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Abstract

Background: The 16S rRNA is by far the most common genomic marker used for prokaryotic classification, and has
been used extensively in metagenomic studies over recent years. Along the 16S gene there are regions with more or
less variation across the kingdom of bacteria. Nine variable regions have been identified, flanked by more conserved
parts of the sequence. It has been stated that the discriminatory power of the 16S marker lies in these variable regions.
In the present study we wanted to examine this more closely, and used a supervised learning method to search
systematically for sites that contribute to correct classification at either the phylum or genus level.

Results: When classifying phyla the site selection algorithm located 50 discriminative sites. These were scattered over
most of the alignments and only around half of them were located in the variable regions. The selected sites did,
however, have an entropy significantly larger than expected, meaning they are sites of large variation. We found that
the discriminative sites typically have a large entropy compared to their closest neighbours along the alignments.
When classifying genera the site selection algorithm needed around 80% of the sites in the 16S gene before the
classification error reached a minimum. This means that all variation, in both variable and conserved regions, is
needed in order to separate genera.

Conclusions: Our findings does not support the statement that the discriminative power of the 16S gene is located
only in the variable regions. Variable regions are important, but just as many discriminative sites are found in the more
conserved parts. The discriminative power is typically found in sites of large variation located inside shorter regions of

higher conservation.

Background

The use of stable parts of the genomic content as an evolu-
tionary marker was a breakthrough for microbial studies
in the 1980s [1,2]. The 16S small ribosomal subunit gene
(16S rRNA) is today considered the gold standard for
phylogenetic studies of microbial communities and for
assigning taxonomic names to bacteria [3-5]. There are
several properties of the 16S gene that has made it useful
as a taxonomic target. First, the 16S gene is present in all
bacteria. Second, it contains regions resistant to prokary-
otic evolution [2]. This has made it possible to recognize
the 16S without too much problems in most genomes.
Third, and most important to this study, the 16S gene also
includes some variable regions in between the more con-
served parts. Nine such regions were once identified and
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named V1-V9 [6] from the sequence data available at that
time. Based on the data sets of those days, it was con-
cluded that the conserved regions are too conserved to be
useful for discriminating between taxa, and that the vari-
able regions are the key to classification of prokaryotes.
Some later studies [7,8] have also confirmed these results,
establishing a dogma in the use of 16S sequence data:
The information separating taxa is found in the variable
regions of the 16S gene.

The location of the variable regions, and implicitly the
conserved parts flanking them, has been based on some
multiple alignment of more or less full-length 16S genes.
Van de Peer et al. [6] used distances between sequences
together with the specific nucleotide substitution rate for
each position to identify the variable regions. Another
approach is to compute the entropy for each position in
the alignment [9], and conserved/variable regions corre-
spond to low/high entropy.
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The conserved parts are used to locate the marker gene,
either in silico in a sequence of genomic DNA, or more
commonly, in situ by polymerase chain reaction (PCR)
amplification [10] based on primers matching these con-
served parts. The first sets of primers were named accord-
ing to their positions on Escherichia coli 16S rRNA [11].
Over the years many publications have been devoted to
improving these primers [12,13].

In recent years it has been discovered that the conserved
parts are not in fact as conserved as once conceived,
and that there are really no such thing as universal PCR-
primers that will sample equally well in all branches of
the tree-of-life [14-16]. A recent study by Mizrahi-Man
et al. [17] consider, among other things, how well the vari-
ous variable regions are suited for classification. Still, these
investigations all have in common that they first fix a set of
primers, and then look at the regions between the primer-
matching sites to see if the corresponding sub-sequences
discriminate well or not. In this article we want to
examine the whole length of the 16S gene, and to see
if mining in the huge set of available 16S sequences can
tell us something about where the discriminating sites are
located, without any constraints with respect to primer
matching sites.

We approach this problem by classifying the 16S
sequences using a multivariate method and data con-
sisting of multiple alignments. We conduct a system-
atic search for the best discriminative sites along the
alignments. We use high-quality data from the databases
Greengenes [18], the Ribosomal Database Project (RDP)
[19] and SILVA [20]. The aim of this study is to investi-
gate where the most discriminative sites in the 16S marker
gene are located, more specifically if they correspond to
variable or conserved regions.

Methods

Data

Data were downloaded from three databases; Greengenes
[21], RDP [22] and SILVA [23]. From Greengenes
we downloaded the alignment of isolated named
strains, containing 117 101 sequences over 7682
positions. From RDP we downloaded all bacterial
sequences marked as good quality and with at least
1200 bases which resulted in an alignment containing
1 151 913 sequences over 22 721 positions. From
SILVA we downloaded the archived alignment named
SSURef 111 NR_tax silva trunc_aligned con-
taining 286 858 sequences over 45 984 positions.

From all alignments we discarded sequences less than
1200 bases long, sequences having alien characters
(not A,C,G, T or -) and sequences not classified to
one of the 2074 bacterial genera listed in the List
of Prokaryotic names with Standing in Nomenclature
(LPSN, http://www.bacterio.cict.fr/). We also discarded
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duplicated sequences. This resulted in a reduced align-
ment of high-quality data from each database, see Table 1.

Finally, we focused on the subset of sequences found
in all three databases, i.e. the intersection between the
databases. In order to obtain a consensus-based class label
for all sequences, we also discarded sequences assigned
to different genera in the three databases. We were then
left with 12362 sequences found in all three databases, see
Table 1. For each of these sequences both the assigned
phylum and genus were recorded as two alternative class
labels. Figure 1 shows the distribution of phyla in this data
set.

When performing the systematic search for discrim-
inating sites, phyla with less than 25 sequences were
discarded, leaving us with data for 11 phyla and a total
of 12270 sequences in the data set. When using genus as
response, we required at least 10 sequences in each genus,
resulting in 198 distinct genera (9948 sequences).

Entropy

To relate sites in the three alignments to each other,
and to conserved/variable regions, we computed the
entropy for each site in each alignment. This approach
has also been used in previous studies (e.g. [9]). For
all three alignments all sites consisting of less than 30
A, C, G and T were discarded as these provided too
little data. At each remaining site k we computed the
entropy

4
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where p1, ps, p3 and ps are the empirical proportions of
the four bases appearing at position k.

In order to visually identify the regions of high/low
entropy, this entropy was smoothed across positions using
a centered moving average of length 51. Figure 2 is a
visualisation of this from the three different alignments.
Note, the position specific entropy from (1) was used in
the subsequent analysis, the smoothing was only used to
illustrate.

Table 1 Overview of data

Database Downloaded Filtered Intersection
Greengenes 117101 x 7682 74928 x 3664 12362 x 3166
RDP 1151913 x 22721 135120 x 16686 12362 x 4084
SILVA 286858 x 45984 111914 x 13172 12362 x 4230

Each cell shows the number of sequences x the number of positions of each
alignment. Downloaded are the original alignments, Filtered means after
filtering of high-quality data (see text) and Intersection is the subset of
sequences common to all databases.
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Figure 1 Distribution of phyla in data set. The final 12362 sequences are classified into 26 different phyla in the data set. The left panel shows the
distribution among these phyla. The right panel gives a more detailed picture for the smaller numbers, with the four most common phyla ignored.
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Site selection algorithm

In order to search for discriminating sites along the 16S
alignments in a systematic way, we implemented a super-
vised learning approach. The input data to the supervised
learning method are one of the three alignments previ-
ously described and the class-labels for each sequence in
the alignment. We have used the Partial Least Squares
(PLS) method [24], which is one in a long list of super-
vised learning methods. PLS is well established and has
been used in many bioinformatics applications, also for
the analysis of sequence data [25,26]. PLS is especially
applicable when there are many correlated explanatory
variables. This will typically be the case for the present
data since the explanatory variables are in our case the
sites in the alignments, and many sites along the align-
ment will have similar base compositions giving high
correlations.

All three alignments were considered one at a time. Each
site in the alignment contains a column with the symbols
A,C,G,Tor -.In order to use the supervised learning
method we coded each symbol into a row-vector of five
binary values. The symbol A was coded as (1,0,0,0,0),
Cas (0,1,0,0,0), G as (0,0,1,0,0), T as (0,0,0,1,0) and
the indel - as (0,0,0,0,1). Thus, each N x 1 column of
symbols in the alignment gives rise to a N x 5 matrix
of binary values to be used in the PLS-algorithm. Where
N is the number of sequences. We use the term variable
instead of site below, but each site actually gives rise to five
numerical (binary) variables.

The response variable is in this case the class labels, and
this was also coded in a similar way, using one bit for each

class. As an example, when using phylum as response, the
single N x 1 column containing 11 different phyla was
translated into an N x 11 matrix of binary values, where
Proteobacteria corresponds to (1,0,0,0,0,0,0,0,0,0,0),
Firmicutes to (0,1,0,0,0,0,0,0,0,0,0) etc.

Being a multivariate method, PLS finds combinations
of the explanatory variables giving the minimum classifi-
cation error. These combinations are referred to as PLS
components. In principle, all explanatory variables are
included, and given more or less weight in the compo-
nents. Variable selection means we intend to select only
a subset of the original explanatory variables, and then
combine these to achieve the best possible discrimination.
There are many approaches to variable selection under
the PLS paradigm [27], and for this application we have
chosen the Selectivity Ratio (SR) score as the criterion.
The SR-score is the ratio of explained variance to residual
variance for each variable. This represents a measure of
the ability to discriminate between the classes. High SR-
score for a variable means it contains information about
the classes and can discriminate between these in a good
way [28].

The site-selection algorithm contained the following
steps:

1. A 10-fold cross validation was first used to find the
optimal number of PLS-components needed to
classify the given response with the minimum
obtainable error.

2. A PLS regression model was fitted to the full data set,
with the fixed number of components from Step 1, to
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Figure 2 Smoothed entropy. The three panels show the smoothed entropy for the Greengenes, RDP and SILVA alignments covering the same
12362 sequences in this study. Positions with less than 30 bases have no entropy here, hence the 'holes’ at some positions. Notice the difference in
the number of positions, Greengenes being the shortest and SILVA the longest alignment. The nine variable regions V1,.., V9 are indicated for each
alignment. Five examples of primers (27F, 536F, 928F, U2 and 1492R) used for PCR amplification of 16S are also marked along the position axis,
indicating where they frequently match.

obtain regression coefficients for all explanatory
variables. For every explanatory variable the
selectivity ratio.

3. For every explanatory variable the selectivity ratio
was calculated based on the regression coefficients
from 2. Due to the coding, each site in the alignment
corresponds to five SR-scores. The maximum of these
five SR-scores was used as a site specific SR-score.

4. These site specific SR-scores were sorted in
descending order; the largest SR-score corresponding

to the most interesting sites. One by one the sites
were included in the final model, and a 10-fold cross
validation was again conducted to estimate a
classification error. The final choice of how many
sites to include was based on this classification error.

Results and discussion

We extracted 12362 unique sequences from the three
databases Greengenes, RDP and SILVA, all having at
least 1200 bases, no alien characters, found in all three
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databases and with identical assignment to genus. This
consensus data set must be considered a high-quality
data set for 16S sequences, and an overview is given in
Table 1. The three databases provide alignments of these
sequences, and Figure 2 shows the smoothed entropy in
each case. The three alignments differ, specifically the
number of sites are different, which is due to a differ-
ing number of gaps introduced. However, the smoothed
entropy shows a fairly similar pattern in all cases, and nine
peaks can, with some good will, be identified. We empha-
size that the grey bars in Figure 2 shows the smoothed
entropy in order to display the regions. The actual entropy
at the various sites fluctuates much more, as we will come
back to below.

Instead of focusing on conserved or variable sites, we
used the PLS supervised learning method to extract the
sites giving the best possible discrimination regardless of
where they may be along the alignment. First, we used
phylum as response, i.e. there are 11 distinct classes, and
for each of the three alignments (Greengenes, RDP and
SILVA) we employed the site selection algorithm.

Figure 3 is an illustration of the selected discriminative
sites together with the smoothed entropy from Figure 2.
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For all three alignments we ended up with 50 selected
sites. The coloured bars indicate the selected sites. The
height of a bar is the (log-transformed) SR-score, i.e. the
tallest bars indicate the most discriminative sites. The
color shows which symbol had the largest discriminatory
power at the respective site. As an example, the leftmost
bar is red, meaning the majority (but not necessarily all)
of the information at this site is connected to whether
a sequence has an A or not an A at this position. The
three panels in Figure 3 are the results for the three dif-
ferent alignments. Despite the differences between the
alignments, the selected sites are remarkably similar with
respect to the variable and conserved regions. The largest
single SR-score is the site indicated by the tallest blue bar.
If we compare its location to the entropy in the back-
ground, we find it at the left hand side of region V4 in
all three cases. Since both relative location and the colors
of the selected sites are similar for the three panels, the
results of the selection algorithm are stable with respect
to the different alignments.

The first impression given by Figure 3 is that the selected
sites are scattered across almost the entire alignment,
there are no specific regions where they tend to cluster. As
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Figure 3 Selected discriminative sites. The selected sites for classification of phyla are plotted as coloured bars along the alignments. The height
of a bar is the log-transformed SR-score (right hand vertical axis). The colors indicate which of the symbols &, C, G, T or - have the dominating
discriminating power at the respective site, see legend. The grey bars in the background show the smoothed entropy values (left hand vertical axis)
at each site as in Figure 2.
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Table 2 Overview of the positions of the selected sites
V2 V3 V4 V5 V6 V7 V8 V9 Outside

Database \"A|

Greengenes 0 7 2 6 3 1 3 0 2 26
RDP o 7 1 6 3 3 1 0 1 28
SILVA 2 6 1 6 4 3 1 0 1 26

Each cell shows the number of selected sites for phylum classification found
inside the variable regions V1-V9 for the three data sets. The rightmost column,
named Outside, are the number of selected sites outside the variable regions.
The total number of selected sites are 50 in each case.

shown in Figure 2 we can identify the nine variable regions
in each of the three alignments. By manual inspection we
found their boundaries, and Table 2 shows the number
of selected sites in each. Most notably is that around half
of the 50 selected sites are outside the variable regions.
The variable regions cover roughly half of all the positions
in the alignments, hence a selected discriminative site is
just as likely to occur outside as inside of these regions.
From Table 2 we also see that regions V2 and V4 contain
many selected sites, while V8 has none in all three cases.
Regions differ in width, and V4 has most selected sites per
position.

Even if selected sites are both inside and outside of vari-
able regions, their actual site-specific entropy from eq. (1)
are in all cases significantly above the average entropy for
the entire alignment. This was tested by a simple permu-
tation test, and the results are displayed in the left panel
of Figure 4. The histogram shows the average entropy for
50 randomly sampled sites (repeated 10 000 times) in the
Greengenes alignment, and the red bar marks the aver-
age for the 50 sites selected by PLS. Clearly, the selected
sites have a mean entropy (1.23) which is much larger
than what we expect at random (histogram), giving a
p-value p < 0.0001 here. The point is that selected
sites have high entropy, but are not necessarily located
in high-entropy regions. In fact, they tend to have much

Page 6 of 9

higher entropy than their surrounding sites, which is
shown in the right panel of Figure 4. Here we computed
the difference between the entropy of a selected site and
its 10 neighbouring sites at each side. For the Greengenes
data this resulted in the average difference 0.57 marked
by the red bar. The histogram is again the result of a
permutation test (10 000 permutations) where the same
difference has been computed for randomly sampled sites.
The results of Figure 4 were very similar for the RDP and
Silva alignments, and are not shown here.

Figure 5 presents some detailed results for phylum
classification based on the Greengenes alignment, again
the results turned out similar for the RDP and SILVA
alignment. Panel A (top left) shows how the number of
mis-classifications decreases by including more selected
variables, and converging at around 100 errors, giving
an accuracy of over 99%. The other five panels visu-
alize sequences in PLS-plots. Every point represents a
sequence and the coordinate axes represent the opti-
mal combinations selected by PLS (PLS components).
Sequences located near each other are aligned similarly,
at least in the discriminative sites. The colors represent
the true classes (phyla). The first components separate
the large classes, and it is not until the 10th compo-
nent that smaller groups are separated. In panel B of
Figure 4, we can see some obvious mis-classifications.
Some black dots (supposedly Proteobacteria) are found in
the center cloud of yellow (Firmicutes). This must be due
to either alignment errors or sequences assigned to the
wrong class from the beginning. In order to construct the
huge alignments we use here, greedy algorithms of some
kind are required. This means errors accumulate, and
alignments of this size will most likely contain a substan-
tial number of errors. Structure-based alignment meth-
ods should perform better for RNA-sequences. The RDP
alignment we use here is based on the Infernal software
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Figure 4 Entropy of selected sites. The left panel shows that mean entropy of the selected sites compared to random samples. The vertical red
bar marks the mean entropy of the 50 selected sites, at 1.23. The histogram is constructed by sampling 50 random positions, computing their mean
entropy, and repeating this 10 000 times. The right panel shows the mean difference between the entropy of a selected site and its 20 neighbors (10
on each side). Again the red bar marks this difference for the 50 selected sites and the histogram displays the same difference for 50 sites sampled at
random, repeated 10 000 times. This figure is based on the Greengenes data, but the RDP and SILVA data gave similar results.
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[29], but still we find a number of mis-classifications.
These errors constitutes a significant source of the clas-
sification errors we observe. In fact, the methods most
frequently used for classification are those based on
word-frequencies instead of alignments, e.g. the RDP-
classifier [30], indicating that huge, monolithic alignments
are quite poor data for classification purposes. However,
when linking the classification to the location of con-
served and variable regions, the use of alignments seems
unavoidable.

From Figure 5 we see how the separation of the larger
classes is more important than the smaller classes, since
the first PLS-components are devoted to this. Each mis-

classification counts equally much, and separating larger
classes will always reduce the total error more. This
means the selected sites we find are those sites most
important for separating the larger classes. The num-
ber of sequences in each class varies a lot in all avail-
able 16S data sets, e.g. see Figure 1. In this study
we have only focused on the total error, and different
results would be found if we focused only on the smaller
classes.

Next, we repeated everything done so far, but using
genus instead of phylum as class labels. This means we
have 198 instead of 11 classes, making the separation
much more difficult. In Figure 6 we show how the number
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Figure 6 Site selection for genus classification. The figure
illustrates how the number of mis-classifications drops by increased
number of selected sites for genus classification. The error levels out
at around 1000, and we need around 2500 sites to achieve this. This
figure is based on the Greengenes data, but RDP and SILVA gave
similar results.

of mis-classifications drops as we select more and more
sites in the Greengenes alignment. We need to include
many more sites than for phylum, and the classification
error seems to level out after around 2500 selected sites,
the remaining 600-700 sites do not provide further infor-
mation about genus. Since around 80% of the sites are
selected, it is obvious that the discriminating information
in this case is not restricted to the variable regions. In
fact, it tells us that in order to separate genera, we need
to utilize almost every difference that can be found in
the sequences regardless of where they are located. The
error level we reach here, around 10% mis-classifications,
is comparable to those reported by other studies on the
genus level. This error rate and the number of selected
sites indicates that a 16S based classification of genera
means we are pushing the limit for how much informa-
tion we can extract from the alignments of a single gene
marker.

Conclusion

The aim of this study was to investigate the dogma of 16S
based classification, stating that the key information for
separating classes is harboured in the variable regions of
this marker. By using three different multiple alignments
of the same sequence data, we implemented a supervised
learning method to systematically search for discrimina-
tive sites without any constraints with respect to conser-
vation. The selected sites came out remarkably similar for
the three data sets, a sign of a stable selection despite the
obvious differences between the three alignments.
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Our first major finding is that the discriminative sites
are not exclusively located in the variable regions. In fact,
the nine variable regions are not even enriched with sites
selected by our algorithm. Variable regions are important,
but not more important than any other region. The sec-
ond major finding is that discriminative sites are typically
sites with high entropy located among neighbouring sites
of much lower entropy. This seems like a logical outcome.
Regions of lower entropy means some degree of conser-
vation, and alignments tend to be more accurate in such
regions. If a site inside such regions show a much larger
variation, it is more likely this is due to real biology, not
alignment errors.

We believe these findings should be taken into consider-
ation when it comes to improving methods for 16S based
classification of bacteria.
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