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Abstract

gene expression.

increased type Il error for high abundance transcripts.

Background: RNA sequencing (RNA-Seq) is emerging as a highly accurate method to quantify transcript
abundance. However, analyses of the large data sets obtained by sequencing the entire transcriptome of organisms
have generally been performed by bioinformatics specialists. Here we provide a step-by-step guide and outline a
strategy using currently available statistical tools that results in a conservative list of differentially expressed genes.
We also discuss potential sources of error in RNA-Seq analysis that could alter interpretation of global changes in

Findings: When comparing statistical tools, the negative binomial distribution-based methods, edgeR and DESeq,
respectively identified 11,995 and 11,317 differentially expressed genes from an RNA-seq dataset generated from
soybean leaf tissue grown in elevated Os. However, the number of genes in common between these two methods
was only 10,535, resulting in 2,242 genes determined to be differentially expressed by only one method. Upon
analysis of the non-significant genes, several limitations of these analytic tools were revealed, including evidence for
overly stringent parameters for determining statistical significance of differentially expressed genes as well as

Conclusions: Because of the high variability between methods for determining differential expression of RNA-Seq
data, we suggest using several bioinformatics tools, as outlined here, to ensure that a conservative list of
differentially expressed genes is obtained. We also conclude that despite these analytical limitations, RNA-Seq
provides highly accurate transcript abundance quantification that is comparable to gRT-PCR.
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Findings

Background

As a method for characterizing global changes in tran-
scription, RNA-Seq is an attractive option because of the
ability to quantify differences in mRNA abundance in re-
sponse to various treatments and diseases, as well as to
detect alternative splice variants and novel transcripts [1].
Compared to microarray techniques, RNA-Seq eliminates
the need for prior species-specific sequence information
and overcomes the limitation of detecting low abundance
transcripts. In addition, early studies have demonstrated
that RNA-Seq is very reliable in terms of technical repro-
ducibility [2]. As a result, biologists studying an array of
model and non-model organisms are beginning to utilize
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RNA-Seq analysis with ever growing frequency [3-7].
However, without experience using bioinformatics meth-
ods, the large number of choices available to analyze dif-
ferential expression can be overwhelming for the bench
scientist (see Table one in [8]).

Essentially, RNA-Seq consists of five distinct phases, 1)
RNA isolation, 2) library preparation, 3) sequencing-
by-synthesis, 4) mapping of raw reads to a reference tran-
scriptome or genome and 5) determining significance
for differential gene expression (for review see [1]). In
an effort to familiarize the bench scientist with the
post-sequencing analysis of RNA-Seq data (phase 5),
we have developed an analysis strategy based on cur-
rently available bioinformatics tools. Here, we compare
three statistical tools used to analyze differential gene
expression: edgeR, DESeq and Limma [9-11]. Based on
their performance, we present an analysis strategy that
combines these tools in order to generate an optimized
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list of genes that are differentially expressed. Finally,
we highlight several aspects of RNA-Seq analysis that
have the potential to lead to misleading conclusions
and discuss options to minimize these pitfalls.

Results

Generating high quality reads is dependent on initial RNA
quality

Prior to library construction and sequencing-by-synthe-
sis, the quality of the isolated RNA was assessed by gel
electrophoresis to ensure purity (Additional file 1).
Three replicate samples were isolated from soybean
leaves that had been grown in either chronic Oz (150
parts per billion) or ambient O3 for six weeks. No deg-
radation was observed in any of the samples and staining
of the 26S rRNA band was more intense compared to
the 18S rRNA band, indicating that high quality RNA
had been isolated. In addition, there was no evidence
that genomic DNA was co-purified during RNA extrac-
tion. Following library preparation and sequencing-
by-synthesis, analysis of the raw reads determined that
all six samples had a median quality score (QS) of 34
(Table 1). As a result, averages of ~28 million high qual-
ity reads were obtained for each sample.

Utilizing statistical tools that are compatible with RNA-Seq
data

The raw reads described in Table 1 were aligned to the
soybean reference transcriptome [12] using the mapping
tool Novoalign, a short read aligner demonstrated to be
highly accurate [13,14]. When differential expression
was analysed subsequently, the total number of genes
with significantly altered transcript abundance in plants
exposed to elevated ozone was 11,995 for edgeR, 11,317
for DESeq and 9,131 for Limma. Since RNA-Seq gener-
ates count data, it is more appropriate to use a discrete
probability distribution to analyze differential gene ex-
pression [15]. Therefore, edgeR and DESeq, which are
based on the negative binomial distribution, are compat-
ible with the data generated by RNA-Seq [9,10]. In con-
trast, Limma [16] was adapted to analyze RPKM values

Table 1 Post sequencing analysis of raw reads
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using a method previously developed for continuous
data from microarray studies (fluorescence values) and is
based on the ¢-distribution [11]. The Limma method
was clearly very different from the two negative binomial
distribution methods, but even between edgeR and
DEseq there were 678 additional genes identified by
edgeR as differentially expressed, representing approxi-
mately 6% of the significant genes.

Workflow for RNA-Seq data optimization

In response to the differences described above, we devel-
oped a strategy to integrate the results analyzed separately
by edgeR and DESeq into one optimized dataset. As a first
step, any gene that had zero mapped reads for all six sam-
ples was removed, resulting in 40,537 genes mapped by
Novoalign out of the 46,367 genes comprising the soybean
reference transcriptome (Figure 1, Step A) [12]. Software
code to carry out this preliminary step as well as the
subsequent analyses using edgeR and DESeq (Figure 1,
Step B) using the R statistical package [17] is provided
(Additional file 2). These analyses are performed inde-
pendently using the same mapping file (Additional file 3)
and result in two excel files containing log, fold change
values and p-values that have been adjusted for multiple
testing for each gene that was mapped by Novoalign.

In order to identify the common genes determined to
be differentially expressed by both DESeq and edgeR, we
intersected the two lists of significant genes (Figure 1,
Step C). As a result, the genes that were determined to
be significantly regulated by only one statistical method
were eliminated. A comparison of the 2,242 eliminated
genes revealed that the non-significant p-value respon-
sible for the gene's removal was generally close to, but
above p=0.05 (Figure 2). Therefore, we classified these
genes as marginally significant. The optimized list after
these filtering and merge steps totalled 10,535 differen-
tially expressed genes. Many of these genes had very low
read counts for all samples, potentially making conclu-
sions related to biological relevance misleading. To deal
with this issue, we removed any gene with a control and
treatment RPKM value of<1.0 (Figure 1, Step D),

Sample Treatment Flowcell lane Number of reads Q.S. (median) Q.S. (interquartile range)
1 Ambient 36,408,402 34 26-36
2 Elevated O3 28,554,551 34 26-36
3 Ambient 5 16,862,414 34 29-37
4 Elevated Os 5 17,575,844 34 29-37
5 Ambient 6 31,889,531 34 28-37
6 Elevated O; 6 37,605,167 34 28-37

For each sample, the total number of reads and read quality score (QS) is listed. A QS of 34 indicates one sequencing error per 4,000 base pairs. Generally, a QS
over 20 (1% error rate) is considered acceptable for RNA-Seq. One control (-) and one elevated ozone (+) replicate were pooled and run on a single lane of the

flow-cell.
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Figure 1 RNA-Seq data optimization strategy. The flowchart
outlines the strategy for identifying soybean leaf transcripts
significantly changing in response to elevated ozone. All genes
mapping zero reads for all samples were removed (A) after aligning
raw reads to the reference transcriptome, consisting of 46,367 genes.
Differential expression was then separately determined using DESeq
and edgeR (B). The two lists of significant genes were intersected to
obtain a single list of differentially expressed genes (C). Finally, low
expression genes (RPKM < 1.0) were removed (D).

reducing the total number of differentially expressed
genes to 8,927. However, this step is optional and should
be performed only after careful consideration.

Comparing the accuracy of RNA-seq data with qRT-PCR
Several genes known to be regulated by elevated ozone
were chosen to analyze via qRT-PCR. The targets
chosen include genes involved with photosynthesis,
carbohydrate metabolism and oxidative stress, all bio-
logical processes that have been well characterized to
be responsive to elevated ozone at the level of tran-
scription [18]. The response of each of the targets was
consistent with the documented effects of elevated
ozone. In addition, the expression ratios for both meth-
ods were similar (Figure 3), thus validating the previ-
ously reported accuracy of RNA-Seq data.
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Potential pitfalls and limitations of RNA-Seq analysis

A first potential limitation of this approach is that it
may be too conservative, as evidenced by the 2,242
marginally significant genes that were removed from
the final optimized list (Figure 1, Step C). The behav-
ior of these genes was analysed in the context of
changes to transcripts with broadly similar functions,
using the MapMan expression tool [19] to analyze
functional category significance for each of the lists of
marginally significant genes (Table 2). This tool first
identified 11 functional categories from the optimized
list of differentially expressed genes consisting of a
subset of genes that collectively responded to elevated
ozone in a similar manner; i.e., the expression profile
of each significant functional category was different
from the expression profile of all other categories.
When the lists of marginally significant genes were
analyzed subsequently, most of these categories were
found not to be significantly different, indicating that
the eliminated genes did not respond in a manner
similar to the optimized list of genes. However, stat-
istical significance was achieved for several categor-
ies. Despite having an expression profile consistent
with the remaining genes included in the optimized
list, 320 RNA, 70 stress, 36 hormone metabolism, 19
DNA, and 10 mitochondrial electron transport-
related genes were eliminated based on a non-
significant determination by one of the two statistical
tools.

An additional limitation was uncovered by further in-
vestigation of the final list of optimized genes. After a
cursory examination of several genes that were previ-
ously characterized to be regulated by growth in elevated
ozone, we identified a potential issue with the statistical
analysis that preferentially impacted the high abundance
genes. It is well-documented that plants grown in ele-
vated ozone exhibit reduced photosynthesis, increased
antioxidant capacity and increased protein turnover [18].
Four high abundance genes (Glyma05g25810, Gly-
ma20g27950, Glymal7g37280 and Glymallgl1460)
involved with these processes were not found to be dif-
ferentially expressed by at least one of the statistical tools
used in this analysis, despite RPKM values with obvious
differences and analysis of variance (ANOVA) results
that indicated significance (Table 3). A more detailed
examination across a range of RPKM values support the
finding of an increase in type II error for high abundance
genes. Four out of 10 randomly selected genes with
RPKM values near 1000 that were determined not to be
differentially regulated by both edgeR and DESeq did, in
fact, have significantly altered transcript abundance when
analyzed using ANOVA (Figure 4A). In contrast, none of
the genes with RPKM values near 10 were identified as
false negatives (Figure 4C).
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Discussion

While the aim of this paper is to familiarize the molecular
biologist interested in undertaking an RNA-Seq project
with the methods and issues related to post-sequencing
analysis, emphasis still needs to be placed on proper hand-
ling of RNA samples. Here, we isolated high quality RNA
(Additional file 1) using a well-established protocol for
soybean leaf tissue [20]. In addition, care was taken during

the library construction and sequencing-by-synthesis
phases, as evidenced by the high quality scores for each
sample (Table 1). As a result, the average number of us-
able reads per sample was >20 million, which is the
recommended depth required to quantify differential ex-
pression in a species with a referenced genome [21].

It is also important to utilize a valid experimental
design for RNA-Seq projects, which includes the use
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Figure 3 Comparing the accuracy of RNA-Seq data using qRT-PCR. Relative expression ratios determined by qRT-PCR were compared to
RNAseq results for several genes known to be regulated by elevated ozone.
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Table 2 Functional category significance of optimized and marginally significant genes

Functional Category Optimized DESeq marginal edgeR marginal

# of genes p-value # of genes p-value # of genes p-value
Stress 497 0* 70 220E-03 * 19 0.17
Signaling 909 0* 102 043 40 0.70
Cell wall 263 851E-29 % 28 0.14 4 0.50
Photosynthesis 117 3.79E-05 * 22 0.76 4 0.23
RNA 1132 6.04E-05 * 222 001 * 98 4.40E-03 *
Hormone metabolism 321 3.08E-04 * 36 001 * 19 051
DNA 133 0.002 * 34 0.70 19 0.03 *
Major CHO metabolism 76 0.003 * 5 0.72 7 042
Lipid metabolism 223 0.023 * 23 034 16 0.88
Mitochondrial electron 71 0.042 * 2 0.17 10 0.04 *
transport / ATP synthesis
TCA cycle 44 0.049 * — — 7 0.53

The genes eliminated from Step C in Figure 1 are grouped into functional categories and compared with the final optimized list of significant genes. p-value
indicates the significance that transcript abundance of all the genes within a specified category are changing in a similar manner compared to all other

categories. Asterisks signify p-value below p=0.05.

of biological replicates. Reports demonstrating highly
reproducible RNA-Seq results [2,22] make it tempting
to reduce sequencing costs by only using one replicate
per treatment group. However, without replication it is
impossible to estimate error, without which there is no
basis for statistical inference [23]. Therefore, it is
recommended that RNA-Seq experiments include at
least three biological replicates per treatment group
[24], as was done in the experiment presented here.
Along these lines, it is important to understand the na-
ture of RNA-Seq data and why it is necessary to use a
compatible statistical method, such as a negative binomial

distribution [9,10]. For discrete variables such as count
data, it is possible to associate all observed values with a
non-zero probability. In contrast, there is zero probability
that a specific fluorescence value (continuous variable) will
be obtained from microarray hybridization. This distinc-
tion is important in the context of the varying number of
total reads obtained for individual RNA-Seq samples. For
example, the probability of mapping 100 reads out of
16.86 million (Table 1; Sample3) for a particular gene is
different than mapping 100 reads out of 36.41 million
(Table 1; Samplel). To deal with this issue, both edgeR [9]
and DESeq [10] normalize the read data based on the total

Table 3 Statistical limitations are revealed by independent analysis of ozone-responsive genes

Functional Locus ID Transcript Control Treatment Fold DESeq edgeR Individual
annotation length RPKM RPKM change t-test
Light-harvesting Glyma05g25810 1100 773320 + 7830 457586 £4293 0.59 0.063 3.39E-04 *  0.004 *
complex I

CAB protein

Ubiquitin Glyma20g27950 1540 1504.18 £ 1498 2425.15 £ 206.1  1.61 0.061 0.007 * 0.003 *
Thioredoxin Glyma17g37280 1134 26549 £ 11.1 22079+ 178 083 0.14 0213 0.021 *
L-ascorbate Glymallg11460 1278 8473 £ 26 10798 + 44 1.27 0214 0.272 0.001 *
peroxidase

Polysaccharide catabolism  Glyma06g45700 1831 7047 + 86 1891 £9.2 0.27 234E-29*  448E-19* 0002 *
Glutaredoxin Glyma13g30770 747 1131+ 14 3468 + 6.8 3.07 8.39E-14 * 1.56E-11 % 0.004 *
Protein degradation Glyma04g14250 1088 523+02 4452+ 118 851 7.06E-49*  830E-38* 0005 *
DER1 like

Lipoxygenase Glyma03g42500 2833 290 + 04 564+13 195 1.96E-04 * 226E-04* 0027 *
Starch synthase Glyma20g36040 1954 284 +£08 012 £ 0.1 0.04 1.14E-23 * 1.60E-36 *  0.005 *
catalytic domain

WRKY trascription Glyma10g27860 1468 169 + 04 7092 £ 2080 41.97 9.23E-121*  2.76E-92* 0.005*
factor

Genes known to be regulated by elevated ozone that had a range of transcript abundances were selected from the optimized list of differentially regulated
genes. In addition to p-values from DESeq and edgeR, an ANOVA was performed on RPKM values. Asterisks signify p-value below p=0.05.
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Figure 4 Identification of type Il error across a range of transcript abundance levels. RPKM values were compared between control and
treatment for 10 randomly selected genes, ranging from high (A), moderate (B) and low (C) abundance transcripts. Also included are the p-values
from DESeq, edgeR and an ANOVA performed using RPKM data. Asterisks signify p-value below p=0.05.

-

DESeq edgeR ANOVA
Glyma14g09440 | 0.369 0.165 0.065
Glyma06g20960 | 0.284 0.169 0.036 *
Glyma19g28240 | 0.640 0.596 0.174
Glyma16g26130 | 0.179  0.081 0.023 *
Glyma08g13360 | 0.735 0.754 0.217
Glyma17g37400 | 0.218 0.056 0.056
Glyma10g39780 | 0.287 0.065 0.048 *
Glyma07g35310 | 0.645 0.449 0.204
Glyma11g06510 | 0.176  0.086 0.060
Glyma16g33030 | 0.189  0.091 0.025*

DESeq edgeR ANOVA
Glyma02g12520 0.979 0.722 0.212
Glyma05g29000 0.342 0.348 0.060
Glyma04g02270 | 0.930 0.896 0.149
Glyma01g28820 0.114 0.149 0.016 *
Glyma03g40510 0.150 0.269 0.093
Glyma09g08170 | 0.771 0.929 0.203
Glyma02g47120 0.483 0.648 0.065
Glyma15g11360 | 0.564 0.692 0.207
Glyma14g15170 0.211 0.271 0.042 *
Glyma11g09620 | 0.561 0.702 0.139

DESeq edgeR ANOVA
Glyma16g25650 | 0.913 1.000 0.222
Glyma14g04000 | 0.610 0.743 0.205
Glyma11g18990 | 0.465  0.363 0.136
Glyma17g11060 | 0.229 0.445 0.212
Glyma20g30700 | 0.433 0.702 0.230
Glyma06g08680 | 0.433  0.415 0.082
Glyma19g43320 | 0.678  0.662 0.101
Glyma07g11530 | 0.334 0.464 0.130
Glyma05g38070 | 0.679 0.683 0.166
Glyma08g27710 | 0.665  0.600 0.181

J

number of reads per sample prior to differential expres-
sion analysis.

The main goal of this work was to compare the accur-
acy of two statistical tools, edgeR and DEseq. At first
glance, it appears that both tools perform equally well
(Figure 1, Step B). However, when the differentially

expressed genes from edgeR and DEseq were intersected
(Figure 1, Step C), quite a few genes from each list were
eliminated (2,242 total genes). Because of this, we
adopted a strategy to identify genes that were deter-
mined to be differentially expressed by both edgeR and
DESeq. In other words, greater confidence was achieved



Yendrek et al. BVIC Research Notes 2012, 5:506
http://www.biomedcentral.com/1756-0500/5/506

if a gene was determined significant by each of the stat-
istical tools.

This strategy made it possible to follow the genes that
were eliminated and to identify aspects of the analysis
that have the potential to lead to erroneous conclusions.
One aspect to consider is how each of the different stat-
istical tools is designed to handle and report ‘zero reads’
or transcripts that are not expressed in a given treat-
ment. For example, DESeq will output 'Inf or -Inf to
excel as the log, fold change value for genes that fail to
align any reads for all control or treatment samples
(Table 4). In contrast, edgeR outputs log, fold changes
values that are unrealistically large. It is possible that
some of these genes could reveal important aspects of
global transcription that were altered (i.e., genes that
were turned on or off by the treatment) and should not
be inadvertently removed. In many cases, however, these
genes had very few reads for each replicate as well as for
each treatment (Table 4). Transcript abundance this low,
while determined to be significantly different, is unlikely
to be biologically relevant and should be removed from
the analysis. Care should be taken when choosing an ar-
bitrary cutoff, however, to prevent the elimination of
genes that may play a transcriptional role in response to
the treatment being investigated. In this case, we used a
conservative RPKM value <1.0 that resulted in the re-
moval of 1,608 low abundance genes (Figure 1, Step D).

Another aspect that has the potential to confound
RNA-Seq analysis deals with the issue of statistical strin-
gency. In Table 2, we demonstrated that for several func-
tional categories, the marginally significant genes
eliminated from the optimized list did, in fact, respond
to elevated ozone in a manner similar to the genes ulti-
mately determined to be differentially expressed.

Table 4 Expression data for low abundance genes
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Therefore, it may be more appropriate to perform net-
work analysis for individual metabolic or signal trans-
duction pathways using the entire RNA-Seq dataset, not
just the genes determined to be differentially expressed
[25]. However, this strategy is limited by pathways that
have been previously characterized and would fail to un-
cover new connections, especially unknown signalling
relationships.

One final issue revealed by this analysis was the in-
crease in type II error for high abundance genes (Table 3
and Figure 4). Several of the genes determined not to be
differentially regulated by one or both of the statistical
tools are involved with processes that have been
well characterized to be regulated to elevated ozone, in-
cluding decreased photosynthesis (Glyma05g25810 and
Glymal7g37280) [16], increased antioxidant capacity
(Glymallgl1460) [26] and increased protein turnover
(Glyma20g27950) [27]. However, these genes were deter-
mined to be differentially expressed based on statistical
analysis of RPKM values. This problem undermines the
effectiveness of performing RNA-Seq analysis to uncover
novel relationships because it will fail to identify all of
the high abundance genes that are differentially regu-
lated in response to elevated ozone; genes that are more
likely to impact biological processes, especially metabolic
functions.

Conclusions

There are many new challenges facing the bench scien-
tist when undertaking an RNA-Seq project, especially
regarding the large number of bioinformatics tools that
have been developed to analyze the post-sequencing
dataset [28-32]. Here, we provide a step-by-step guide
for analyzing RNA-seq data. In addition, we identified

DESeq edgeR Raw Counts RPKM

log2 FC Padj log2 FC Padj conl con2  con3  trtl trt2  trt3 Control Treatment
Genes turned on
Glyma18g02680 Inf 0.0224 27.39 0.0187 0 0 0 5 1 4 0 0.08£0.032
Glyma01g41980 Inf 0.0331 27.26 0.0187 0 0 0 3 4 2 0 030+0.206
Glyma11g04880 Inf 0.0324 27.25 0.0187 0 0 0 5 2 2 0 0.17£0.054
Glyma16g06500 Inf 0.0320 27.24 0.0326 0 0 0 5 1 3 0 0.14+0.057
Glyma12g05780 Inf 0.0488 27.08 0.0326 0 0 0 3 1 4 0 0.06+£0.030
Genes turned off
Glyma07g02590 -Inf 0.0011 -28.11 0.0004 7 4 5 0 0 0 0.20+0.050 0
Glyma17g17930 -Inf 0.0011 -28.12 0.0004 3 5 8 0 0 0 0.17+£0.084 0
Glyma17g34230 -Inf 0.0016 —-28.02 0.0006 9 3 3 0 0 0 0.54+0.292 0
Glyma12g14620 -Inf 0.0052 =27.71 0.0035 3 5 4 0 0 0 057+0372 0
Glyma03g37640 -Inf 0.0075 —27.56 0.0061 4 2 5 0 0 0 0.14+£0.013 0

Log, fold change, p-value, raw count data and RPKM vaules for representative samples from gene clusters turned on or off by elevated ozone. DESeq outputs an
'Inf or -Inf' log2 fold change value to excel when all control or treatment replicates map zero reads.
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limitations that exist for widely used methods to deter-
mine differential expression of RNA-seq data. Therefore,
we suggest that our strategy to merge the common
genes identified by multiple tools and examine the elimi-
nated genes is an improvement that better ensures confi-
dence in generating a list of differentially expressed
genes. We also demonstrate that the results obtained
from a select set of genes using qRT-PCR closely agree
with the RNA-Seq data. Because of this high accuracy,
we envision RNA-Seq replacing microarrays as the new
standard for global transcript quantification.

Methods

Background

Soybean plants (Glycine max cv. Be Sweet 292) were
grown in environmentally controlled growth cham-
bers for six weeks in either ambient or elevated
ozone conditions (150 ppb for 8 h d'). Tissue was
collected from mature leaves and ground to a fine
powder in a liquid nitrogen cooled mortar and pes-
tle. Total RNA was isolated following the protocol of
Bilgin et al. [20] and DNase treated using the
TURBO DNA-free kit (Life Technologies, Grand Island,
NY). Each sample (5 pg) was resolved on a 1% agarose
gel containing 40 mM MOPS (pH 7.0), 2 mM EDTA
(pH 8.0) and 5 mM iodoacetamide. Before loading the
gel, each sample was diluted to 10pL with nuclease free
water and heated at 70°C for 5 min along with 7.5pL
MOPS/EDTA buffer and 5uL formaldehyde (37% wt.).

Library preparation and sequencing-by-synthesis

The DNase-treated RNA (1 pg) was used to prepare in-
dividually barcoded RNA-Seq libraries with the TruSeq
RNA Sample Prep kit (Illumina, San Diego, CA). Pools
of two samples per lane were sequenced on a HiSeq2000
for 100 cycles using version 2 chemistry and analysis
pipeline 1.7 according to the manufacturer's protocols
(lumina, San Diego, CA). All raw data has been sub-
mitted to the NCBI [GenBank:SRP009826].

Aligning raw reads to the soybean transcriptome
[lumina sequences from each of the samples from three
biological replicates of control and treatment (elevated
ozone) were cleaned using the FASTX toolkit, with a
minimum quality score of 20 and minimum length of
75 nt. Soybean genome (Gmax_109) and gff file (Gmax_109.
gff3) were downloaded from phytozome (http://www.phyto-
zome.net/soybean). Soybean transcripts were extracted from
the genome sequences based on the.gff file. These soy-
bean transcripts (46,367 transcripts) were considered as
reference transcriptome for RNA-Seq analysis.

Mapping of Illumina sequences with Novoalign was
done with —H (for hard clipping the reads), -1 65, -rA10
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(to allow 10 multiple alignments). With these para-
meters at least 90% of the each read's length should map
to the reference to consider it as a mapped read. After
mapping with Novoalign, read counts for each gene were
generated using PERL scripts. These reads counts were
used for statistical analysis using DESeq and edgeR
packages of ‘R’ to determine differential expression at
the gene level. Since approximately 92% of the mapped
reads aligned to the transcriptome uniquely, multireads
were not considered. All biological replicates demon-
strated a >0.93 correlation when RPKM values were
compared, indicating high reproducibility of replicates.
See online user guides for more information about
performing alignments with Novoalign (http://www.
novocraft.com/wiki/tiki-index.php).

Statistical analyses

Gene lengths and count data for the three independent
control and ozone-treated replicates were used to
analyze differential expression using R software (Version
2.13.0) [33]. The Limma-RPKM method is based on a
two-group Affymetrix dataset design included as part of
the Limma package [11,17]. For the edgeR analysis, the
trimmed mean of the M values method (TMM; where
M=log, fold change) was used to calculate the
normalization factor and quantile-adjusted conditional
maximum likelihood (qCML) method for estimating dis-
persions was used to calculate expression differences
using an exact test with a negative binomial distribution
[9,15,34]. For the DESeq analysis, differential expression
testing was performed using the negative binomial test
on variance estimated and size factor normalized data
[10]. All p-values presented were adjusted for false dis-
covery rate to control for type I error due to multiple
hypothesis testing. The programming code for each of
the specific packages can be found by viewing the vignette
details in R using the 'openVignette()' command.

Log, fold change values were loaded into the MapMan
expression tool to link gene identifiers with functional
annotations using the Gmax_109_peptide mapping file.
This tool automatically analyzes functional category sig-
nificance base on the Wilcoxon rank sum test [19].

Differential expression of RPKM normalized data was
tested by ANOVO and corrected for multiple compari-
sons following the methods of Benjamini and Hochberg
(1995) [35] with a false discovery rate of 0.25 using SAS
(Version 9.2, Cary, NC; Table 4).

gRT-PCR
First-strand ¢cDNA synthesis was performed using 1 pg
of DNase treated RNA and was reverse transcribed in a
20 pl reaction with Superscript II (Life Technologies,
Grand Island, NY) and oligo(dT) primers according to
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the manufacturer's instructions. Quantitative PCR was
performed on an Applied Biosystems 7900HT Fast Real-
Time PCR System (Life Technologies, Grand Island, NY)
using Power SYBR Green PCR master mix (Life Tech-
nologies, Grand Island, NY) and 400nM of each primer in
a 10 pl reaction. Primers were aliquoted onto a 384-well
PCR plate using a JANUS automated liquid handling sys-
tem (Perkin Elmer, Waltham, MA). The following are the
primer sequences for each of the target genes: Rubisco
(Glymal9g06340), primer A- GCACAATTGGCAAAGG
AAGT, primer B- GAGAAGCATCAGTGCAACCA; LH
CA5 (Glyma06g04280), primer A- GTGGAGCATCTTT
CCAATCC, primer B- TGGATAAGCTCAAGCCCAAG;
SBPase (Glymallg34900), primer A- ATAAGTTGACCG
GCATCACC, primer B- GGGTTGTCAGATGTGGCT
CT; starch synthase (Glymal3g27480), primer A- GACC
CTCTCGATGTTCAAGC, primer B- ATTCTCTGAG
GTGGCAATGG; glutaredoxin (Glymal3g30770), primer
A- AATCCAATGGCACCTATCCA, primer B- AGGGTT
CACTCCCAGACCTT. Target gene expression was nor-
malized to cons14 [36]. Each PCR amplification curve was
analyzed with LinRegPCR software [37] to calculate the
PCR efficiency and threshold value from the baseline-
corrected delta-Rn values in the log-linear phase. The nor-
malized expression level for each gene was determined as
reported in [38].
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