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Abstract

miRNAs are a class of small RNAs that regulate gene expression via RNA silencing machinery. Some viruses also
encode miRNAs, contributing to the complex virus-host interactions. A better understanding of viral miRNA
functions would be useful in designing new preventive strategies for treating diseases induced by viruses. To meet
the challenge for how viruses module host gene expression by their encoded miRNAs, we measured the
functional similarities among human viral miRNAs by using a method we reported previously. Higher order
functions regulated by viral miRNAs were also identified by KEGG pathway analysis on their targets. Our study
demonstrated the biological processes involved in virus-host interactions via viral miRNAs. Phylogenetic analysis
suggested that viral miRNAs have distinct evolution rates compared with their corresponding genome.

Introduction
miRNAs, about 22 nucleotides in length, constitute a
large family of non-coding RNAs that regulate gene
expression posttranscriptionally, leading their target
mRNAs to direct destructive cleavage or translational
repression by base pairing with the 3’ untranslated
regions (3’ UTRs). miRNA-mediated regulation plays
crucial roles in a wide spectrum of biological processes,
including proliferation [1], apoptosis [2], development
[3], immune system regulation [4], and oncogenesis [5].
Recent discoveries on viral miRNAs, mostly in herpes-

virus family [6], threw lights on a new level of cross-talk
between virus and host in viral infections and pathogen-
esis [7]. Viral miRNAs have been reported to participate
in immune evasion by directly down-regulating host
immune defence genes, and even to cooperate with viral
proteins to target the same process [8]. The combina-
tion of protein-mediated and miRNA-mediated regula-
tions forms an intricate strategy for viruses to resist host
defence system and thus increase the opportunities of
their survival.
The research on viral miRNAs is still far from

exhausted, with many unknown miRNA functions yet to
be discovered. miRNA identification using computa-
tional tools is the most widely used method. In contrast
to most eukaryotic miRNAs, virus-encoded miRNAs do

not have homologs in other viral genomes or in the gen-
ome of the human host [6], and thus are difficult to be
identified using existing miRNA gene prediction tools.
Cloning and sequencing small RNA libraries to identify
and characterize miRNAs is the basic method for
miRNA discovery, since computationally predicted miR-
NAs should also be confirmed by experimental methods.
Reverse ligation-mediated RT-PCR [9] is a widely used
method in the identification of mature miRNAs and has
been used to detect maturely processed MuHV-4 miR-
NAs [10]. Experimental validation is still a barrier in
miRNA identification, especially in host cells infected by
viruses. Currently, only a small fraction of viral miRNAs
has been identified, and the functions of most of these
viral miRNAs remain unknown. To bridge the gap in
understanding the targets regulated by these virus-
encoded miRNAs, we used computational method to
predict host targets of viral miRNAs and measured their
functional similarities to reveal the interspecies cross-
talk between virus and host by viral miRNAs.

Materials and methods
Host target gene prediction of viral miRNAs
In order to determine how viruses reshape the physiolo-
gical states of human cells by their encoded miRNAs,
we first predicted host genes targeted by viral miRNAs.
We collected viral miRNAs encoded by BK polyoma-
virus (BKV), Epstein-Barr virus (EBV), human cytomega-
lovirus (HCMV), human immunodeficiency virus 1
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(HIV1), human herpesvirus 1 (HSV1), human herpes-
virus 2 (HSV2), and Kaposi’s sarcoma-associated herpes-
virus (KSHV). Viral miRNA sequences were retrieved
from miRBase [11] release 16 (Sep 2010). We extracted
3’ UTR sequences in a single FASTA format file from
human genome (version 18) that was downloaded from
UCSC [12].
Host target genes of virus-encoded miRNAs were pre-

dicted by the algorithm of Probability of Interaction by
Target Accessibility (PITA) that computes the difference
between the free energy gained from the formation of the
miRNA-mRNA duplex and the energetic cost of unpair-
ing the mRNA to make it accessible to the miRNA [13].
We chose PITA for viral miRNA target prediction
because it had been demonstrated to reach high accuracy,
and more importantly, it takes advantage of the target
accessibility but not conservation information to reduce
false positive. Conservation information, which was used
by most of other methods, is not suitable for predicting
target genes of the less evolutionarily conserved viral
miRNAs [6]. We used a flank of 3 upstream and 15
downstream nucleotides when performing prediction,
since miRNA-mRNA interaction requires unpairing of
bases flanking the targets. To reduce false positive, the
prediction results were narrowed down by the criteria of
7-8 bases seed length, with no G:U wobble or loops, no
mismatch, and ΔΔG < -20 kcal/mol.

Functional similarity measurement of viral miRNAs
We have previously proposed a method for systematic
study of functional similarities among miRNAs by using
their target genes Gene Ontology (GO) semantic simila-
rities [14]. As described in our previous study, the func-
tional similarity of human miRNAs, obtained by our
method, showed positive correlation with expression
similarity, and the clustering results derived from the
functional similarity were coherent with biological
knowledge in many aspects including disease associa-
tion, genome conservation, and the cross-talk between
hosts and viruses [14]. The method is reliable to calcu-
late functional similarities and sensible to cluster miR-
NAs, and thus can be used to predict novel miRNA
functions.
Here, we applied our method to measure functional

similarities among viral miRNAs. As suggested in our
previous study [14], the measurement was fundamen-
tally based on host target genes of viral miRNAs. Biolo-
gical process ontology was used to annotate target
genes, and Wang’s method [15] was used to calculate
semantic similarity. Semantic similarity calculation was
implemented by our in-house developed R package
GOSemSim [16].
Similarity scores were then analyzed by R package

pvclust [17], which used multi-scale bootstrap re-

sampling to evaluate the uncertainty of cluster analysis.
The agglomerative method, average linkage, was used,
and 10,000 bootstrap replications were run. All clusters
were extracted with approximately unbiased (AU) p-
value > 0.95, meaning that the hypothesis with “the clus-
ter does not exist” is rejected with significance level of
0.05.

GO enrichment analysis of significant clusters
The common biological processes regulated by these
significant miRNA clusters were evaluated by GOstats
[18] with p < 0.001. GOstats using hypergeometric
model to assess whether the number of selected genes
associated with the GO term is larger than expected.
This method had been used to predict the functions of
miRNAs [14] and can be used to provide biological
insights of viral strategies.

KEGG enrichment analysis of genes targeted by viral
miRNAs
In order to uncover higher order functions of how
viruses transform cellular states by their encoded miR-
NAs, we adopted KEGG (Kyoto Encyclopedia of Genes
and Genomes) enrichment analysis to identify pathways
regulated by viral miRNAs to provide biological insights.
KEGG pathway is a collection of manually drawn path-
way maps representing molecular interactions and reac-
tion networks, and has been widely used for biological
interpretation of higher level systemic functions [19].
KEGG enrichment analysis is calculated by R package
SubpathwayMiner [20], which implements hypergeo-
metric test to measure p-value for evaluating enrich-
ment significance of pathways. SubpathwayMiner also
provides the FDR-corrected q-values to reduce the false
positive discovery rate [20].

Comparing viral miRNA regulated pathways
Significant KEGG pathways regulated by different
viruses were compared and visualized using our in-
house developed R package clusterProfiler http://biocon-
ductor.org/packages/2.8/bioc/html/clusterProfiler.html.
ClusterProfiler, which was implemented based on R and
its plotting system ggplot2 [21], is released under the
Artistic-2.0 license within Bioconductor project [22].
ClusterProfiler was designed to provide statistical analy-
sis of GO and KEGG and visualization tools for compar-
ing functional profiles among gene clusters. More details
on the use of clusterProfiler are available in the package
vignette.

Phylogenetic analysis
We built phylogenetic trees of human viruses based on
the functions their miRNAs encoded. Phylogenetic trees
were constructed by R package phangorn [23] using the
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popular neighbour-joining (NJ) method. For validating
our phylogenetic analysis, we compared our results with
phylogenetic trees obtained from whole genome
sequence alignment. Complete genome sequences of
viruses were obtained from NCBI nucleotide database.
Multiple sequence alignment and phylogenetic tree con-
struction were done by ClustalX (version 2.0.12) [24]
using NJ algorithm. Robinson-Foulds (RF) metric [25],
the most widely used method in comparing phylogenetic
trees, was adopted to compute the topological distance
between phylogenetic trees. RF rate was obtained by
normalizing the RF distances by the number of total
edges for representing the relationship among trees [26].
RF rate measures the dissimilarity between two trees.

Results and Discussion
We applied our method [14] to assess similarities among
viral miRNAs. As a result, we obtained the pairwise
functional similarity of 29 viral miRNAs as illustrated in
Figure 1.
The functional similarity matrix of the pairwise viral

miRNAs was then analyzed by R package pvclust to
assess the uncertainty of clustering result [17]. We
obtained 3 clusters with AU p-value > 0.95. These 3
clusters contain 2 (ebv-miR-BART20-5p and hsv2-miR-
H6*), 7 (hcmv-miR-UL70-3p, hiv1-miR-H1, hsv1-miR-
H1, hsv1-miR-H6-5p, hsv2-miR-H10, hsv2-miR-H22
and kshv-miR-K12-12), and 3 (ebv-miR-BART17-5p,
hcmv-miR-UL148D and hsv1-miR-H6-3p) miRNAs as
illustrated in Figure 2.
GO enrichment analysis was performed across these

three significant clusters to discover their biological
themes. As a result, Cluster 1 suggests the down-regula-
tion of xylosyltransferase activity, involved in O-glycan
processing. O-glycans had been described to play roles
in cell polarity [27], which involves in the formation of
immunological synapse [28], indicating that viruses pre-
vent the formation of immunological synapse by inhibit-
ing the xylosyltransferase activity. Cluster 2 represses a
wide range of binding activities, including protein bind-
ing, DNA binding, receptor binding, and enzyme bind-
ing. Especially, the inhibition of MHC protein binding
and CD40 receptor binding suggests that viruses use
miRNAs to interfere the activation of antigen presenting
cells. This may be the strategy for viruses to extend the
life of the infected cells and to establish a favourable
environment for their replication. Cluster 3 down-regu-
lates transcription factor activity to favour viral latency.
EBV BART miRNAs were expressed in latent infection
[29]. Hsv1-miR-H6-3p had been reported to promote
latency by inhibiting the expression of HSV-1-encoded
transcription factor, ICP4, that is required for the
expression of most HSV-1 genes during productive
infection [30,31]. It has been reported that viruses

encode proteins to interfere with transcription factors,
and that miRNAs are more versatile to reshape the cel-
lular status to escape host immune system and to hijack
cellular machinery for their replication [32,33].
The average similarity among 29 viral miRNAs is only

0.434 and most of the miRNAs cannot be clustered with
AU p-value > 0.95, indicating that a majority of these
viral miRNAs have distinct functions, with the versatili-
ties and flexibilities of viral regulations.
Viral infection generally results in dramatic alterations

in cellular mRNA expression. We thus further identified
cellular pathways perturbed by viral miRNAs using
KEGG enrichment analysis to gain a higher level per-
ception. The statistically and significantly enriched path-
ways perturbed by different viruses were then compared
and illustrated in Figure 3.
As shown in Figure 3, different viruses have distinct

strategies to reshape cellular status. It seems that viral
miRNAs were designed to against many important path-
ways to favour their pathogenesis. KSHV-encoded miR-
NAs had been described to directly down regulate a
major regulator of cell adhesion, THBS1 [34], that is
involved in the recruitment of monocytes and T cells to
the sites of infection [35]. Down regulation of THBS1
by KSHV miRNAs may aid KSHV-infected cells in
avoiding detection by the host immune system [30].
HIV1-encoded miRNAs play critical roles in oncogenic
transformation [36], and three miRNAs encoded by EBV
are crucial for efficient B cell transformation [37]. These
biological findings are consistent with our analyses. In
addition, many pathways in our analyses have not been
reported yet, and thus can serve as putative functions
played by viral miRNAs for further investigations.
Reconstructing the tree of virus phylogeny is still the

cardinal challenges in biology. Here we used the similar-
ity index by functions that viral miRNAs encoded to
rebuild the phylogenetic tree. We then compared our
tree with phylogenetic tree obtained by genome align-
ment as shown in Figure 4. Although the tree based on
genome alignment included biases like horizontal gene
transfer (HGT) [38], genome alignment is still the de
facto standard for phylogenetic tree construction.
We evaluated the similarity between these two trees.

The topological distance between them was calculated
by RF metric to be 8, and the corresponding RF rate is
0.727, and thus the similarity between the two trees is
0.273. Surprisingly, viral miRNAs have distinct evolution
rates compared to their corresponding genome based on
our functional analysis. We thus measured the evolu-
tionary distance among viruses by their encoded miRNA
sequences. RF distance between phylogenetic trees
obtained from genome sequences and miRNA sequences
is 6, and the corresponding RF rate is 0.545, and thus
the similarity between the two trees is 0.455.
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Viral miRNAs have different properties compared
with viral proteins, such as small and non-immuno-
genic, and thus they may serve as ideal tools to inter-
polate cellular environment in the ways that benefit
virus replication. This would mean an evolutionary
reward for rapid adjustment to the host and environ-
mental statuses. Viral miRNAs do not share a high
level of homology even within the members of the
same family [6,39]. Phylogenetic analysis of all pre-
viously known virus miRNA genes showed that most
of the known viral miRNAs have long distant relation-
ships and could be classified into specific miRNA
families [40]. These findings are consistent with our
phylogenetic analysis, suggesting that viral miRNAs

may evolve more rapidly than their genome. Especially,
the functions of viral miRNAs evolve even more
rapidly than their sequences.
Obviously, miRNAs are ideal for the tight space con-

straints characteristic of viral genomes and the evolu-
tion of a miRNA down-regulating a new target gene
can presumably be achieved more easily than the evo-
lution of a new protein [30]. It must be pointed out,
however, our current method only provides a percep-
tion of viral miRNA perspective and may contain some
biases, as it did not consider the fact that the activa-
tion of viral miRNAs depends on the viral life cycle in
various latent or at lytic stages, and the specific
infected cell types.

Figure 1 Functional similarity matrix of viral miRNAs.
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Conclusions
Intimately connected with various kinds of diseases,
viruses pose a crucial health problem on host. Host cel-
lular expression profiles altered by virus-encoded miR-
NAs form a new regulatory layer. Though studies into
pathogenesis by viral miRNAs are still in its infancy, the

interspecies regulation at the miRNA level fuels the
spark of the investigation into the repertoire of virus-
host interactions. Here, we applied our method to assess
the functional similarity among viral miRNAs. Our ana-
lyses showed that viral miRNAs have diverse functions.
We then summarized cellular pathways regulated by
viral miRNAs by the GO and KEGG enrichment ana-
lyses. Phylogenetic trees were reconstructed to reveal

Figure 2 Hierarchical clustering viral miRNAs with p-values.
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Figure 3 Comparison of enriched pathways regulated by virus-
encoded miRNAs. The sizes of the dots represent the percentage
of each row (KEGG category), and p-values were calculated by
hypergeometric tests.

Figure 4 Phylogenetic trees of human viruses, constructed
from genome sequence alignment (left) and functional
similarity of viral miRNAs (right).
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the evolutionary distance at the perspective of viral
miRNAs.
Experimental validation of computational results is

still a challenge, a hindrance towards understanding the
functions of viral miRNAs. We believe that the integra-
tion of bioinformatics with microarray and proteomic
data would be a promising way to elucidate the whole
picture of virus-host interaction mediated by viral miR-
NAs. In addition, the identification of roles played by
viral miRNAs in pathogenesis would help in designing
new preventive and therapeutic approaches. This has
also been described as new therapeutics to correct the
aberrant activity of miRNA-mRNA interaction by using
anti-miRNA oligonucleotides (AMOs) [41]. We hope
that this work can provide a better understanding of
basic biological processes involved in latency and onco-
genic transformation mediated by viral miRNAs.
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