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Abstract

Similarity-search methods using molecular fingerprints are an important tool for ligand-based virtual screening. A
huge variety of fingerprints exist and their performance, usually assessed in retrospective benchmarking studies using
data sets with known actives and known or assumed inactives, depends largely on the validation data sets used and
the similarity measure used. Comparing new methods to existing ones in any systematic way is rather difficult due to
the lack of standard data sets and evaluation procedures. Here, we present a standard platform for the benchmarking
of 2D fingerprints. The open-source platform contains all source code, structural data for the actives and inactives
used (drawn from three publicly available collections of data sets), and lists of randomly selected query molecules to
be used for statistically valid comparisons of methods. This allows the exact reproduction and comparison of results
for future studies. The results for 12 standard fingerprints together with two simple baseline fingerprints assessed by
seven evaluation methods are shown together with the correlations between methods. High correlations were found
between the 12 fingerprints and a careful statistical analysis showed that only the two baseline fingerprints were
different from the others in a statistically significant way. High correlations were also found between six of the seven
evaluation methods, indicating that despite their seeming differences, many of these methods are similar to each
other.
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Background
The concept of molecular similarity is often used in the
context of ligand-based virtual screening (VS) to use
known actives to find newmolecules to test [1]. Molecular
similarity is also used for applications such as the cluster-
ing of data sets, e.g. to identify common chemotypes [2,3],
and the identification of activity cliffs [4]. However, the
choice of molecular description to calculate the similar-
ity is not trivial and can vary depending on the compound
selection and/or target [5-7]. A variety of descriptors exist
which can be divided into two large groups depending
if they consider only the 2D structure (topology) of a
molecule or if they include 3D information. A standard
and computationally efficient abstract representation is
molecular fingerprints [8], where structural features are
represented by either bits in a bit string or counts in
a count vector. Fingerprints are compact and allow fast
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comparison of chemical structures. In this study, the focus
is on 2D fingerprints and different algorithms to con-
struct them are compared. The algorithms can be divided
into four classes: (i) dictionary-based, (ii) topological or
path-based fingerprints, (iii) circular fingerprints, and (iv)
pharmacophores.
The performance of fingerprints is often tested in retro-

spective benchmarking studies using data sets made up of
known actives and known or assumed inactives, so-called
decoys. The performance of a fingerprint in these studies
depends not only on its ability to describe the molecular
features responsible for activity against a specific target,
but also on the composition of the data set, the statisti-
cal robustness of the study, and the evaluation method(s)
[9-14]. The data-set composition plays a central role when
evaluating the differentiation of actives and inactives by
a fingerprint [12]. If the actives in the data set belong to
the same chemical series or have very different molecu-
lar properties, e.g. molecular weight or number of heavy
atoms, than the inactives, it is easy for most fingerprints
to distinguish actives from inactives. On the other hand,
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if the actives are very diverse, i.e. have different scaffolds,
or if the actives and inactives have very similar molecular
properties, fingerprints can have difficulties to differen-
tiate actives from inactives. To help avoid being mislead
by the first type of bias, it is advisable to use some sort
of negative control, e.g. a simple atom count, to provide
a baseline that the performance of more sophisticated
fingerprints can be compared to [15].
In order to draw statistically robust conclusions from

a benchmarking study of virtual screening, several issues
need to be considered. For example, the number and
diversity of protein targets, actives and inactives has
to be large enough [10], and an error estimate of
the performance should be obtained by boot-strapping,
i.e. by repeating the ranking experiment many times
with different random subsets of the actives as query
molecules [11].
Just as there is wide variety of fingerprinting algorithms,

there aremultiple methods for evaluating VS performance
and little consensus as to which is best [9,11]. The area
under the receiver operating characteristic (ROC) curve
(AUC) is widely used, as is the enrichment factor (EF)
at a given fraction χ of the data set. The advantage of
AUC is that it is bounded, running from 0 to 1 with
0.5 corresponding to randomness, and that it is indepen-
dent of the ratio of actives to inactives and other external
parameters. However, the AUC method has been critized
as being inappropriate for comparing VS methods as it
is not sufficiently sensitive to early recognition [9]. The
EF explicitly measures early recognition but it is depen-
dent on the ratio of actives to inactives and the choice
of χ . To try and overcome these limitations numerous
other evaluation methods, such as robust initial enhance-
ment (RIE) [16] and Boltzmann-enhanced discrimination
of ROC (BEDROC) [9], have been proposed. The RIE uses
a continuously decreasing exponential weight as a func-
tion of rank and is thus sensitive to early recognition.
It is, however, dependent both on an adjustable param-
eter, the exponential weight, and the ratio of actives to
inactives. RIE values can therefore not be easily com-
pared between different data sets. The BEDROC is con-
structed by, in essence, forcing the RIE to be bounded by
0 and 1, avoiding the dependence on the active/inactive
ratio. In this contribution, all of these methods are
used, the results are compared and correlations are
investigated.
In order to be able to compare results from bench-

marking studies, it is important to use standard data sets
that are readily available to other researchers. One of the
first collections used in multiple benchmarking studies
was data for eleven targets taken from the MDL Drug
Data Report (MDDR) [13,15,17-21] However, the MDDR,
a commercial product, places limits on redistribution of
the data, hindering the development of an open validation

set. Two recently developed and publicly available com-
pound data sets do not have this problem: the directory
of useful decoys (DUD) [22,23] and the maximum unbi-
ased validation (MUV) data sets [24,25]. ChEMBL [26,27]
also provides a rich source of data: a recent publication
presented a subset of targets from ChEMBL for use in VS
experiments [28]. All three of these collections of open
data sets have been used in recent benchmarking studies
[3,28-33].
In these benchmarking studies, no globally best finger-

printing method has been found. However, some gen-
eral trends have been observed. Using multiple actives
as query molecules together with some kind of data
fusion [34] has been found to enhance VS perfor-
mance [18,29,35]. Different studies found that 2D meth-
ods generally outperform 3D methods [13,20,31-33].
Although inter-target differences are greater than differ-
ences between fingerprints for a single target, Bender
et al. [15] could identify four large groups with similar
performance based on a principal-component analysis:
(i) path-based fingerprints or predefined keys, (ii) circu-
lar fingerprints using bit strings, (iii) circular fingerprints
using count vectors, and (iv) pharmacophores, where cir-
cular fingerprints showed overall a good performance.
This is in agreement with a study from Hert et al. [19]
where circular fingerprints were found to be more effec-
tive than the other fingerprint types. In another study the
effect of the length of the bit string and thus the effect of
collisions was investigated, leading to the conclusion that
longer bit strings perform better [21]. Note that each of
these publications use different sets of fingerprints, differ-
ent reference data sets, and different evaluation criteria,
making it impossible to directly compare their results and
conclusions.
The existence of publicly available data sets and detailed

descriptions of benchmarking studies in the literature
were a first step towards comparable results of VS meth-
ods. However, the exact results may depend on imple-
mentation details of the computational procedure and
the random processes used, such as the selection of the
query molecules. Here, we go a step further towards true
reproducibility and comparability by providing data sets
and source code which can be reused for future com-
parisons. The benchmarking platform described below
contains lists of the actives and inactives used from three
different data-set collections (DUD, MUV and ChEMBL),
lists of randomly selected query molecules for VS runs,
and python scripts used for the simulated virtual screen-
ing and scoring. In addition, the results for a set of 14
2D fingerprints belonging to three of the four descrip-
tor classes are shown using multiple different evaluation
methods. The fingerprints themselves were also generated
using open-source software, so the results in this study
should be fully reproducible by any researcher.
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Results and discussion
Using the benchmarking platform, the performance of
14 2D fingerprints covering dictionary-based, path-based
and circular fingerprints was assessed over 88 tar-
gets from three publicly available collections of data
sets. To ensure robust statistics, 50 repetitions, each
with five query molecules, of the VS experiment were
performed.

Performance for 88 targets
The performance of 14 2D fingerprints measured with
AUC and BEDROC(α=20) is shown in Figure 1. The two
methods show the same trends over the targets, as do the
other evaluation methods (data not shown). The data for
all tested evaluation methods are provided as csv files in
Additional file 1.
As can be seen from Figure 1, the performance of all

fingerprints is poor for the MUV data sets, which has
also been found by Tiikkainen et al. [29]. There are four
targets, i.e. 548 (PKA), 832 (cathepsin G), 846 (Factor
XIa) and 852 (Factor XIIa), which give some enrichment
of actives. However, for other targets the performance is
worse than random for some fingerprints. The baseline
fingerprints, ECFC0 and MACCS, show no worse perfor-
mance than the other, higher-level fingerprints for these
data sets.
The performance of the fingerprints is generally very

good for the DUD data sets, except for CDK2 and HIVRT,
and to a lesser extent VEGFR2, but all show AUC values
above random. The baseline fingerprint, ECFC0, shows

a clearly worse performance than the other fingerprints.
The targets DHFR, ER_agonist, GR and SAHH are rather
too easy for this type of VS experiment: they have an AUC
value above 0.95 for many of the fingerprints, including
the baseline MACCS fingerprint.
Heikamp and Bajorath selected the ChEMBL targets

with minimum 30% compound recovery rate (RR) for
MACCS and maximum 80% compound RR for ECFP4
[28]. As they used all available actives and 1 million ran-
domly selected decoys, whereas only the 100 most diverse
actives and 10000 decoys with 0.5 similarity to at least one
active are used in this study, the results here differ some-
what. The targets of the ChEMBL collection show differ-
ent difficulty levels. For one target, 12911 (cytochrome
P450 2C9), the performance of many fingerprints is below
random, and for other targets, i.e. 12209 (carbonic anhy-
drase XII), 43 (β-2 adrenergic receptor), 219 (M3 recep-
tor) and 130 (D3 receptor), it is close to random. On the
other hand, the AUC value of some fingerprints is above
0.95 for the targets 11265 (Somatostin receptor 5), 12679
(C5a receptor), 237 (Leukotriene A4 hydrolase), 10927
(Urotensin II receptor), 11442 (liver glycogen phospho-
rylase). The baseline fingerprints have the lowest AUC
values in most cases and the lowest BEDROC values for
nearly all targets.
In general, the differences between fingerprints for a

given target are smaller than the differences between tar-
gets for a given fingerprint. This is important to keep in
mind as the performance of the fingerprints across targets
is evaluated.
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Figure 1 Performance of 14 fingerprints. Average performance of 14 2D fingerprints measured with AUC (top) and BEDROC(α=20) (bottom). The
two baseline fingerprints are shown in red (ECFC0) and orange (MACCS). Path-based fingerprints (AP, TT, Avalon, long Avalon, RDK5) are shown in
black, circular fingerprints with bit string (ECFP4, long ECFP4, ECFP6, long ECFP6, FCFP4) in blue, and circular fingerprints with count vector (ECFC4,
FCFC4) in green. The horizontal, dotted line indicates random distribution.
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Correlations between evaluation methods
A selection of 12 out of 21 possible correlations between
the evaluation methods for the fingerprint ECFP4 is
shown in Figure 2 together with the lines obtained from
linear regression. The numerical values of the slope
and constant, the correlation coefficient r, the coeffi-
cient of determination r2, and the root-mean-square error
(RMSE) are given in Additional file 2: Table S1.
In general, the correlation between the methods is

very high, as can be expected from their relationship
[9]. The outliers which can be observed are for meth-
ods that are dependent on the actives/decoys ratio, i.e.
RIE(20), RIE(100) and EF(1%). These appear in the DUD
data sets, which have varying number of actives and
decoys. EF(5%) shows no outliers as all data sets have an
actives/decoys ratio smaller than 0.05. 1/α for BEDROC
and RIE has a similar meaning to χ for EF [9], which
can be seen in the panels in the middle row of Figure 2.
If BEDROC(20) is compared to EF(1%), outliers can
be observed for the DUD data sets (r2(all) = 0.668

and r2(without DUD) = 0.964), whereas there is an
almost perfect correlation to EF(5%) (r2(all) = 0.995
and r2(without DUD) = 0.996). The same is observed
between RIE(20) and EF(5%). If EF(1%) is compared to
RIE(100) (or BEDROC(100), not shown), on the other
hand, there is also a very strong correlation and no
outliers (r2(all) = 0.980 and r2(without DUD) = 0.988).
Interestingly, the DUD data sets obtain medium RIE(100)
and EF(1%) although they have very high AUC or
EF(5%) values, because the maximum value depends
on the actives/decoys ratio (and gets smaller as the
actives/decoys ratio gets larger) for these data sets. This
makes it difficult to directly compare the values for
different targets, and it shows clearly that the external
parameters of the evaluation methods have to be chosen
carefully. The fraction χ for EF should be smaller than
the ratio actives/decoys, and the condition α actives

decoys � 1
should be met for RIE [9].
AUC is the only evaluation method discussed here

which reflects the performance over the whole data set.
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Figure 2 Correlations between evaluation methods. A selection of 12 correlations between evaluation methods using the average score of 2D
fingerprint ECFP4 for the three collection of data sets: MUV (open triangles), DUD (open circles), and ChEMBL (filled circles). The maximum value is
100.0 for EF(1%), and 20.0 for EF(5%). For RIE, the maximum value of the ChEMBL data sets was used, i.e. 18.1 for RIE(20), and 63.2 for RIE(100). Linear
regression curve is shown for all 88 targets (thin line) and for the 67 targets of MUV and ChEMBL (thick line).



Riniker and Landrum Journal of Cheminformatics 2013, 5:26 Page 5 of 17
http://www.jcheminf.com/content/5/1/26

MACCS
0

0.2

0.4

0.6

0.8

1

A
P

MACCS
E

C
FP

4
AP

E
C

FP
4

Avalon

E
C

FP
4

Avalon
0

0.2

0.4

0.6

0.8

1

lo
ng

 A
va

lo
n

ECFP4

T
T

ECFP4
lo

ng
 E

C
FP

4
ECFP4

E
C

FC
4

0 0.2 0.4 0.6 0.8 1
ECFP4

0

0.2

0.4

0.6

0.8

1

E
C

FP
6

0 0.2 0.4 0.6 0.8 1
ECFP4

FC
FP

4

0 0.2 0.4 0.6 0.8 1
ECFP4

FC
FC

4

0 0.2 0.4 0.6 0.8 1
ECFP6

lo
ng

 E
C

FP
6

Figure 3 Correlations between fingerprints. A selection of 12 correlations between 2D fingerprints using the average score of evaluation
method BEDROC(20) for the three collection of data sets: MUV (open triangles), DUD (open circles), and ChEMBL (filled circles). The thin line
corresponds to y = x while the linear regression curve is shown as a thick, black line.

It is therefore not as closely related to the other
methods as these are with each other. Nevertheless,
there are clear correlations between AUC and the
other evaluation methods if they are not or only
weakly dependent on the actives/decoys ratio, i.e. EF(5%)
(r2(all) = 0.908), BEDROC(20) (r2(all) = 0.894) and
RIE(20) (r2(all) = 0.899). A random AUC-value of 0.5
corresponds to approximately zero in all the other
methods.
The observations discussed above indicate that the

differences between the VS performance-evaluation
methods are small, especially between the “early recog-
nition” methods. The least convenient method is
probably RIE as the maximum value is always depen-
dent on the actives/decoys ratio, even if α is chosen
to be sufficiently small. It is recommended, there-
fore, to provide both values for AUC and one of the
“early recognition” methods, EF or BEDROC, with
appropriate parameters for future benchmarking
studies.

Correlations between fingerprints
A selection of 24 out of 91 possible correlations between
fingerprints for the evaluation method BEDROC(20) is
shown in Figure 3 and Additional file 2: Figure S1 together
with the linear regression curves. The numerical values of
the slope and constant, the correlation coefficient r, the
coefficient of determination r2, and the root-mean-square
error (RMSE) are given in Additional file 2: Table S2.
Although the fingerprints belong to three different

classes, all show medium to strong correlations between
them. The largest scattering can be observed when the
comparison involves ECFC0 and MACCS (r2 between
0.88 and 0.90), or path-based fingerprints such as AP
(r2 between 0.91 and 0.97). The circular fingerprints
show strong correlations between the different variants
(r2 between 0.97 and 1.0), with ECFP4 and ECFP6 hav-
ing the strongest (r2 = 0.999). Across this wide range of
data sets, these two common choices for the circular-
fingerprint radius are equivalent. In addition, the length of
the bit string has a small effect as seen in the very strong
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correlation between the 1024-bits and 16384-bits version
of ECFP4 (r2 = 0.998), ECFP6 (r2 = 0.996), and also Avalon
(r2 = 0.993). For these three fingerprints, no consider-
able improvement of the performance with increased bit
space could be observed, which deviates from an earlier
finding of Sastry et al. [21] for Daylight-like fingerprints.
Comparing the number of bits set in the short and long
version of ECFP4 and ECFP6 (data not shown) revealed
that the number of collisions introduced by folding from
1024 bits to 16384 bits was very low. In the case of the
Avalon fingerprint, more collisions were observed, but
overall the number was still low and similarities were not
strongly affected. Thus, performance differences observed
in the earlier study are likely due to the use of a dif-
ferent hashing function and the higher bit density of
the Daylight-like linear fingerprints used leading to more
collisions.

Ranking of fingerprints
For each of the 50 repetition of the VS experiment, the 14
fingerprints were ranked according to their performance.
These ranks can be averaged across repetitions and targets
(Figure 4, and Additional file 2: Table S3). As the standard
deviation of the average rank is still large, a global Fried-
man test was performed as a first step to assess if certain
fingerprints are consistently better than another. The p-
value of the global Friedman test was below 2.2·10−16 for
each evaluation method indicating that there are statisti-
cally significant differences between fingerprints and that
a post-hoc analysis is required.

In a second step, 91 post-hoc pairwise Friedman tests
were performed to determine which pairs of finger-
prints show a statistically significant difference. Note,
however, that statistically significant differences may not
always mean practically meaningful differences [36]. The
results are shown as a matrix for AUC and BEDROC(20)
in Table 1 where the fingerprints in each table are
ordered by increasing average rank (low ranks are better).
If all 100 resampled, adjusted p-values are below the
confidence level α of 0.05, which indicates a statisti-
cally significant difference between the two fingerprints,
an “-” is inserted in the matrix. If all 100 p-values are
above α, an “X” is used. An “o” represents the distri-
bution of adjusted p-values above and below α. The
numerical values of the resampled, adjusted p-values
are given for all evaluation methods as csv files in
Additional file 3.
In AUC, there is no clear separation between groups or

individual fingerprints as can be expected from Figure 4.
This is true even of the baseline fingerprints. It is pos-
sible to conclude, however, that path-based fingerprints
such as TT and AP (and to some extent also RDK5
and Avalon) are ranked higher than the circular finger-
prints, with the exception of ECFC4. In BEDROC(20),
the two baseline fingerprints, ECFC0 and MACCS, are
ranked lower from the other fingerprints. Between the
other fingerprints, there is again no significant separation,
although circular fingerprints (especially long ECFP4 and
long ECFP6) are - in contrast to AUC - ranked statistically
significantly higher than path-based fingerprints. The
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Figure 4 Average rank across 88 targets of the 14 2D fingerprints. Baseline fingerprints are shown in red (ECFC0) and orange (MACCS),
path-based fingerprints in black, i.e. AP (fine, solid), TT (fine, dashed), Avalon (thick, solid), long Avalon (thick, dashed), RDK5 (fine, dashed-dotted),
circular fingerprints with bit strings in blue, i.e. ECFP4 (fine, solid), long ECFP4 (fine, dashed), ECFP6 (thick, solid), long ECFP6 (thick, dashed), FCFP4
(fine, dashed-dotted), and circular fingerprints with counts in green, i.e. ECFC4 (solid), FCFC4 (dashed).
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Table 1 Pairwise post-hoc Friedman tests

TT AP ECFC4 RDK5 Avalon lAvalon FCFP4 lECFP4 FCFC4 lECFP6 ECFP4 ECFP6 MACCS ECFC0 Rank

TT X X X X - - - - - - - - - 1

AP X X X X o o - - - - - - 1

ECFC4 X X X X X o o o - - - 1

RDK5 X X X X X o o - - - 1

Avalon X X X X o o - - - 1

lAvalon X X X X X X - - 1

FCFP4 X X X X X - - 1

lECFP4 X X X X - - 1

FCFC4 X X X o - 1

lECFP6 X X o o 1

ECFP4 X o o 1

ECFP6 X o 1

MACCS X 1

ECFC0 1

lECFP4 TT lECFP6 ECFP4 ECFC4 ECFP6 FCFP4 RDK5 AP Avalon lAvalon FCFC4 MACCS ECFC0 Rank

lECFP4 X X X X o o o - - - - - - 1

TT X X X X X X o o - - - - 1

lECFP6 X X X X X o o o - - - 1

ECFP4 X X X X X X X - - - 1

ECFC4 X X X X X X - - - 1

ECFP6 X X X X X o - - 1

FCFP4 X X X X - - - 1

RDK5 X X X o - - 1

AP X X o - - 1

Avalon X X - - 1

lAvalon X - - 1

FCFC4 - - 1

MACCS X 13

ECFC0 13

Results from pairwise post-hoc Friedman tests of the average rank between 14 2D fingerprints for the evaluation methods AUC (top) and BEDROC(20) (bottom). Pairs of fingerprints with no statistically significant difference
are marked with “X”, pairs with an adjusted p-value distribution around the confidence level α with “o”, and pairs with a statistically significant difference with “-”. Fingerprints are ordered according to ascending average rank.
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other “early recognition” methods show a similar picture
(Additional file 2: Tables S4 and S5). The only exception
to this trend is TT: TT is ranked among the top finger-
prints in all evaluation methods. This is remarkable as the
topological torsion fingerprint is rather simple and is one
of the oldest, published in 1987, descriptors considered
here [37].

Analysis of scaffold diversity
In VS, the ability to recognize structurally diverse but
functionally similar molecules, called “scaffold hopping”,
is considered to be a desirable property of a similar-
ity method [38]. Although 2D fingerprints are simple
similarity methods, some have been found to have a sig-
nificant scaffold-hopping potential [39,40]. Unfortunately,
the definition of a scaffold is ambiguous and there exists
a range of definitions [38], where the Bemis-Murcko
scaffolds (BMS) [41] of molecular frameworks is widely
adopted. Because the BMS definition has been used in
studies assessing the scaffold-hopping potential of 2D fin-
gerprints [39,40] it is used here. The number of BMS
found among the actives of the 88 data sets and the ratio
BMS/actives are given in Table 2. The average perfor-
mance of ECFP4 determined by AUC and BEDROC(20)
as a function of the ratio BMS/actives is shown in
Additional file 2: Figure S2. A negative exponential rela-
tionship can be observed between the performance and
the ratio BMS/actives in the data set. Data sets with few
distinct scaffolds among the actives, i.e. BMS/actives <

50%, tend to be fairly easy for similarity-based VS, so
nearly all actives are ranked at the beginning of the list
and nearly all (of the few) scaffolds are found, making the
assessment of the scaffold-hopping potential pointless.
On the other hand, if there are many distinct scaffolds,
i.e. BMS/actives = 80 - 100%, nearly every active found
will correspond to a new scaffold, which also makes the
assessment of the scaffold-hopping potential pointless.
The scaffold-hopping potential can be measured using
the scaffold EF, which is calculated analogously to EF,
i.e. the number of scaffolds retrieved among the first 5%,
i.e. χ = 0.05, divided by the number of scaffolds in a
random distribution, i.e. χBMS [3]. The scaffold EF as
a function of the targets is shown in Figure 5. Again
the differences among the fingerprints are smaller than
the differences between targets for a single fingerprint,
and Figure 5 is generally very similar to Figure 1. This
implies that, at least for the range of data sets consid-
ered here, the scaffold EF is closely related to the general
performance of the fingerprint, not only for the extreme
cases of BMS/actives > 80% and < 50% but in general.
This is indeed true for the majority of targets as can be
seen in Figure 6 where the ratio scaffold EF/EF at 5%
is close to 1.0 for most targets independent of the ratio
BMS/actives.

Conclusions
An open-source platform to benchmark 2D fingerprints
for virtual screening (VS) was developed and used to
assess the performance of 12 commonly used fingerprints
together with two baseline fingerprints.
The platform currently incorporates 88 targets from

three publicly available collections of data sets: MUV,
DUD and ChEMBL. The VS experiment is divided
into three steps: scoring, validation and analysis. The
platform uses the open-source cheminformatics toolkit
RDKit to calculate fingerprints and similarities, but
through the three-stage design data generated by
other sources can easily be fed in at the validation
or analysis stages. The platform with its compound
and training lists and source code allows easy repro-
duction and comparison of the performance of 2D
fingerprints.
The performance of 14 2D fingerprints (including two

baseline fingerprints) and two different bit-string sizes for
three fingerprints was assessed using five query molecules
over 88 targets and four different evaluation methods
with different parameters. Except for the baseline fin-
gerprints, the performance of all fingerprints is generally
similar. This finding is supported by the strong cor-
relations observed between the fingerprints, especially
between circular fingerprints with different diameter size
and between fingerprints with different bit-string size.
The inter-target difference in performance is greater
than the intra-target difference between fingerprints, as
has been also found by other studies. The MUV data
sets were the most difficult of those studied here. In
order to obtain a measure of the overall performance,
the fingerprints were ranked for each VS experiment
and the ranks were then averaged over the repeti-
tions and targets. The baseline fingerprints, ECFC0 and
MACCS, were indeed found to be statistically significantly
ranked last of all fingerprints in this study using “early
recognition” evaluation methods. Path-based fingerprints
were generally ranked higher using the AUC method,
whereas circular fingerprints are generally ranked higher
by “early recognition” methods such as EF, BEDROC
and RIE. The exception is the topological torsions fin-
gerprint which is ranked among the top fingerprints
by all evaluation methods.
There has been discussion in the literature about

the correct evaluation method for simulated VS experi-
ments. However, strong correlations were found between
the different “early recognition” methods if appropriate
parameters were used, i.e. the fraction χ for EF and the
exponential weight α for BEDROC and RIE, respectively.
Thus, we recommend to provide results from AUC and
one of the “early recognition” methods for future bench-
marking studies. The fraction parameter for EF is more
immediately understandable than the exponential weight
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Table 2 Information of data sets

Origin Target ID Description A D A/D BMS B/A

MUV 466 Sphingosine 1-phosphate (S1P1) receptor 30 15000 0.002 30 1.00

548 Protein kinase A (PKA) 30 15000 0.002 29 0.97

600 Steroidogenic factor 1 (SF1): inhibitors 30 15000 0.002 29 0.97

644 Rho-kinase 2 30 15000 0.002 28 0.93

652 HIV-1 RT-Rnase H 30 15000 0.002 29 0.97

689 Ephrin receptor A4 30 15000 0.002 30 1.00

692 Steroidogenic factor 1 (SF1): agonists 30 15000 0.002 30 1.00

712 Heat shock protein 90 (HSP90) 30 15000 0.002 27 0.90

713 Estregon receptor (ER) α: inhibitors 30 15000 0.002 29 0.97

733 Estregon receptor (ER) β 30 15000 0.002 30 1.00

737 Estregon receptor (ER) α: potentiators 30 15000 0.002 29 0.97

810 Focal adhesion kinase (FAK) 30 15000 0.002 28 0.93

832 Cathepsin G 30 15000 0.002 25 0.83

846 Factor XIa (FXIa) 30 15000 0.002 24 0.80

852 Factor XIIa (FXIIa) 30 15000 0.002 24 0.80

858 Dopamin receptor D1 30 15000 0.002 27 0.90

859 Muscarinic receptor M1 30 15000 0.002 30 1.00

DUD ace Angiotensin-converting enzyme 46 1796 0.026 28 0.61

ache Acetylcholin esterase 99 3859 0.026 37 0.37

ar Androgen receptor 68 2848 0.024 21 0.31

cdk2 Cyclin-dependent kinase 2 47 2070 0.023 39 0.83

cox2 Cyclooxygenase-2 212 12606 0.011 97 0.46

dhfr Dihydrofolate reductase 190 8350 0.023 42 0.22

egfr Epidermal growth factor receptor 365 15560 0.023 86 0.24

er_agonist Estregon receptor (ER): agonists 63 2568 0.025 26 0.41

fgfr1 Fibroblast growth factor receptor 71 3462 0.021 18 0.25

fxa Factor Xa 64 2092 0.031 28 0.44

gpb Glycogen phosphorylase 49[1] 2132[1] 0.023 14 0.29

gr Glucocorticoid receptor 32 2585 0.010 14 0.44

hivrt HIV-1 RT-Rnase 34 1494 0.023 25 0.74

inha Enoyl reductase 57 2707 0.021 35 0.61

na Neuramidase 49 1713 0.029 13 0.27

p38 P38 MAP kinase 137 6779 0.020 47 0.34

parp Poly(ADP-ribose) polymerase 31 1350 0.023 9 0.29

pdgfrb Platelet-derived growth factor receptor β 124 5603 0.022 38 0.31

sahh S-adenosylhomocysteine hydrolase 33 1344[2] 0.025 10 0.30

src Tyrosine-protein kinase C-SRC 98 5679 0.011 30 0.31

vegfr2 Vascular endothelial growth factor receptor 2 48 2712 0.011 39 0.81

ChEMBL 11359 Phosphodiesterase 4D 100 10000 0.010 81 0.81

28 Thymidylate synthase 100 10000 0.010 48 0.48

11536 Ghrelin receptor 100 10000 0.010 87 0.87

8 Tyrosine-protein kinase ABL 100 10000 0.010 93 0.93

10434 Tyrosine-protein kinase SRC 100 10000 0.010 94 0.94

12670 Tyrosine-protein kinase receptor FLT3 100 10000 0.010 95 0.95

20014 Serine/threonine-protein kinase Aurora-A 100 10000 0.010 87 0.87

234 Insulin-like growth factor I receptor 100 10000 0.010 86 0.86

12261 c-Jun N-terminal kinase I 100 10000 0.010 65 0.65

12209 Carbonic anhydrase XII 100 10000 0.010 66 0.66

25 Glucocorticoid receptor 100 10000 0.010 87 0.87

36 Progesterone receptor 100 10000 0.010 78 0.78
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Table 2 Information of data sets (continued)

43 β-2 adrenergic receptor 100 10000 0.010 94 0.94

219 Muscarinic acetylcholine receptor M3 100 10000 0.010 94 0.94

130 Dopamine receptor D3 100 10000 0.010 92 0.92

105 Serotonin 1d (5-HT1d) receptor 100 10000 0.010 66 0.66

11336 Neuropeptide Y receptor type 5 100 10000 0.010 77 0.77

20174 G protein-coupled receptor 44 100 10000 0.010 77 0.77

126 Cyclooxygenase-2 100 10000 0.010 88 0.88

11225 Renin 100 10000 0.010 81 0.81

12252 β-secretase 1 100 10000 0.010 93 0.93

11682 Glycine transporter 1 100 10000 0.010 76 0.76

134 Vasopressin V1a receptor 100 10000 0.010 87 0.87

116 Oxytocin receptor 100 10000 0.010 64 0.64

11265 Somatostatin receptor 5 100 10000 0.010 59 0.59

10475 Neuropeptide Y receptor type 1 100 10000 0.010 45 0.45

12679 C5a anaphylatoxin chemotactic receptor 100 10000 0.010 45 0.45

10579 C-C chemokine receptor type 4 100 10000 0.010 64 0.64

11575 C-C chemokine receptor type 2 100 10000 0.010 80 0.80

18061 Sodium channel protein type IX α subunit 100 10000 0.010 62 0.62

237 Leukotriene A4 hydrolase 100 10000 0.010 65 0.65

276 Phosphodiesterase 4A 100 10000 0.010 70 0.70

11534 Cathepsin S 100 10000 0.010 91 0.91

10198 Voltage-gated potassium channel subunit Kv1.5 100 10000 0.010 69 0.69

10498 Cathepsin L 100 10000 0.010 90 0.90

12911 Cytochrome P450 2C9 100 10000 0.010 96 0.96

12968 Orexin receptor 2 100 10000 0.010 36 0.36

100579 Nicotinic acid receptor 1 100 10000 0.010 70 0.70

100126 Serine/threonine-protein kinase B-raf 100 10000 0.010 78 0.78

10378 Cathepsin B 100 10000 0.010 83 0.83

10417 P2X purinoceptor 7 100 10000 0.010 65 0.65

10752 Inhibitor of nuclear factor κ B kinase β subunit 100 10000 0.010 64 0.64

10773 Interleukin-8 receptor B 100 10000 0.010 55 0.55

11631 Sphingosine 1-phosphate receptor Edg-1 100 10000 0.010 77 0.77

10927 Urotensin II receptor 100 10000 0.010 59 0.59

11085 Melatonin receptor 1B 100 10000 0.010 71 0.71

11442 Liver glycogen phosphorylase 100 10000 0.010 55 0.55

11279 Metabotropic glutamate receptor 1 100 10000 0.010 65 0.65

11488 Estradiol 17-β-dehydrogenase 3 100 10000 0.010 47 0.47

12840 Macrophage colony stimulating factor receptor 100 10000 0.010 81 0.81

List of 88 targets with data set origin, target ID, target description, number of actives (A), number of decoys (D), ratio actives/decoys (A/D), number of Bemis-Murcko
scaffolds (BMS) found in the actives, and ratio BMS/actives (B/A).

for BEDROC, but BEDROC has the advantage of running
from 0 to 1.
Scaffold-hopping potential is considered an important

ability for VS methods. Although 2D fingerprints are sim-
ple and based on similarity, they were found to have
a significant potential to retrieve structurally diverse
molecules. However, a strong correlation was observed
between VS performance and scaffold enrichment factor

(scaffold EF), which makes the assessment of the scaffold-
hopping potential rather futile.

Methods
Cheminformatics toolkit
The benchmarking platform presented in this study uses
the RDKit [42], an open-source cheminformatics toolkit
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Figure 5 Scaffold enrichment factor of 14 fingerprints. Average scaffold enrichment factor (scaffold EF) at 5% for 88 targets. The two baseline
fingerprints are shown in red (ECFC0) and orange (MACCS). Path-based fingerprints (AP, TT, Avalon, long Avalon, RDK5) are shown in black, circular
fingerprints with bit string (ECFP4, long ECFP4, ECFP6, long ECFP6, FCFP4) in blue, and circular fingerprints with count vector (ECFC4, FCFC4) in green.

made available under the permissive Berkeley Software
Distribution (BSD) license.

Fingerprints
Four classes of 2D fingerprint types can be distin-
guished: (i) dictionary-based, (ii) topological or path-
based, (iii) circular fingerprints and (iv) pharmacophores.

In addition, fingerprints can differ in the atom types or
feature classes used or the length of the bit string. In this
study, 14 fingerprints belonging to three of the four classes
were compared.
The public Molecular ACCess System (MACCS)

structural keys [43] are 166 predefined substructures
defined as SMARTS and belong to the dictionary-based

0.6

0.8

1

1.2

sc
af

fo
ld

 E
F 

(5
%

) 
/ E

F 
(5

%
)

0 20 40 60 80 100
ratio BMS/actives * 100 [%]

0.6

0.8

1

1.2

sc
af

ol
d 

E
F 

(5
%

) 
/ E

F 
(5

%
)

0 20 40 60 80 100
ratio BMS/actives * 100 [%]

0 20 40 60 80 100
ratio BMS/actives * 100 [%]

TTPA0CFCE

lECFP6FCFC4ECFP4

Figure 6 Scaffold enrichment factor versus enrichment factor. Average ratio of scaffold enrichment factor (scaffold EF) and the enrichment
factor (EF) at 5% of six fingerprints, ECFC0, AP, TT, ECFP4, FCFC4 and lECFP6, as a function of the ratio BMS/actives for the three collection of data
sets: MUV (open circles), DUD (open triangles), and ChEMBL (filled circles). The black, dashed line corresponds to y = 1.0.



Riniker and Landrum Journal of Cheminformatics 2013, 5:26 Page 12 of 17
http://www.jcheminf.com/content/5/1/26

fingerprint class. They were originally designed for sub-
structure search and typically show a low performance
level for virtual screening, thus they are often used as
baseline fingerprint for benchmarking studies.
Topological or path-based fingerprints describe combi-

nations of atom types and paths between atom types. In
atom pair (AP) fingerprints [44], pairs of atoms together
with the number of bonds separating them are encoded.
In topological torsions (TT) [37], on the other hand, four
atoms forming a torsion are described. In both AP and
TT fingerprints the atom type consists of the element,
the number of heavy-atom neighbours and the number of
π-electrons.
The RDKit fingerprint, a relative of the well-knownDay-

light fingerprint [45], is another topological descriptor.
Atom-types, the atomic number and aromaticity state, are
combined with bond types to hash all branched and linear
molecular subgraphs up to a particular size [42]. In this
study, a maximum path length of five (RDK5) was used.
Similar to the Daylight fingerprints, certain paths and

feature classes of the molecular graph are enumerated and
hashed in the Avalon fingerprint [46]. There are 16 fea-
ture classes which were optimized for substructure search.
A detailed description of the feature classes is given in
Table 1 and the supplementary material of [46].
Circular fingerprints were developedmore recently [47],

and encode circular atom environments up to a cer-
tain bond radius from the central atom. If atom types
consisting of the element, the number of heavy-atom
neighbours, the number of hydrogens, the isotope and
ring information are used these fingerprints are called
extended-connectivity (EC) fingerprints. Alternatively,
pharmacophoric features can be used, yielding functional
connectivity (FC) fingerprints. We consider two repre-
sentations of the fingerprints, bit strings (FP) and count
vectors (FC). This gives four types of circular finger-
prints: extended-connectivity bit string (ECFP), extended-
connectivity count vector (ECFC), feature-connectivity
bit string (FCFP) and feature-connectivity count vec-
tor (FCFC). The maximum bond length or diame-
ter is added at the end to the name. In this study,
the four types of circular fingerprints with a diameter
4, i.e. ECFP4, ECFC4, FCFP4 and FCFC4, as well as
ECFP6 were compared. In addition, ECFC0, which is
a kind of atom count, was used as a second baseline
fingerprint.
For all bit-string fingerprints, a size of 1024 bits was

used. However, Sastry et al. found that such a small bit
space may result in many collisions which can affect VS
performance [21]. To investigate this effect a larger bit
space, 16384 bits, was used for three fingerprints: long
ECFP4 (lECFP4), long ECFP6 (lECFP6) and long Avalon
(lAvalon).
All fingerprints were calculated using the RDKit.

Evaluation methods
Throughout this section, n represents the number of
actives in the test data set and N the total number of
molecules in the test data set.

Receiver Operating Characteristic (ROC) curve
The ROC method originates from signal detection anal-
ysis and has been widely used across many disciplines. It
is defined as the true positive rate (TPR) as a function of
the false positive rate (FPR). The TPR is the number of
actives at a given rank position divided by the number of
actives, and the FPR is the number of inactives at a given
rank position divided by the number of inactives.
From the ROC curve, the area under the curve (AUC)

can be calculated. The discrete formula for a set of ranked
molecules is given as follows

AUC = 1
nN

N∑
i=2

Ai(Ii − Ii−1), (1)

where A the cumulative count of actives at rank position
i, and I the cumulative count of inactives at rank position
i. The AUC is non-parametric and is bounded by 0 and 1.
AnAUC value of 0.5 corresponds to randomperformance.

Enrichment Factor (EF)
The concept of the EF is straightforward, which made it a
very popular evaluation method in VS. The EF at a frac-
tion χ of the ranked test set is calculated as the number of
actives found divided by the expected number of actives
from a random ranking,

EF(χ) =
∑n

i=1 δ(ri)
χn

, with δ(ri) =
{
1, ri ≤ χN
0, ri > χN , (2)

where ri indicates the rank of the ith active. The mini-
mum value of EF(χ) is 0 and the maximum value is 1/χ
if χ ≥ n/N and N/n otherwise. In this study, we calcu-
lated the EF at 1% (χ = 0.01) and 5% (χ = 0.05). For all data
sets considered here (see below) χ = 0.05 is larger than
n/N and thus the maximum value of EF(5%) is 20. For χ =
0.01, n/N is only smaller for the MUV and ChEMBL data
sets, leading to a maximum value of EF(1%) of 100. For the
DUD data sets the maximum value of EF(1%) will depend
on the exact ratio of actives and inactives in the individual
data sets.

Robust Initial Enhancement (RIE)
The RIE method was developed by Sheridan et al. [16] to
circumvent a problem encountered with the enrichment
factor: having large variations when a small number of
actives are used. Similar to EF, RIE can be viewed as the
sum of a “score” for each active divided by the expected
sum of scores for a random distribution. Whereas the
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score is 1 in the case of EF, RIE uses a continuously
decreasing exponential weight α as a function of rank

RIE(α) =
∑n

i=1 e−αri/N

〈∑n
i=1 e−αri/N 〉random . (3)

Truchon and Bayly [9] have analytically calculated the
random average and obtained an exact formula,

RIE(α) = N
n

∑n
i=1 e−αri/N

1−e−α

eα/N−1

. (4)

The minimum and maximum value of RIE are dependent
on n, N and α, and given as follows [9],

RIEmin(α) = N
n
1 − eαn/N

1 − eα
(5)

RIEmax(α) = N
n
1 − e−αn/N

1 − e−α
(6)

Since the meaning of 1/α in RIE is very close to the mean-
ing of χ in EF, we used α = 20 and 100 in this study to
compare the performance.

Boltzmann-Enhanced Discrimination of ROC (BEDROC)
The main disadvantage of the RIE method is its minimum
and maximum value which are not intuitive and which
vary from data set to data set. The BEDROC method,
which forces RIE to be bounded by 0 and 1, has been
developed to overcome this [9],

BEDROC(α) = RIE(α) − RIEmin(α)

RIEmax(α) − RIEmin(α)
. (7)

Again, we used α = 20 and 100 in this study to compare
the performance with the EF measures.

Compound data sets
Data sets from three different public sources were used.
The directory of useful decoys (DUD) was originally
designed for benchmarking of docking methods [22].
A subset was later extracted for the use in ligand-
based virtual screening (VS) experiments [23,30]. The
DUD contains 40 targets with 4–365 actives and 9–
15560 decoys. The decoys were selected from the ZINC
database [48] based on physical properties of the actives.
In this study the 21 targets with more than 30 actives
were used.
In a recent study, Heikamp and Bajorath [28] proposed

a set of 50 human targets extracted from ChEMBL [26,27]
for use in VS experiments. They selected actives which
had at least 10 μM potency for direct interactions (rela-
tionship type = D) with a confidence level = 9. The target
classes contain 50–625 actives. One million randomly
selected molecules from ZINC were used as decoys.
This selection process was repeated with ChEMBL ver-
sion 14 (Heikamp and Bajorath extracted the actives
from ChEMBL version 9). Additionally, molecules with

a molecular weight > 700 g mol −1 and molecules con-
taining metal ions were excluded. From each of these sets
of actives, the 100 most diverse compounds were chosen
using the diversity picker of RDKit [42] resulting in total
5000 actives. For each active, two decoys with a Dice simi-
larity > 0.5 using a simple atom-count fingerprint (ECFC0)
were randomly selected from ZINC, resulting in total
10000 decoys.
The maximum unbiased validation (MUV) data sets

[24,25] are based on PubChem [49] bioactivity data. MUV
consists of assay data from 17 targets, each with 30 actives
and 15000 decoys. Actives were selected from confirma-
tory screens and were chosen to be maximally spread
based on simple descriptors and embedded in decoys.

Figure 7 Virtual screening scheme. Schematic representation of
the simulated virtual-screening (VS) experiment with the three steps
scoring, validation and analysis.
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The decoys were selected from a primary screen for the
same target. In short, these data sets were designed to be
difficult for VS methods.
An overview of the 88 data sets with the target IDs,

target description, number of actives, number of decoys,
ratio actives/decoys, number of Bemis-Murcko scaffolds
(BMS) [41] found in the actives and ratio BMS/actives is
given in Table 2.

Benchmarking platform
The scripts of the benchmarking platform are written in
Python and use the Python library of the RDKit [42]. How-
ever, the scripts are designed in such a way that ranked
compound lists generated by other sources can be used at
a later stage of the VS experiment. The python scripts of
the platform are given in Additional file 4.

Preparation of compound and training lists
For each target of the three data-set collections MUV,
DUD and ChEMBL, two compound lists are provided,
one for the actives and one for the decoys. In the case
of ChEMBL, only one decoy compound list is given as
the same decoys were used for all targets. The com-
pound list contains the external ID (from the MUV,
DUD, ChEMBL, and ZINC collections), internal IDs and
SMILES. Internal IDs are defined as follows: [name of data
set]_[target ID]_[A/D]_[number of compound], where A
indicates actives and D decoys. The compound number is
determined by the order the compounds are listed in the
original files.
The VS experiment is repeated 50 times for each tar-

get, randomly selecting each time a set of actives and a set
of the decoys as training molecules. The remaining actives
and decoys form the test molecules for the VS experi-
ment. The platform provides for each target and number
of query molecules a collection of 50 training lists with the
internal ID and list index of training molecules.
The compound lists and the training lists with five query

molecules and 20% of the decoys are given in Additional
files 5 and 6.

Simulated virtual screening
The VS experiment is divided into the following three
steps: scoring, validation and analysis. A schematic rep-
resentation is given in Figure 7 and described below. The
input and output of each step is given in Table 3.

1) Scoring
The training lists are loaded. Fingerprints are
calculated for all molecules, and the test molecules
are ranked based on the similarity to the actives in
the training set (the query molecules). Only the
highest similarity value is considered for each test
molecule, corresponding to the MAX fusion

procedure [34]. Possible fingerprints are provided in
an additional python script serving as the “fingerprint
library”. Other fingerprints implemented in, or
callable from Python can be added to this library. The
default similarity measure used in this study is the
Dice similarity. Other similarity measures which are
currently supported by the platform are Tanimoto,
Cosine, Russel, Kulczynski, McConnaughey,
Manhattan and Rogot-Goldberg. The last two
measures also take the common off-bits into account.
The similarity measures are described and compared
in [50]. The Dice and Tanimoto were found to give
very similar results [50], which is expected given
that the ranking of molecules provided by the
two methods is provable to be exactly the same
(see Appendix).

2) Validation
The ranked lists from the previous step are loaded
and the performance of each fingerprint is calculated
using different evaluation methods. The following
evaluation methods are currently supported: AUC,
RIE, BEDROC and EF.

3) Analysis
From the 50 ranked lists for each fingerprint and
evaluation method, the average performance is
calculated per target. In addition, the average rank of
each fingerprint over all of the datasets is calculated
per method. For each evaluation method, a global
Friedman test [51] is performed to detect statistically
significant differences between the mean ranks of the
fingerprints.

The Friedman test is a non-parametric alternative to
an analysis of variance (ANOVA) for repeated measures
by ranks. For each measure (i.e. target), the fingerprints
are ranked based on the average rank over the 50 repeti-
tions, and then for each fingerprint the ranks are summed.
These sums are used to generate a p-value [51]. A p-value
smaller than the confidence level α indicates that at least
one method is consistently ranked higher than the others.
Here, a confidence level α of 0.05 is used. If the p-value
is significant, post-hoc pairwise Friedman tests [52] are
performed to determine which method(s) is ranked con-
sistently higher than the others. The post-hoc tests are
performed using bootstrapping where the mean rank of
each fingerprint per target and the average over all ranks
are recalculated 100 times from a resampled set (with
replacement) of the original 50 ranks. The p-values are
multiplicity-adjusted using a non-parametric resampling
method [53] (max T, part of the R packagemulttest) which
allows the straightforward comparison of the resulting p-
values with the confidence level α. Finally, the distribution
and range of the bootstrapped p-values of the pairwise
tests are used to categorize the differences in performance
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Table 3 Arguments of virtual-screening scripts

Step Input (required) Input (optional) Output

Key Description Key Description Description

Scoring -f file containing fp names -o output path for each target, a list

-a append the output file with (fp name,

list of 50 scored lists);

-n number of query molecules -s similarity measure (default: Dice) each scored list

contains (similarity,

internal ID, active/inactive)

Validation -m file containing the evaluation -o output path for each target,

methods and their parameters -i input path(s) a dictionary of methods;

-r file containing fingerprints to ignore for each method,

a dictionary of fps;

for each fp, a list with

(performance value, rank)

Analysis -o output path for each target, a table

-i input path with average performance per fp

(columns) and method (rows);

a file with average rank per fp

(columns) and method (rows);

a file with pairwise tests

Input and output arguments for the three steps of the virtual-screening (VS) experiment. Fingerprint is abbreviated by fp.

of the corresponding fingerprints into three classes: highly
significant, significant around α, not significant. The cal-
culations for significance testing were done using the R
software environment for statistical computing [54].

Appendix
Proof that molecule A is more similar to molecule B than
moleculeC for both the Tanimoto andDice similarity. The
Tanimoto similarity is defined as follows,

Tanimoto = NA&B
NA + NB − NA&B

, (8)

where Ni is the number of on-bits in the fingerprint of
molecule i, and Ni&j is the number of common on-bits in
the fingerprints of molecules i and j. The Dice similarity is
given as,

Dice = 2NA&B
NA + NB

, (9)

with the same notation.
So, if the Tanimoto similarity between molecules A and

B is higher than the one between molecules A and C, then

NA&B
NA + NB − NA&B

>
NA&C

NA + NC − NA&C
, (10)

which can be reformulated as,

NA&B(NA +NC −NA&C) > NA&C(NA +NB −NA&B),
(11)

and finally leads to,

NA&B(NA + NC) > NA&C(NA + NB). (12)

For the Dice similarity, it is

2NA&B
NA + NB

>
2NA&C
NA + NC

, (13)

which can be reformulated as,

NA&B(NA + NC) > NA&C(NA + NB), (14)

which corresponds to Equation (12).
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Additional files

Additional file 1: Numerical Values of Results. The file results.zip
contains the csv files with the numerical values of the results of the
benchmarking study.

Additional file 2: Supplementary Figures and Tables. The file
supplementary.pdf contains the additional figures and tables mentioned in
the text.

Additional file 3: Resampled p-Values. The file pvalues.zip contains the
resampled p-values from the statistical analysis.

Additional file 4: Source Code. The file python_scripts.zip contains the
source code of the benchmarking platform.

Additional file 5: Compound Data Sets. The file compounds.tar.gz
contains the compound list of each target with external ID (MUV, DUD or
ChEMBL ID), internal ID (used in benchmarking platform) and SMILES.

Additional file 6: Training Lists. The file training_lists_5.tar.bz2 contains
the indices of the compounds used for training for each target using five
query molecules.

Competing interests
Both authors declare that they have no competing interests.

Authors’ contributions
SR participated in the conception and design of the benchmarking platform,
collected the data sets, developed the benchmarking platform, performed the
virtual screening experiments, and drafted the manuscript. GL participated in
the conception and design of the benchmarking platform and in the
discussion of the results, and helped to draft the manuscript. Both authors
read and approved the final manuscript.

Acknowledgements
S. R. thanks the Novartis Institutes for BioMedical Research education office for
a Presidential Postdoctoral Fellowship. The authors thank Hanspeter Gubler for
his help with the statistical analysis and Peter Gedeck for helpful discussions.

Received: 3 April 2013 Accepted: 20 May 2013
Published: 30 May 2013

References
1. Bender A, Glen RC:Molecular similarity: a key technique in molecular

informatics. Org Biomol Chem 2004, 2:3204–3218.
2. Varin T, Bureau R, Mueller C, Willett P: Clustering files of chemical

structures using the Szekely-Rizzo generalization of Ward’s method.
J Mol GraphModell 2009, 28:187–195.

3. Mackey MD, Melville JL: Better than random? The chemotype
enrichment problem. J Chem Inf Model 2009, 49:1154–1162.

4. Wassermann AM, Wawer M, Bajorath J: Activity landscape
representations for structure-activity relationship analysis. J Med
Chem 2010, 53:8209–8223.

5. Sheridan RP, Kearsley SK:Why do we need so many chemical similarity
search methods? Drug Discov Today 2002, 7:903–911.

6. Roth HJ: There is no such thing as ‘diversity’? Curr Opin Chem Biol 2005,
9:293–295.

7. Bender A: How similar are those molecules after all? Use two
descriptors and you will have three different answers. Expert Opin
Drug Discov 2010, 5:1141–1151.

8. Todeschini R, Consonni V: Handbook of Molecular Descriptors. Wiley-VCH:
Weinheim; 2000.

9. Truchon JF, Bayly CI: Evaluating virtual screening methods: good and
badmetrics for the “early recognition” problem. J Chem Inf Model
2007, 47:488–508.

10. Jain AN, Nicholls A: Recommendations for evaluation of
computational methods. J Comput AidedMol Des 2008, 22:133–139.

11. Nicholls A:What do we know and when do we know it?. J Comput
AidedMol Des 2008, 22:239–255.

12. Rohrer SG, Baumann K: Impact of benchmark data set topology on the
validation of virtual screening methods: exploration and
quantification by spatial statistics. J Chem Inf Model 2008, 48:704–718.

13. Sheridan RP: Alternative global goodness metrics and sensitivity
analysis: heuristics to check the robustness of conclusions from
studies comparing virtual screening methods. J Chem Inf Model 2008,
48:426–433.

14. Scior T, Bender A, Tresadern G, Medina-Franco JL, Martinez-Mayorga K,
Langer T, Cuanalo-Contreras K, Agrafiotis DK: Recognizing pitfalls in
virtual screening: a critical review. J Chem Inf Model 2012, 52:867–881.

15. Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies JW: How
similar are similarity searching methods? A principal component
analysis of molecular descriptor space. J Chem Inf Model 2009,
49:108–119.

16. Sheridan RP, Singh SB, Fluder EM, Kearsley SK: Protocols for bridging
the peptide to nonpeptide gap in topological similarity searches.
J Chem Inf Comput Sci 2001, 41:1395–1406.

17. MDLdrug data report. Santa Clara, CA. [MDLInformationSystems/Symyx]
18. Hert J, Willett P, Wilton DJ, Acklin P, Azzoui K, Jacoby E, Schuffenhauer A:

Comparison of fingerprint-based methods for virtual screening
using multiple bioactive reference structures. J Chem Inf Comput Sci
2004, 44:1177–1185.

19. Hert J, Willett P, Wilton DJ, Acklin P, Azzoui K, Jacoby E, Schuffenhauer A:
Comparison of topological descriptors for similarity-based virtual
screening using multiple bioactive reference structures. Org Biomol
Chem 2004, 2:3256–3266.

20. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C,
Lindsley S, Maiorov V, Truchon JF, Cornell WD: Comparison of
topological, shape, and docking methods in virtual screening. J
Chem Inf Model 2007, 47:1504–1519.

21. Sastry M, Lowrie JF, Dixon SL, Sherman W: Large-scale systematic
analysis of 2D fingerprint methods and parameters to improve
virtual screening enrichments. J Chem Inf Model 2010, 50:771–784.

22. Irwin JJ: Community benchmarks for virtual screening. J Comput Aided
Mol Des 2008, 22:193–199.

23. DUD LIB VS 1.0 [http://dud.docking.org]
24. Rohrer SG, Baumann K:Maximum unbiased validation (MUV) data

sets for virtual screening based on PubChem bioactivity data. J
Chem Inf Model 2009, 49:169–184.

25. MUV. [http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html]
26. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y,

McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP: ChEMBL: a
large-scale bioactivity database for drug discovery. Nucleic Acids Res
2012, 40:D1100—D1107.

27. ChEMBL: European Bioinformatics Institute (EBI), version 14. 2012.
[http://www.ebi.ac.uk/chembl/]

28. Heikamp K, Bajorath J: Large-scale similarity search profiling of
ChEMBL compound data sets. J Chem Inf Model 2011, 51:1831–1839.

29. Tiikkainen P, Markt P, Wolber G, Kirchmair J, Distinto S, Poso A, Kallioiemi
O: Critical comparison of virtual screening methods against the
MUV data set. J Chem Inf Model 2009, 49:2168–2178.

30. Jahn A, Hinselmann G, Fechner N, Zell A: Optimal assignment methods
for ligand-based virtual screening. J Cheminf 2009, 1:14–37.

31. von Korff, M, Freyss J, Sander T: Comparison of ligand- and
structure-based virtual screening on the DUD data set. J Chem Inf
Model 2009, 49:209–231.

32. Venkatraman V, Perez-Nueno VI, Mavridis L, Ritchie DW: Comprehensive
comparison of ligand-based virtual screening tools against the DUD
data set reveals limitations of current 3Dmethods. J Chem Inf Model
2010, 50:2079–2093.

33. Hu G, Kuang G, Xiao W, Li W, Liu G, Tang Y: Performance evaluation of
2D fingerprint and 3D shape similarity methods in virtual screening.
J Chem Inf Model 2012, 52:1103–1113.

34. Ginn CMR, Willett P, Bradshaw J: Combination of molecular similarity
measures using data fusion. Perspect Drug Discov Design 2000,
20:1–16.

35. Williams C: Reverse fingerprinting, similarity searching by group
fusion and fingerprint bit importance.Mol Divers 2006, 10:311–332.

36. Kenny PW, Montanari CA: Inflation of correlation in the pursuit of
drug-likeness. J Comput AidedMol Des 2013, 27:1–13.

37. Nilakantan R, Baumann N, Dixon JS, Venkataraghavan R: Topological
torsion: a newmolecular descriptor for SAR applications.
Comparison with other descriptors. J Chem Inf Comput Sci 1987,
27:82–85.

http://www.biomedcentral.com/content/supplementary/1758-2946-5-26-S1.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-5-26-S2.pdf
http://www.biomedcentral.com/content/supplementary/1758-2946-5-26-S3.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-5-26-S4.zip
http://www.biomedcentral.com/content/supplementary/1758-2946-5-26-S5.gz
http://www.biomedcentral.com/content/supplementary/1758-2946-5-26-S6.bz2
http://dud.docking.org
http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html
http://www.ebi.ac.uk/chembl/


Riniker and Landrum Journal of Cheminformatics 2013, 5:26 Page 17 of 17
http://www.jcheminf.com/content/5/1/26

38. Brown N, Jacoby E: On scaffolds and hopping in medicinal chemistry.
Mini-Rev Med Chem 2006, 6:1217–1229.

39. Vogt M, Stumpfe D, Geppert H, Bajorath J: Scaffold hopping using
two-dimensional fingerprints: true potential, black magic, or a
hopeless endeavor? J Med Chem 2010, 53:5707–5715.

40. Gardiner EJ, Holliday JD, O’Dowd C, Willett P: Effectiveness of 2D
fingerprints for scaffold hopping. Future Med Chem 2011, 3:405–411.

41. Bemis GW, Murcko MA: The properties of known drugs. 1. Molecular
frameworks. J Med Chem 1996, 39:2887–2893.

42. RDKit: Cheminformatics and Machine Learning Software. 2013.
[http://www.rdkit.org]

43. MACCS structural keys. 2011, Accelrys, San Diego, CA.
44. Carhart RE, Smith DH, Venkataraghavan R: Atom pairs as molecular

features in structure-activity studies: definition and applications.
J Chem Inf Comput Sci 1985, 25:64–73.

45. Daylight Theory Manual [http://www.daylight.com/dayhtml/doc/
theory/index.pdf]

46. Gedeck P, Rohde B, Bartels C: QSAR - How good is it in practice?
Comparison of descriptor sets on an unbiased cross section of
corporate data sets. J Chem Inf Model 2006, 46:1924–1936.

47. Rogers D, Hahn M: Extended-connectivity fingerprints. J Chem Inf
Model 2010, 50:742–754.

48. Irwin JJ, Shoichet BK: ZINC - a free database of commercially available
compounds for virtual screening. J Chem Inf Model 2005, 45:177–182.

49. PubChem: National Center for Biotechnology Information (NCBI)
[http://pubchem.ncbi.nlm.nih.gov]

50. Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P:
Similarity coefficients for binary chemoinformatics data: overview
and extended comparison using simulated and real data sets.
J Chem Inf Model 2012, 52:2884–2901.

51. Friedman M: The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. J Am Stat Assoc 1937, 200:675–701.

52. Friedman post-hoc tests performed using R code of Tal Galili [http://
www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-
code]

53. Dudoit S, Shaffer JP, Boldrick JC:Multiple hypothesis testing in
microarray experiments. Stat Sci 2003, 18:71–103.

54. Team RDC: R: a language and environment for statistical computing.
Vienna,Austria 2010, [http://www.r-project.org]

doi:10.1186/1758-2946-5-26
Cite this article as: Riniker and Landrum: Open-source platform to bench-
mark fingerprints for ligand-based virtual screening. Journal of Cheminfor-
matics 2013 5:26.

Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://www.rdkit.org
http://www.daylight.com/dayhtml/doc/theory/index.pdf
http://www.daylight.com/dayhtml/doc/theory/index.pdf
http://pubchem.ncbi.nlm.nih.gov
http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code
http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code
http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code
http://www.r-project.org

	Abstract
	Keywords

	Background
	Results and discussion
	Performance for 88 targets
	Correlations between evaluation methods
	Correlations between fingerprints
	Ranking of fingerprints
	Analysis of scaffold diversity

	Conclusions
	Methods
	Cheminformatics toolkit
	Fingerprints
	Evaluation methods
	Receiver Operating Characteristic (ROC) curve
	Enrichment Factor (EF)
	Robust Initial Enhancement (RIE)
	Boltzmann-Enhanced Discrimination of ROC (BEDROC)

	Compound data sets
	Benchmarking platform
	Preparation of compound and training lists
	Simulated virtual screening


	Appendix
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Competing interests
	Authors' contributions
	Acknowledgements
	References

