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Abstract

Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the
nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and
in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the
most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist
in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new
class of agent with great potential for clinical applications. This is partly due to their long blood circulation time
and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use
has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled
nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about

the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes.

Keywords: nanoparticles, PET imaging, SPECT imaging, tumor, inflammation, cardiovascular disease

Review

Introduction

Nanomedicine can be defined as the use of nanoparticles
for diagnosis, monitoring physical and pathologic pro-
cesses, for therapy, and for control of biological systems
[1]. Nanoparticles are defined as structures that are nan-
ometers in size (often smaller than 100 nm) [2-4]. As
small structures, they extravasate through the endothe-
lial cell layers and interact with the cell structures of
various tissues, but they are also large enough to trans-
port high payloads of therapeutic or diagnostic agents (e.
g., radioisotopes for molecular imaging) [5]. In contrast
to atoms and traditional molecules, nanomaterials have
an immense available surface area per unit of volume
and tunable optical, electronic, magnetic, and biologic
properties. They can be engineered to have different
sizes, shapes, chemical compositions, surface chemical
characteristics, and hollow or solid structures [6,7].
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Nanoparticles can be made of materials of diverse
chemical nature, the most common being metals, metal
oxides, silicates, polymers, carbon, lipids and biomole-
cules. Nanoparticles exist in several different morpholo-
gies, such as spheres, cylinders, platelets, and tubes.
Generally, they are designed with surface modifications
tailored to meet the needs of specific applications [8].
When used for in vivo studies, nanoparticles are typically
coated with a hydrophilic polymer on their surface. The
most broadly used polymer is polyethylene glycol (PEG),
which reduces their uptake by the reticuloendothelial
system (RES) and increases circulation time when com-
pared with uncoated counterparts [9-11]. In addition,
with this approach, aggregation between particles and
association with serum and tissue proteins are dimin-
ished. Furthermore, solubility in serum increases due to
the hydrophilic character of ethylene glycol units. As a
result, liver uptake for those particles is significantly
lower than that of non-PEGylated nanoparticles, allow-
ing nanoparticles to remain in the blood pool for an
extended period of time [12].

Thus far, the most prominent areas where the utility
of nanomedicine has been explored are for treatment
and imaging of cardiovascular diseases and cancer [13].
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Two approaches are generally used to access these tissue
structures. First, nanoparticles can take advantage of the
increased vascular permeability and pass through the
fenestrations that are present in vessels. Such spontan-
eous accumulation or passive targeting is known as the
enhanced permeability and retention effect (EPR effect).
[14-16]. Second, molecules can be attached to the surface
of these nanoparticles to target specific cells or tissues
(active targeting) (Figure 1) [17]. A diverse range of mole-
cules has already been used to achieve higher drug con-
centration in diseased tissues, including V-CAM, I-CAM,
folate, peptides, antibodies, etc. [18-21]. In addition, nano-
particles have been prepared with two different ligands.
This dual ligand approach has demonstrated success in
improving the selectivity when compared to a single
ligand approach [22,23].

This review will focus on radiolabeled nanoparticles
for diagnostic applications since we consider them to be
a promising approach for early diagnosis (Figure 2).
Radiotracer-based imaging either using single-photon
emission computed tomography (SPECT) or positron-
emission tomography (PET) is particularly suited for
examining targeted in vivo molecular imaging
approaches. The major advantages of SPECT and PET
molecular imaging techniques over other approaches are
that they are highly sensitive and specific, allow accurate
quantification, and there is no limit to tissue penetration
in any organ. The characteristics of each modality are
summarized in Table 1 [24-26]. Gamma emitters with
energies in the range of 100 to 300 keV can be used for
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planar imaging or SPECT imaging, and a variety of
positron-emitting radionuclides appears suitable for PET
studies (Table 2) [27].

Liposomes

Over the past few decades, liposomes have received
widespread attention as carrier compounds for thera-
peutic and/or diagnostic purposes. Liposomes, first
described by Bangham and co-workers, are spherical
vesicles which form when phospholipids are exposed to
an aqueous environment [28,29]. The lipid components
of liposomes are predominantly phospholipids (e.g.,
phosphatidylcholine, phosphatidylethanolamine). How-
ever, other compounds can be added to liposomal prep-
aration to provide more stability to the vesicles, such as
cholesterol [30]. Because of the hydrophobic lipid bilayer
surrounding an aqueous core volume, liposomes are
suitable for encapsulating hydrophobic agents in the
lipid shell, hydrophilic agents in the aqueous core, and
amphiphilic agents distributed through the hydrophobic/
hydrophilic domains. Typically, liposomes can be classi-
fied according to their size, charge, and lipid compos-
ition. In regard to size, liposomes can be divided
into three categories: small unilamellar vesicles or SUV
(25 to 100 nm), large unilamellar vesicles or LUV
(>100 nm), and multilamellar vesicles or MLV (100 to
1,000 nm) [31]. When superficial charge is considered,
liposomes can be neutral or charged. Liposomes that are
negatively or positively charged have been reported to
have shorter half-lives, some toxicity, and rapid blood
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Figure 1 Passive versus active targeting. (Left) In passive targeting, particles tend to passively diffuse through the leaky vasculature of the
tumor bed and accumulate primarily through the enhanced permeability effect. (Right) In active targeting, once particles have extravasated in the
target tissue, the presence of ligands on the particle surface facilitates their interaction with receptors that are present on tumor or other cells,
resulting in enhanced accumulation and preferential cellular uptake through receptor-mediated processes. This approach can be used either for
vascular targeting and/or tumor cell targeting purposes. Reproduced with permission from [17].
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Figure 2 The most common nanoparticles reported for diagnostic purposes.
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clearance [32,33]. At least three different classes of lipo-
somal composition are described: (1) Conventional lipo-
somes or the first generation of liposomes are composed
of natural phospholipids or lipids. Addition of choles-
terol to conventional liposomes has been attempted in
order to improve bilayer stability. However, these kinds
of liposomes have encountered several challenges, in-
cluding high instability in plasma, which results in short
blood circulation half-life [9,34]. (2) Stealth liposomes or
long-circulanting liposomes were synthesized by conju-
gating hydrophilic polymers, which increase their circu-
lation half-life [9-11]. (3) Targeted liposomes have been
engineered with different types of target moieties,
such as antibodies, peptides, folic acid, and carbohy-
drate. Indeed, targeted liposomes are able to increase the

Table 1 Characteristics of imaging techniques [20]

concentration of the therapeutic or diagnostic agent in
specific tissues/cells that overexpress the target recep-
tors, antigens, or unregulated selectins [35-38]. A new
generation of liposomes (e.g., stimuli-sensitive) has been
developed in order to improve drug delivery. One ex-
ample is a pH-sensitive liposome used to improve the
endosomal release of a drug-loaded liposome into the
cytoplasm [39,40].

Liposomes labeled with radioisotopes have been used
for PET and SPECT imaging [29,41-45]. Dams and co-
workers have demonstrated the use of **™Tc-PEG lipo-
somes for scintigraphic detection of inflammation and
infection. These particles take advantage of the high per-
meability to extravasate to sites of inflammation and/or
infection. A high correlation was observed between

Imaging modality Spatial resolution

Depth of penetration

Sensitivity (mol/L) Molecular probe

PET 1to2mm No limit
SPECT 03to 1 mm No limit
FMT (optical) 1to3 mm <5cm
MRI 50 to 250 um No limit
X-Ray, CT 25 to 150 um No limit
Ultrasound 30 to 500 um mm to cm

107" t0 1072 ng
1010 107" ng
10°t0 1072 g
10210107 Hg to mg
. mg
10°t0107° Hg to mg

PET, positron emission tomography; SPECT, single-photon emission computed tomography; FMT, fluorescence molecular tomography; MRI, magnetic resonance

imaging; CT, computed tomography.
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Table 2 Most common radionuclides for scintigraphic
imaging [23]

Radionuclides Emission type Half-life Emax (y) [keV]
137 y (812%), B 80 days 284, 364, 637

% Ga v 783 h 93, 184, 300, 393
"n Auger, y 672 h 171, 245

123) Auger, y 132 h 159

M Te v 60 h 140

8F Positron 183 h 511

%y Positron 127 h 511

188Re v (15%), B 169 h 155

scintigraphic results and biopsy, culture, surgery, and
follow-up to 6 months. It was found that infection and
inflammatory sites could be imaged with radiolabeled
liposomes [46]. Recently, Li et al. have reported the use
of indium (**'In)-loaded liposomes, surface-targeted
with antibodies to the low-density lipoprotein receptor
LOX-1. These liposomes were successfully used to ac-
quire molecular images of atherosclerotic plaques in
ApoE —-/- mice. Mice injected with control liposomes,
coated with nonspecific IgG (nlgG), did not exhibit any
detectable signal in the atherosclerotic plaques (Figure 3)
[47]. Examples reported in this article, containing animal
or human studies, had been approved by an appropriate
ethics committee.

Studies conducted by Harrington et al. have demon-
strated the potential application of liposomes in tumor
diagnosis. Seventeen patients with different types of can-
cer were evaluated by scintigraphic imaging after injec-
tion of '"In-DTPA-labeled PEGylated liposomes.
Positive images were obtained in 15 studies. This data
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suggested that liposomes can be an interesting vehicle
for delivering diagnostic agents to tumors [48]. Another
study reported the biodistribution of '**Re-N,N-bis(2-
mercaptoethyl)-N,N-diethylethylenediamine
(BMEDA)-labeled PEGylated liposomes in murine C26-
colon tumor-bearing mice. MicroSPECT/computed tom-
ography (CT) images were acquired from 1 to 72 h.
Image analysis revealed that liposomes had a higher
tumor uptake at all time points when compared with
unencapsulated '®*Re-BMEDA (Figure 4). Biodistribu-
tion data were used to confirm higher uptake at 24 h
post-injection (3.62+0.73% injected dose (ID)/g) when
compared with unencapsulated radiopharmaceutical
(0.51 +£0.06% ID/g) [49].

Typically, positron emitters have short half-lives
(Table 2). As a result, in selecting the appropriate candi-
dates, preparation schemes that are fast and least com-
plicated should be considered as liposome tracers. In
this context, Petersen et al. have reported recently a suc-
cessful method to rapidly encapsulate radionuclides (re-
mote loading method), showing a feasible way to obtain
®*Cu-loaded PEGylated liposomes with high loading effi-
ciency. Biodistribuition studies showed high tumor up-
take at 24 hours post-liposome injection (5.0% ID/g).
MicroPET/CT images visualized an implanted colon
adenocarcinoma in a mouse model at 24 h post-
liposome injection (Figure 5) [50].

Iron oxide nanoparticles

Over the past two decades, iron oxide nanoparticles have
received enormous attention for imaging applications.
These nanoparticles can be divided into two categories
based on their structural configuration: (1) a magnetic
particle core (typically magnetite, Fe;O4, or maghemite,
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Figure 3 Images of mice injected with '"'In-loaded liposomes. (A) SPECT and (C) ex vivo phosphor imaging showed no focal, aortic arch hot
spots in ApoE —/— mice injected with the nlgG probe, whereas all ApoE —/— mice injected with the LOX-1 probe revealed hot spots in the aortic
arch ((B) includes sagittal, coronal, and transverse planes), confirmed by (D) ex vivo phosphor imaging. Sudan IV staining demonstrated
comparable plaque distribution pattern for the (E and F) two groups. Reproduced with permission from [47].
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Figure 4 MicroSPECT/CT images of C26 tumor-bearing BALB/c
mice following injection of '®®Re-BMEDA-liposomes or '®Re-
BMEDA. (a) Images of mice at 1 and 4 h after i.v. injection of 188Re-
BMEDA. (b) Images of mice at 1, 4, 24, 48, and 72 h after injection of
188Re-BMEDA-liposome. Reproduced with permission from [49].

Fe,O3) coated with a hydrophilic and biocompatible
polymer, such as PEG, dextran, alginate, and poly(D,L-
lactide-co-glycolide); and (2) a porous biocompatible
polymer in which iron oxide nanoparticles are entrapped
within the polymer matrix [51]. The coating process is
important to provide colloidal stability, biocompatibility,
and reduced uptake by the RES. The presence of a coat-
ing material is essential to avoid the premature clearance
from the blood [52]. Generally, coated and neutral sur-
faces are preferred to minimize opsonization and clear-
ance [53]. In addition to the coating material,
nanoparticle size also plays a critical role in dictating
blood circulation times since, in general, nanoparticles
larger than 200 nm are rapidly removed from blood-
stream via the RES system, and nanoparticles smaller
than 10 nm undergo renal filtration. Therefore, nanopar-
ticles with mean diameters between 10 and 100 nm are
generally preferred since they can attain much longer
circulation times and, consequently, can achieve higher
accumulation at the target site [54,55].

In regard to their hydrodynamic diameter, iron oxide
nanoparticles can be classified into superparamagnetic
iron oxide (SPIO) (60 to 250 nm), ultra small paramag-
netic iron oxide (USPIO) (5 to 40 nm), and micrometer-
sized particles of iron oxide (MPIO) (0.9 to 8 um).
USPIO can be further chemically modified, termed
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cross-linked iron oxide nanoparticles (CLIO), in order to
attach new molecules for targeting purposes [56-58].
Several studies have been reported using CLIO for the
active targeting of various diseases, including cancer and
atherosclerosis [59-64].

Because of their magnetic properties, iron nanoparti-
cles have been studied extensively as magnetic resonance
imaging (MRI) contrast agents. Nevertheless, some stud-
ies have reported their use for both MRI and SPECT or
PET [65-69]. This approach poses numerous benefits
since it takes advantage of high PET sensitivity and the
high spatial resolution of MRI. As a result, it should the-
oretically be possible to obtain ‘perfect’ spatial registra-
tion of molecular/functional PET and anatomic/
functional MRI [70-72].

Lee et al. have reported a radiolabeled iron oxide
nanoparticle conjugated with cyclic arginine-glycine-
aspartic (RGD). These particles were functionalized with
DOTA for labeling with **Cu. The iron nanoparticles,
which had a hydrodynamic diameter of 45 nm, showed
high avidity for the integrin o,f3 in a competitive bind-
ing assay. In addition, PET and MR images were
acquired showing delivery of RGD-iron nanoparticles to
U87MG human glioblastomas in tumor-bearing mice.
The highest uptake at the tumor site was achieved at 4 h
post-injection (10.1% ID/g). When RGD receptors were
blocked with unconjugated RGD, the tumor uptake was
significantly reduced, confirming specificity for integrin
a,Ps [18]. Recently, Xie et al. have performed PET/near-
infrared fluorescence (NIRF)/MRI tri-functional iron
oxide nanoparticles for tumor detection. The particles
were labeled with ®*Cu-DOTA and Cy5.5 and tested in a
subcutaneous U87MG xenographic mouse model. For
PET/NIRE/MRI images, clear tumor delineation was

0.416 MBg/ml 0.218 MBg/ml

0.005 MBg/ml

Figure 5 PET/CT images of *Cu liposome distribution in HT29
tumor-bearing mice. Tumors were implanted on the right and left
flanks. Coronal PET image 24 h after injection (left). Axial PET image
(right top) and axial PET/CT fusion (right bottom) images 24 h after
injection. Adapted with permission from [50].




de Barros et al. EJNMMI Research 2012, 2:39
http://www.ejnmmires.com/content/2/1/39

observed by all three imaging modalities (Figure 6).
Compared with NIRF results, the PET imaging showed
much higher tumor-to-muscle ratios, reaching 8.28% ID/
gat 18 h [73].

A dextran-coated and DTPA-modified magnetofluor-
escent 20-nm nanoparticle was prepared and radiola-
beled with **Cu to yield a PET, magnetic resonance, and
optically detectable imaging tracer for macrophages in
inflammatory atherosclerosis in ApoE —/— mice. Biodis-
tribution studies revealed that the percent injected doses
accumulated in aortas and carotid arteries were 260%
and 392% higher, respectively, than in wild-type mice.
PET/CT images showed robust signal in the aortic root
and arch (mouse atheroma), showing a target-to-
background ratio equal to 5.1 [74]. Another study re-
cently published by Nahrendorf and co-workers used
'8 E-CLIO for detection of macrophages in aortic aneur-
ysms induced in ApoE —/- mice. The nanoparticles were
also labeled with a near-infrared fluorochrome. PET/CT
images showed significantly higher uptake in the aneur-
ismal aortic section compared with what was found in
the wild-type aorta. In addition, the PET signal within
the aneurysm was stronger than in atherosclerotic pla-
ques. Ex-vivo imaging by autoradiography and fluores-
cence reflective microscope confirmed high uptake of
'8 E-CLIO in the aneurysm (Figure 7) [75].

Gold nanoparticles

Gold nanoparticles have received special attention in the
biomedical field due to their biocompatibility, facile con-
jugation to biomolecules, and the unique optical proper-
ties conferred by their localized surface plasmon
resonance [76]. Moreover, gold is resistant to oxidation
under physiological or ambient conditions, which permit
unrestricted interaction of gold with the biological envir-
onment [23]. The optical properties of gold depend on
the nanoparticle size and shape. One can manipulate the
shape of gold nanostructures to control their electronic
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Figure 7 Autoradiography and fluorescence reflectance image
of the aorta. (A) Autoradiography at an aneurysm in the
descending thoracic aorta (arrow). (B) Fluorescence reflectance
image of the same aorta. Nuclear and optical imaging concordantly
showed nanoparticle accumulation in the aneurysmatic vessel wall.

Adapted with permission from [75].

and associated optical properties for the desired
applications.

Gold nanoparticles can be manufactured into different
shapes, such as gold nanospheres, nanorods, nanocages,
and nanostars [77]. Their widespread utilization in bio-
logical assays relies on the availability of synthetic meth-
ods yielding nanoparticles with desired characteristics
including high solubility in water, adequate morphology,
size dispersion, and surface functionalities. The most
common method to prepare gold nanoparticles is the
citrate reduction method of Turkevich [78]. This ap-
proach is very convenient since appropriate functionality

can be easily applied by replacement of the citrate. The

Figure 6 In vivo NIRF (a) and PET (b) images of mouse injected with iron oxide nanoparticles. Images were acquired 1, 4, and 18 h after
injection. (c) MRI images acquired before and 18 h after injection. Reproduced with permission from [73].
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nanoparticle surface can be modified in order to achieve
specific labeling with biomolecules, such as antibodies,
cardohydrates, and proteins.

In the imaging field, gold nanoparticles have shown
promise for their use in computed tomography, Raman
spectroscopy, and photoacoustic imaging. Recently, sev-
eral reports have also indicated the use of gold nanopar-
ticles labeled with gamma emitters or positron emitters
for multimodality imaging, such as PET/CT imaging
[79-82]. This approach takes advantage of higher PET
sensitivity and an accurate localization provided by CT.
In this context, Xie et al. have prepared a radiolabeled
gold nanoshell for tumor diagnosis. Gold nanoparticles
were coated with PEG2k-DOTA for ®*Cu chelation.
After surface modification, the nanoparticles' diameter
was 170 nm, and the surface charge was -5 mV. The
radiolabeling efficiency was 81.3%, and ®**Cu binding was
shown to be stable for 3 h. PET imagines were acquired
at different times, using **Cu-DOTA and ®*Cu-DOTA-
PEG2k as controls. The ®*Cu-nanoparticles showed
higher accumulation in the tumor site, mainly at 20 and
44 h post-injection (Figure 8) [83].

Morales-Avila and co-workers have recently reported
the use of **™Tc-labeled gold nanoparticles conjugated
with c¢[RGDfk(C)] for tumor imaging. In vivo studies
were performed in C6 human glioma-bearing athymic
mice. Nanoparticles showed rapid blood clearance, with
less than 0.5% ID/g remaining in the blood compartment

#4Cu-DOTA

$4Cu-DOTA-
PEG2k

1hr 4 hr 20 hr

44 hr

Figure 8 Sagittal PET images of three rats. The images were
acquired at 1, 4, 20, 44 h after injection of */Cu-DOTA, **Cu-DOTA-
PEG2k, and radiolabeled gold nanoshell (®*Cu-NS), respectively.
Surface-rendered CT images depicting tumor location are also
shown (H, heart; L, liver; K, kidney; T, tumor). Reproduced with
permission from [83].
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Figure 9 Transaxial (a) and coronal MicroSPECT/CT (b) images
of an athymic mouse with a C6-induced tumor. The images were
taken 1 h after ™ Tc-labeled gold nanoparticles conjugated with ¢
[RGDfk(C)] intravenous administration. Adapted with permission
from [84].

1 h post-injection. However, evident tumor uptake was
observed at the same time (1 h post-injection) (3.65%
ID/g) (Figure 9) [84].

Shao et al. have reported '**I-labeled gold nanorods
for imaging inflammation in an adjuvant-induced arth-
ritic rat model. These nanoparticles were PEGylated in
order to achieve long circulation and also conjugated
with anti-intercellular adhesion molecule 1 antibody,
which is overexpressed in arthritic diseases. Results
showed higher accumulation in the inflamed joints when
compared with the control group [85]. These findings
further support the use of gold nanoparticles in detect-
ing inflammation due to the increased permeability of
inflamed areas, allowing for higher uptake of the diag-
nostic agent.

Micelles

Micelles are self-assembled nanostructures with a hydro-
phobic core and hydrophilic shell which are spontan-
eously formed above a certain concentration (critical
micellar concentration). They can be constituted from
lipid-based or polymer-based amphiphilic molecules
[13]. Micellar formulations, including polymer micelles,
have been extensively studied as molecular delivery sys-
tems [86]. In general, the hydrophobic portion of the
polymer forms a semisolid core, while the hydrophilic
portion of polymer forms the corona. The hydrophobic
core promotes stability, while the hydrophilic shell
increases solubility, prevents opsonization, and reduces
RES uptake. Molecules can be physically trapped into
the hydrophobic core or can be covalently bound with
components of the corona [87].

The in vivo performance of micelles is controlled by
several factors, such as size distribution, shape, density,
deformability, and surface properties which can deter-
mine physicochemical and pathophysiological interac-
tions. Blood stability can be affected by several factors
including phagocytotic/endocytotic recognition, immune
responsiveness, and vascular escape routes. In addition,



de Barros et al. EINMMI Research 2012, 2:39
http://www.ejnmmires.com/content/2/1/39

if these nanoparticles are charged, they will be rapidly
cleared from circulation. In contrast, neutral particles
display longer circulation times. In general, micelles in
the range of 10 to 200 nm are preferred since they can
avoid the RES more effectively, increasing circulation
half-life [88-90]. In summary, the characteristics of
micelles that are favorable for in vivo imaging include fa-
cile encapsulation of a diagnostic agent, thermodynamic
stability (often a low critical micellar concentration is
required), and long blood circulation times, avoiding
RES recognition.

In this sense, some radiolabeled micelles have been
prepared for diagnostic purposes [91-94]. Zhang et al.
have prepared peptide-conjugated polymeric micellar
nanoparticles which were used to identify EphB4 recep-
tors in prostate cancer in a mouse model by SPECT
[93]. The same group has recently reported the use of
annexin A5-conjugated polymeric micelles (CPM) for
the detection of apoptosis. Annexin A5 is a protein
which binds strongly and specifically to phosphatidylser-
ine residues. These residues are present on the cell sur-
face in the early stage of apoptosis. Micelles were labeled
with '"'In and a near-infrared fluorescent indocyanine
(Cy7)-like dye in order to acquire SPECT and optical
images. Tumor apoptosis was clearly visualized in mice
bearing EL4 lymphomas treated with cyclophosphamide
and etoposide. On the other hand, untreated animals
showed lower accumulation of the nanoparticles
(Figure 10) [95]. In another study, Xiao et al. have
reported a multifunctional micelle made up with a
hyperbranched amphiphilic block copolymer. These par-
ticles were conjugated with cRGD peptide (for integrin
a,Ps target), NOTA (a macrocyclic chelator for %Cu-la-
beling and PET imaging), and doxorubicin (DOX) for
cancer therapy. When injected into U87MG tumor-
bearing mice, these particles (**Cu-micelle-DOX-cRGD)
showed higher tumor accumulation than the nontar-
geted particle (®*Cu-micelle-DOX) used as control. Fur-
thermore, injecting a blocking dose of cRGD peptide
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along with **Cu-micelle-DOX-cRGD reduced tumor up-
take significantly, indicating integrin a,B; specificity.
These findings suggested that such multifunctional mi-
celle approach can be considered a promising cancer
theranostic platform [96].

Carbon-based nanoparticles

The most prominent types of carbon-based nanoparti-
cles that have been evaluated for medical applications
are carbon nanotubes, fullerenes, perfluorocarbon
nanoemulsions, and graphene oxide nanoparticles. Car-
bon nanotubes (CNTs), first described by Iijima [97], are
well-ordered hollow nanomaterials with lengths from
several hundred nanometers to several micrometers and
diameters of 0.4 to 2 nm for single-walled carbon nano-
tubes (SWN'Ts) and 2 to 100 nm for multi-walled carbon
nanotubes (MWNTs). In recent years, efforts have been
devoted to explore the potential biological applications
of CNTs, which were mainly motivated by their interest-
ing size, shape, and structure [98,99]. Some studies have
reported the use of radiolabeled CNTs [100-104]. McDe-
vitt et al. have prepared antibody-functionalized SWNTs
labeled with indium-111 for tumor targeting. In vitro
and in vivo studies were performed, and results sug-
gested that CNTs could be used as a novel delivery plat-
form [105]. More recently, Liu and collaborators have
published in vivo biodistribution data for PEG-coated
*Cu-labeled SWNTs that were functionalized with RGD
peptide in U87MG tumor-bearing mice. SWNT-
PEG5400-RGD showed higher tumor uptake (approxi-
mately 15% ID/g at 24 h post-injection) when compared
with PEG-coated SWNT free of RGD (approximately 4%
ID/g at 24 h post-injection) [106]. Ruggiero et al. have
reported a radiolabeled carbon nanotube that targets the
tumor neovasculature via the E4G10 antibody. The
E4G10 antibody specifically targets the monomeric vas-
cular endothelial-cadherin epitope expressed on tumor
angiogenic vessels. PET ROI data revealed a tumor-to-
muscle ratio at 96 h post-nanotube injection equal to

No treatment

into treated mice. Adapted with permission from [95].

Figure 10 Imaging after administration of "n-labeled annexin A5-CPM in untreated and treated mice. (A) Dual SPECT/CT and (B) near-
infrared fluorescence optical imaging after administration of '''In-labeled annexin A5-CPM into EL4 lymphoma-bearing mice (untreated animals).
(C) Dual SPECT/CT and (D) near-infrared fluorescence optical imaging of EL4 lymphoma apoptosis after injection of '''In-labeled annexin A5-CPM
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5.08. This result can support the idea that CNTs can be
used for medical applications, including diagnostic
approaches [107].

Fullerenes were discovered in 1985 and were first
studied for diagnostic purposes soon afterwards. The
most representative fullerene is Cgp, which has a diam-
eter around 0.7 nm. Fullerenes naturally have poor water
solubility, resulting in the formation of aggregates when
administrated in biological systems. Fortunately, this in-
convenience can be solved by preparing functionalized
fullerenes (e.g., -OH, -NH2, -COOH), which show ad-
equate solubility in polar solvents [108,109]. Fullerenes
can be used to entrap metals inside their cavity, leading
to nanostructures called endohedral metallofullerenes
[110]. One of the most important applications of this ap-
proach is in molecular imaging with radiotracers due to
the fact that it is possible to encapsulate radioactive
metals for diagnostic purposes [111-113]. Nickolic et al.
have described the preparation and biodistribution of
1%I_radiolabeled fullerenes. The results confirmed the
possibility of using these molecules as radiotracers for
in vivo studies [114].

Perfluorocarbon nanoemulsions are a multifunctional
technology that are typically about 250 nm in diameter
and have a perfluorocarbon core wrapped by a mono-
layer of phospholipid. Different perfluorocarbons can be
used for the core, including perfluorodichlorooctane,
perfluorodecaline, perfluoro 15-crown-5 ether (CE), and,
most commonly, perfluorooctyl bromide (PFOB). The
biocompatibility of PFOB is well documented showing
no toxicity, even at large doses. The large surface area of
nanoparticles can easily accommodate 100 to 500 radio-
nuclides, allowing their application for diagnostic pur-
poses [115,116]. Hu et al. have developed a o,f3-
integrin-targeted '''In-perfluorocarbon nanoparticle for
detecting tumor angiogenesis in rabbits. The tumor up-
take in rabbits receiving o,f3-integrin-targeted nanopar-
ticles was four-fold higher than that in the nontarget
control at 18 h [117].

Graphene oxide is a class of dual-dimensional carbon-
based nanoparticles which has attracted attention due to
its unique electronic, thermal, mechanical, and optical
properties [118]. Several studies have reported a variety
of graphene-based platforms useful for biomedical appli-
cations, including bioimaging [119-123]. The toxicity of
graphene is closely related to its surface characteristics.
As a result, PEG functionalized graphene oxide nanopar-
ticles have showed minimal toxicity when administrated
in mice [124]. Zhang and co-workers have reported gra-
phene oxide nanoparticles which exhibited long blood
circulation and low uptake by MPS, indicating that those
particles might be used for biomedical applications
[125]. Hong et al. have prepared ®®Ga-labeled nanogra-
phene for tumor vasculature imaging. These particles
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were conjugated with an antibody that binds to CD105
(a marker for tumor angiogenesis) and then injected into
4T1 tumor-bearing mice. PET-CT images revealed
tumor uptake, indicating nanographene affinity to tumor
vasculature (Figure 11) [126].

Other nanoparticles

Besides the various nanoparticles presented in the previ-
ous sections, in order to look into new possibilities in
nanotechnology-based diagnosis, other nanoparticles
have been reported including quantum dots, dendrimers,
nanocapsules, solid lipid nanoparticles, and silica
nanoparticles.

Quantum dots are semiconductor nanocrystals made
from a variety of different compounds, such as cadmium
and selenide with unique optical and electrical proper-
ties [1,13,127]. Most quantum dots are composed of
heavy metals that are not normally exocytosed from
cells, and this can give rise to in vivo cytotoxicity and
limited clinical safety. Nevertheless, interest in these
structures has resurged with the advent of heavy metal-
free quantum dots, which are expected to have less tox-
icity than earlier designs [128]. A few radiolabeled
quantum dots have been reported with a variety of iso-
topes, such as *>™Te, '* F, and ®*Cu [129-132]. Cai et al.
have reported an amine-fuctionalized quantum dot
modified with RGD peptides and DOTA chelator for
PET/NIRF imaging of the integrin o,f3. Results showed
high linear correlation between nuclear and optical sig-
nals. In this study, tumor uptake was 4% ID/g at 18 h
post-injection [133]. Similarly, Chen et al. have prepared
quantum dots conjugated with vascular endothelial
growth factor (VEGF) for imaging angiogenic vessels
within tumors. Both NIR fluorescence imaging and PET
imaging showed specific delivery of nanoparticles to sites
of VEGF receptor over expression [134].

Dendrimers are a class of well-defined nanostructured
macromolecules that possess a treelike architecture

PET/CT

Figure 11 Representative PET/CT images of °® Ga-labeled
nanographenes in 4T1 tumor-bearing mice at 3 h after
injection. Tumor site is indicated by arrowheads. Adapted with
permission from [126].
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distinguished by exponential numbers of discrete den-
dritic branches radiating out from a core [135]. Dendri-
mers varying in their initiator core, repeating units,
terminal functionality, charge, and solubility profile have
been synthesized thus far [136,137]; have found diversi-
fied applications ranging from the paint industry to de-
salination plants; and have been tested as diagnostic and
drug delivery agents [138]. These nanostructures provide
three regions for modification with bioactive agents,
namely, the core, branching zone, and branch surface
[13]. A few radiolabeled dendrimers have been reported
and found to be useful for SPECT and PET imaging
studies [139-143]. Almutairi et al. have published the ef-
ficacy of biodegradable dendritic structures surface-
modified with a cyclic RGD peptide and with encapsu-
lated "®Br for the targeted delivery and PET imaging of
hindlimb ischemia in mice [144]. Zhang et al. have
reported the synthesis, biodistribution, and SPECT im-
aging of three radiolabeled dendrimer conjugates
(**™Tc-dendrimer, **™Tc-dendrimer-folic acid, **™Tc-
dendrimer-PEG-folic acid) in KB tumor-bearing mice.
The **™Tc-labeled PEGylated dendrimer PAMAM-folic
acid conjugates showed higher tumor uptake at 6 h
post-injection (10.27% ID/g) when compared with
99mTe_dendrimer-folic acid (6.78% 1D/ g) and 9mTe_den-
drimer (4.38% ID/g). The MicroSPECT imaging corro-
borated well with biodistribution data [145].

Nanocapsules are nanoparticules composed of a core,
mainly lipophilic, surrounded by a polymeric wall with
lipophilic and/or hydrophilic surfactants at the interface
[146]. Some studies have been reported using radiola-
beled nanocapsules for in vitro and in vivo evaluations
[147-150]. Pereira et al. have developed a PEG surface-
modified nanocapsule labeled with technetium-99 m for
detecting sites of inflammation. Results showed higher
accumulation in inflamed foci than in control tissue,
suggesting that such nanostructures can be useful for
diagnosing inflammation [151].

Solid lipid nanoparticles are nanoscaled lipid matri-
ces, solid at physiological temperatures and stabilized
by surfactants. These nanoparticles are composed of
physiological lipids (such as fatty acids and phospholi-
pids) and tend to show high compatibility and bio-
degradability [152]. Recently, Andreozzi and co-
workers have published a novel method to radiolabel
solid lipid nanoparticles with **Cu. The mean diameter
of the nanoparticles was approximately 150 nm by dy-
namic light scattering, and in vivo studies showed a
blood half-life of 1.4 h [153]. Andreozzi's results sug-
gested that solid lipid nanoparticles can be potentially
used for diagnostic purposes, suggesting a new field
for solid lipid nanoparticles.

Silica nanoparticles have gained extensive attention in
biomedical field since they can be utilized in both
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M21 (4hr)

M21L (4hr) M21 (24hr)

Figure 12 Representative whole-body coronal microPET
images. The images were taken 4 h after injection, demonstrating
M21 (left, arrow), M21L (middle, arrow), and enhanced M21 tumor
contrast at 24 h after injection (right, arrow). Adapted with
permission from [159].

diagnostic and therapeutic domains [154]. In addition,
recent improvements in regulating the geometry, poros-
ity, and surface characteristics of these particles have
further enhanced and facilitated their biomedical appli-
cations [155-158]. Benezra et al. have reported multi-
modal silica nanoparticles (c-dots) conjugated with
cRGD peptide and labeled with Cy5 dye and '**I for
fluorescence and PET imaging, respectively. These 7-nm
particles exhibited high-affinity/avidity binding to cells
lines, which overexpress o,p; integrin receptors (M21,
HUVEC). Furthermore, when injected into M21 tumor-
bearing mice, those particles were able to identify the
tumor site, yielding a tumor uptake of 3.6% ID/g (Fig-
ure 12). In contrast, after injection into mice with M21L
tumor (a o,f3 integrin nonexpressing cell line), tumor
uptake was reduced significantly to 0.7% ID/g, indicating
specificity to a,f3 integrin receptors. The US Food and
Drug Administration have approved the first human
clinical trial of c-dots. The planned clinical trial will in-
volve patients with melanoma, is expected to verify that
the dots are both safe and effective in humans, and also
will provide promising data for potential future applica-
tions [159].

Conclusions

Nanomedicine has received increasing interest during
the past decade since it has become clear that nanoparti-
cles can be used to circumvent some of the difficulties
that are associated with the administration of standard
drugs. One of the greatest advantages of this field is the
ability to generate particles functionalized with a wide
variety of targeting ligands and physicochemical proper-
ties. This versatility permits the creation of agents that
are specifically tailored for each application. In the diag-
nostic field, radiolabeled nanoparticles have recently
emerged as potentially very promising agents for an ac-
curate, reliable, and early diagnosis for several disorders
and diseases. These particles provide a means for per-
forming multimodality imaging, which will further



de Barros et al. EINMMI Research 2012, 2:39
http://www.ejnmmires.com/content/2/1/39

enhance the rapidly evolving synergy among different
techniques (such as, PET/SPECT, MRI, CT, and NIRF).
To date, the two major areas where nanoparticles have
been applied are cancer and cardiovascular diseases, and
some promising results have been reached in both fields.
However, in order to attain a nanocarrier with suitable
characteristics for biological applications, several factors
must be considered. First, nanoparticle characterization
should be extensively evaluated before performing ani-
mal experiments since in vivo performance is strongly
related to shape, charge, surface modification, and size.
Second, in vivo stability should be determined since
some nanoparticles can be disrupted in the bloodstream.
For instance, micelles can decompose back to their
unimer forms due to the high plasma dilution. Third, it
is extremely important that the radioisotope chelation
with diagnostic agents remains stable over the course of
imaging. Otherwise, biodistribution and imaging data
will not be useful for predicting the fate of nanoparticles,
due to the fact that the radioisotope distribution will no
longer reflect that of the nanoparticle. In this sense, an
appropriate design and use of chelators with high affinity
for each isotope should be considered in order to
achieve high stability and dependable data. Therefore,
strong efforts should be made in order to prepare
nanoparticle-based agents which can allow for efficient,
specific in vivo delivery of diagnostic agents without sys-
temic toxicity. Although some particles are in clinical
trials, such as c-dots, most radiolabeled nanoparticles
reported up to now face the challenges and are still in a
preclinical stage. We believe that the future of nanome-
dicine for diagnostic applications lies on the use of
multimodal approach by combining different imaging
modalities to achieve an accurate diagnosis in cancer,
cardiovascular disease, and other disorders. However, al-
though clearly much remains to be done before radiola-
beled nanoparticles can be widely adopted for routine
clinical applications due to their unusual characteristics,
including their extraordinary sensitivity in visualizing the
targeted tissues compared to other diagnostic agents, it
is likely that such preparations will have a major impact
on the diagnostic arena in the near future.
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