Cirelli and Tononi 2000b; Cirelli
2002) Hsp70 (Cirelli and Tononi 2000b;
Cirelli 2002) Calr (Cirelli et al. 2006) Ppp3
(Cirelli et al. 2004)

BiP (Naidoo et al.
2005; Mackiewicz
et al. 2007)

Hspb1 (Conti
et al. 2007)

BiP (Cirelli et al. 2006) Mrp14
(Cirelli et al. 2006) Taf9b (Cirelli
et al. 2006) Cort (Cirelli et al.
2006) Hspb1 (Cirelli et al. 2006)
Hspa1a (Cirelli et al. 2006) Cryab
(Cirelli et al. 2006) Gllg15b (Cirelli
et al. 2006) Mgst1 (Cirelli et al.
2006) Gpx3 (Cirelli et al. 2006)
CYP4F4 (Cirelli et al. 2006)

DNA binding/
regulation of
transcription

Dbp (Maret et al. 2007) Dbp (Cirelli et al. 2006) Atff5
(Cirelli et al. 2006) Neurod1 (Cirelli
et al. 2006) c-myc (Cirelli et al.
2006)

Vesicle- and
synapse-related

Scg2 (Cirelli and Tononi 2000b; Cirelli
2002) Syt4 (Cirelli 2002; Cirelli and
Tononi 2000b)

Scg2 (Cirelli et al. 2006) VAP1
(Cirelli et al. 2006)

Growth factors/
adhesion molecules

Bdnf (Maret et al. 2007) Vegfa (Maret
et al. 2007)

Bdnf (Cirelli 2002; Taishi et al. 2001; Cirelli
and Tononi 2000a, b; Cirelli et al. 2006)
TrkB (Cirelli and Tononi 2000a; Cirelli
2002; Cirelli and Tononi 2000b) Cntn1
(Cirelli and Tononi 2000b; Cirelli 2002)

Bdnf (Conti et al.
2007) Ifrd1 (Conti
et al. 2007)

Bdnf (Cirelli et al. 2006) Ntm
(Cirelli et al. 2006) Gas (Cirelli
et al. 2006)

Elliott
et

al.SpringerPlus
2014,3:728

Page
7
of

12
http://w

w
w
.springerplus.com

/content/3/1/728



Table 2 Genes shown in the literature to be upregulated in the cortex after sleep deprivation (Continued)

Receptors Adra1a (Cirelli 2002; Cirelli and Tononi
2000b) Adrb2 (Cirelli 2002; Cirelli and
Tononi 2000b) Gabrb3 (Cirelli 2002;
Cirelli and Tononi 2000b) Grin2a (Cirelli
2002; Cirelli and Tononi 2000b) Glur2
(Cirelli and Tononi 2000b; Cirelli 2002)
Glur3 (Cirelli and Tononi 2000b; Cirelli
2002) Chrnb2 (Cirelli 2002; Cirelli and
Tononi 2000b) Thrb (Cirelli and Tononi
2000b; Cirelli 2002) Itpr3 (Cirelli et al.
2004)

Ntsr (Cirelli et al. 2006)

Enzymes Sgk1 (Maret et al. 2007) Sult1a1 (Cirelli 2002; Cirelli and Tononi
2000b) Mapk81 (Cirelli and Tononi
2000b; Cirelli 2002) Sgk1 (Cirelli and
Tononi 2000b; Cirelli 2002) Gpd1
(Cirelli et al. 2006) Fkbpb1a (Cirelli et al.
2004)

Sult1a1 (Conti
et al. 2007) Dclk1
(Conti et al. 2007)
Ret (Conti et al.
2007) Gpd1
(Conti et al. 2007)

Sult1a1 (Cirelli et al. 2006)
Alox12 (Cirelli et al. 2006) Sgk1
(Cirelli et al. 2006) Fdft1 (Cirelli
et al. 2006) Ptgs2 (Cirelli et al.
2006) Pdk2 (Cirelli et al. 2006)
Gpd1 (Cirelli et al. 2006) Nqo1
(Cirelli et al. 2006) Aldoc (Cirelli
et al. 2006) Glb (Cirelli et al.
2006) Cbs (Cirelli et al. 2006)

Hormone/ Hormone
regulation

Crhbp (Conti
et al. 2007)

Crhbp (Cirelli et al. 2006) Crh
(Cirelli et al. 2006) Cort (Cirelli
et al. 2006)

Other Cdkn1a (Maret et al. 2007) Dusp14
(Maret et al. 2007) Dusp4 (Maret et al.
2007) Nptx2 (Maret et al. 2007) Pdia3
(Maret et al. 2007) Vip (Maret et al.
2007) Xbp-1 (Maret et al. 2007)

tPA (Taishi et al. 2001) CaM (Cirelli
2002; Cirelli and Tononi 2000b) Ccnd2
(Cirelli and Tononi 2000b; Cirelli 2002)
Lmo-4 (Cirelli and Tononi 2000b; Cirelli
2002) Mt3 (Cirelli and Tononi 2000b;
Cirelli 2002) Junb (Cirelli et al. 2006)
Cebpb (Cirelli et al. 2006)

Gfap (Conti et al.
2007) Anp32a
(Conti et al. 2007)
Mt1a (Conti et al.
2007)

tPA (Cirelli et al. 2006) IgK
(Cirelli et al. 2006) Junb (Cirelli
et al. 2006) Hba1 (Cirelli et al.
2006) Cebpb (Cirelli et al. 2006)
Rpl21(Cirelli et al. 2006) Alb
(Cirelli et al. 2006) Npy (Cirelli
et al. 2006) Hbb (Cirelli et al.
2006) Kcnh3 (Cirelli et al. 2006)
Syt12 (Cirelli et al. 2006) Vip
(Cirelli et al. 2006) Ptpn1 (Cirelli
et al. 2006) Grifin (Cirelli et al.
2006) Ccnd3 (Cirelli et al. 2006)
Klf15 (Cirelli et al. 2006) Nupl1
(Cirelli et al. 2006) Ilf3 (Cirelli
et al. 2006) Ptp4a2 (Cirelli et al.
2006) Ctnnb1 (Cirelli et al. 2006)

Note: This is a compilation from multiple research articles and does not give a complete account of how a particular gene’s expression changes across durations of deprivation. The absence of genes in the 12 and
24 hour columns comes from a gap in the research for those durations and does not imply a decrease in the number of genes upregulated after 12 and 24 hours of sleep deprivation.
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response in the ER (ie, sleep deprivation can be considered
a cellular stressor). The ER is an organelle that regulates
protein folding and transport through various pathways
and post-translational modifications. Molecular chaperone
proteins, such as binding immunoglobulin protein (BiP;
also known as GRP78 and HSPA5) and glucose-related
protein, 94 kDa (GRP94; also known as HSP90B1), aid in
protein folding by stabilizing protein intermediates. Pro-
tein misfolding can occur when there is a disturbance in
ER homeostasis, causing cellular stress. Accumulation of
misfolded or unfolded proteins triggers the UPR.
The UPR is an adaptive mechanism in the ER to control

and limit the amount of unfolded proteins that could be-
come toxic and reinstate protein homeostasis. Three main
mechanisms make up the UPR. The first involves increas-
ing transcription of chaperone proteins to aid in the proper
folding of proteins. Second, protein translation is attenu-
ated by activating the serine-threonine kinase PKR-like
ER kinase (PERK), which then phosphorylates the eukaryotic
initiation factor 2α (eIF2α). Finally, unfolded proteins
are removed from the ER for degradation. If stress is
prolonged, these mechanisms cannot restore homeosta-
sis. Apoptotic pathways are initiated by the activation of
CHOP (C/EBP homologous protein), JNK (c-jun NH2 ter-
minal kinase), and caspases such as Caspase 9 and ensure
elimination of the aberrant proteins.
Sleep deprivation studies consistently show upregula-

tion of genes involved in the UPR (Table 2). Transcript
levels of BiP, a key marker of UPR activation, is upregu-
lated in the cerebral cortex after only 6 hours of sleep
deprivation in both mice (Naidoo et al. 2005; Mackiewicz
et al. 2007) and rats (Cirelli et al. 2004) and continues to
stay upregulated after 7 days of total sleep deprivation
(Cirelli et al. 2006). Further, PERK expression has also
been shown to be upregulated after a short duration of
sleep deprivation (Cirelli et al. 2004). However, although
the PERK pathway is activated after 6 hours (Naidoo et al.
2005), expression of PERK mRNA increases with 8 hours
of sleep deprivation (Table 2). Taken together, these find-
ings lend credence to the theory that sleep is associated
with protein translation, with likely attenuation of this dur-
ing sleep deprivation. Thus, an alteration in protein trans-
lation may be a key consequence of sleep deprivation.

Conclusion
The majority of the studies reviewed were microarray stud-
ies which have distinct limitations. Microarrays do not con-
tain all genes in a given genome allowing for the possibility
of missing critical genes. Although the newer technologies
for transcriptomic analyses (e.g., NextGen) contain the en-
tire genome, both microarrays and NextGen produce large
datasets which require bioinformatics approaches to iden-
tify relevant pathways. This is illustrated in the paper by
Wang (Wang et al. 2010) on sleep deprivation where a
variety of data analysis strategies were used to identify
pathways impacted by sleep disruption (e.g., synaptogene-
sis, etc.). While gene expression changes can be identified
it is difficult to determine how specific brain cells are
impacted by sleep disruption as the tissue evaluated con-
tains a variety of cell types (e.g., neurons, glia, etc.). New
approaches such as bacTRAP are beginning to solve
these problems (Doyle et al. 2008; Emery and Barres 2008;
Heiman et al. 2008).
Sleep research in animals utilizing microarrays and other

transcriptomic approaches has begun to yield a better un-
derstanding of the influence of the sleep-wake cycle on
the brain. Specifically, studies utilizing these modern mo-
lecular techniques have shown that the homeostasis or
balance between the two states is important for normal
brain functioning. When this cycle is disrupted, cellular
stress pathways respond to reduce the negative conse-
quences. However, protracted activation of these stress
pathways can lead to elimination of these “stressed” cells
by apoptosis. Further, the existing studies have efficiently
documented the consequences for brain of both short-term
and long-term sleep deprivation. However, the existing
studies do not allow us to understand the consequences of
repeated short-term sleep deprivation – a scenario with
more translational impact because it is relevant for the
sleep disruption conditions humans are more likely to ex-
perience. Although brain is an organ not easily accessed in
living humans for transcriptomic or proteomic evaluation
there is great interest in examining the blood transcrip-
tome as an accessible window to other organs, including
the brain (Moller-Levet et al. 2013; Clinton et al. 2011;
Liew et al. 2006; Kohane and Valtchinov 2012). What are
the consequences of a repeated activation of these stress
pathways? Do they begin activating apoptosis earlier? Or
are regular patterns of shorter sleep durations having no
specific influence on health? Sleep studies need to begin
expanding the limits of sleep deprivation to include more
relevant human patterns of sleep limitations and disrup-
tions. Only then can we start locating particular pathways
where intervention is possible to modulate the negative ef-
fects of chronic sleep deficiency.

Additional file

Additional file 1: Table S1. List of gene symbol, full gene name, and
aliases of all genes listed in Table 2.
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