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Abstract

Background: Early detection of breast cancer in blood is both appealing clinically and challenging technically due
to the disease’s illusive nature and heterogeneity. Today, even though major breast cancer subtypes have been
characterized, i, luminal A, luminal B, HER2+, and basal-like, little is known about the heterogeneity of breast
cancer in blood, which could help to discover minimally invasive protein biomarkers with which clinical researchers
can detect, classify, and monitor different breast cancer subtypes.

Results: In this study, we performed an integrative pathway-assisted clustering analysis of breast cancer subtypes
from plasma proteome samples collected from 80 patients diagnosed with breast cancer and 80 healthy women.
First, four breast cancer subtypes and additionally unknown subtype (according to existing annotation) were
determined based on pathology lab test results in primary tumors of enrolled patients. Next, we developed and
applied four distance metrics, i.e, Protein Intensity, Q-Value, Pathway Profile, and Distance Score Function, to
measure and characterize these cancer subtypes. Then, we developed a permutation test to evaluate the
significant protein level changes in each biological pathway for each breast cancer subtype, using g-value. Lastly,
we developed a pathway-protein matrix for each of the four distance methods to estimate the distance between
breast cancer subtypes, for which further Pathway Association Network analysis were performed.

Conclusions: We found that 1) the luminal group (luminal A and luminal B) are clustered together, as well as the
basal group (basal-like and HER2+) and 2) luminal A and luminal B are more close to each other than basal-like
and HER2+ to each other. Our results were consistent with a recent independent breast cancer research from the
Cancer Genome Atlas Network using genomic DNA copy number arrays, DNA methylation, exome sequencing,
messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our results showed that changes of
different breast cancer subtypes at the pathway level are more profound and less variable than those at the
molecular level. Similar subtypes share distinct yet similar pathway activation networks, while dissimilar subtypes
are different also at the level of pathway activation networks. The results also showed that distance or similarity of
cancer subtypes based on pathway analysis might be able to provide further insight into the intrinsic relationship
of breast cancer subtypes. We believe integrative pathway-assisted proteomics analysis described here can become
a model for reliable clustering or classification of other cancer subtypes.

\. J

Background

Early detection and early intervention are keys to success-
ful treatment of breast cancer, the second most common
type of cancer after lung cancer worldwide. The American
Cancer Society estimated that, in the United States alone,
there will be about 226,870 new cases of invasive breast
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cancer, about 63,300 new cases of carcinoma in situ (CIS),
and about 39,510 breast cancer deaths for 2012.
Functional genomics studies using DNA Microarrays or
tandem mass spectrometry have been shown effective in
differentiating between breast cancer tissues and normal
tissues, by measuring thousands of differentially expressed
genes or proteins simultaneously [1-3]. However, early
detection of breast cancer in blood are both appealing
clinically and challenging technically, partly because of 1)
lack of routine blood test to screen early-stage breast
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cancers and 2) the fact that breast cancer is not a single
homogeneous disease but consists of multiple disease sub-
types, each arising from a distinct molecular mechanism
and having a distinct clinical progression path [4]. Accu-
rate classification of breast cancer subtypes, coupled with
early detection, is therefore critical to effective cancer
treatment, because mechanistically homogeneous breast
cancer subtypes are easier to be distinguished from non-
cancer conditions or treated than the entire heterogeneous
breast cancer group.

Breast cancer disease heterogeneity has been confirmed
at the gene expression level and categorized into five
molecular subtypes: luminal A, luminal B, HER2+, basal-
like, and normal-like, each with distinct gene expression
patterns and prognosis [5]. For example, Perou et al. [6]
originally showed that ER status divided breast tumors in
two different branches, each arising from one of the two
types of breast cancer cells: basal (ER-negative) and lumi-
nal (ER-positive) cells. ER-positive tumors represent 34-
66% of all breast cancers. Tumors in the ER-positive
group have expression patterns reminiscent of the luminal
epithelial cells of the breast. ER-negative breast cancers,
which represent 30-45% of all breast cancer, are character-
ized by lack of Hormone Receptor expression and low to
absent expression of some other luminal markers. Recent
inclusion of a larger number of samples and meta-analysis
showed that luminal tumors can be subdivided into lumi-
nal A and luminal B subtypes, and basal tumors into
normal-like, basal, and HER2+[5,7].

Recent studies further established refined classification
criteria among these subtypes, based on similarity mea-
sures of their gene expression profiles [7,8]. This new clas-
sification system has given researchers more significant
insights into the pathogenesis and metastasis of tumors
than conventional pathological classification methods can
do. However, there are several limitations that restrict
their clinical applications. First, the transcription of genes
is the first stage of gene expression and doesn’t actually
represent the actual functional molecules in the cell. On
the contrary, the proteome, the complete set of proteins
produced by the genome at any one time, is much more
complex and dynamic than either the genome or the tran-
scriptome. And in proteomics the real functional mole-
cules of the cell are being studied. Second, either the gene
expression signatures or protein changes from different
tumor samples can be highly variable [9]. Third, the over-
lap of these signatures or changes among different data
sets has been poor. For example, a comparison of results
from two breast cancer treatment prognostic studies that
led to clinical adoption and commercialization, Mamma-
print and OncoDX, [10,11] revealed a very limited overlap
between them, with only 3 out of 70 or 76 genes in com-
mon. Lastly, recent studies showed that genes or proteins
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differentially expressed between the primary breast (PBT)
and metastatic lymph node (MLN) can be quite different,
further limiting the power of determining prognostic out-
comes based on gene expression or protein change profiles
of PBT alone [12,13].

To accurately classify breast cancer subtypes in the pre-
sence of inherent “Omics” data noises, new pathway-
driven data analysis approaches combined with proteomics
have become necessary. In the past, many statistical meth-
ods have been developed to improve identification of sub-
sets of differentially expressed genes or proteins from
transcriptome or proteome profiling experiments of breast
cancer [14]. While statistical tests can point to genes or
proteins significantly altered between different cancer
states or subtypes, they do not readily explain the biologi-
cal contexts of such changes. In contrast, it is becoming
increasingly apparent that genes or proteins function
through complex molecular interactions to each other
[15-17]. For example, breast cancer cell growth can be dri-
ven by mutations that lead to the constituent activation of
the oestrogen receptor pathway [18]. It has also been dis-
covered that different breast cancer subtypes originate
from separate pathways [19]. However, due to lack of
human biological pathway databases with sufficient quality
and data coverage, integrated pathway study of breast can-
cer subtypes, particularly for data derived from proteomics
experiments, have not been previously reported.

In this study, we developed an integrative pathway-
assisted proteomics analysis method to study biological
pathway-level changes in human breast cancer related
plasma proteins, which we characterized from liquid-chro-
matography coupled tandem mass spectrometry (LC-MS/
MS) proteomics experiments of plasma samples collected
from patients diagnosed with breast cancer and healthy
individuals. We used the new Human Pathway Database
(HPD) [20] and the Integrated Pathway Analysis Database
for Systematic Enrichment Analysis (IPAD) [21] to gain
information on nearly one thousand human biological
pathways, pathway protein constituents, and pathway-
pathway similarity relationships. We labeled breast cancer
patients with one of the four subtypes (luminal A, luminal
B, HER2+, and basal-like) and additionally unknown sub-
type, using currently established clinical classification cri-
teria [7,8]. We studied the use of four measures to the
classification of breast cancer plasma proteomic results:
Protein Intensity, Q-Value, Pathway Profiling, and Dis-
tance Score Function. We developed a permutation test to
evaluate significant protein level changes in each biological
pathway for each breast cancer subtype, using Q-value.
Lastly, we developed a pathway-protein matrix for each of
the four distance methods to estimate the distance
between breast cancer subtypes and further performed
pathway association analysis for each subtype.
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Our results showed that each breast cancer subtype may
be associated with changes of many different plasma pro-
teins; however, the changes of different cancer subtypes at
the pathway level are more profound and less variable
than those at the molecular level. Similar subtypes share
distinct yet similar pathway activation networks, while dis-
similar subtypes are different also at the level of pathway
activation networks. The results also showed that distance
or similarity of cancer subtypes based on pathway analysis
might be able to provide further insight into the intrinsic
relationship of breast cancer subtypes. We believe integra-
tive pathway-assisted proteomics analysis described here
can become a model for reliable classification of other
cancer subtypes.

Methods

Materials

Ammonium carbonate, ammonium bicarbonate, urea, for-
mic acid, lysozyme, 2-Iodoethanol, and triethylphosphine
were all purchased from Sigma-Aldrich (St. Louis, MO,
USA). Acetonitrile and MS grade water were purchased
from Honey Burdick & Jackson (Morristown, NJ, USA).
Trypsin was purchased from Worthington Biochemical
Corporation (Lakewood, NJ, USA). Seppro tip IgY-12 and
reagent kit were purchased from GenWay Biotech (San
Diego, CA, USA).

Human plasma samples

Two batches of plasma samples were collected by the
Hoosier Oncology Group (HOG) (Indianapolis, IN, USA)
(each contained 40 plasma samples from women with
breast cancer and 40 plasma samples from healthy age-
matched volunteer women as control). All patients
involved in this study were diagnosed with a stage II or
earlier breast cancer. Most patients had previously been
treated with chemotherapy. All samples were collected
with the same standard operating procedure and stored in
a central repository in Indianapolis, IN, USA.

Proteomics methods

Biomarker identification and characterization holds great
promise for more precise diagnoses and for tailored
therapies. The heterogeneity of human cancers and
unmet medical needs in these diseases provides a compel-
ling argument to focus biomarker development in cancer.
Mass Spectrometry (MS)-based proteomics approaches
have provided insight into biomarkers of cancer and
other diseases with femtomole sensitivity and high analy-
tical precision.

Label-free protein identification and protein quantitative
analysis services were performed by professionals at the
Protein Analysis and Research Center/Proteomics Core of
Indiana University School of Medicine, co-located at

Page 3 of 16

Monarch Life Sciences, Inc, Indianapolis. For a thorough
review of the principle and method developed and used,
refer to the review by Wang et al [22].

Proteins were prepared and subjected to LC/MS/MS
analysis. First, all samples were run on a Surveyor HPLC
(ThermoFinnigan) with a C18 microbore column (Zorbax
300SBC18, 1 mm x 5 c¢cm). Then, all tryptic peptides
(100 pL or 20 pg) were injected onto the column in ran-
dom order. Next, peptides were eluted with a linear gradi-
ent from 5% to 45% acetonitrile developed over 120 min
at a flow rate of 50 uL/min, and the eluant was introduced
into a ThermoFinnigan LTQ linear ion-trap mass spectro-
meter. Last, the data were collected in the “triple-play”
mode (MS scan, Zoom scan, and MS/MS scan). The data-
base searches was performed using both the X!Tandem
and SEQUEST algorithms.

Protein identification and quantification

The International Protein Index (IPI) was used to map and
identify sequence IDs. A LC/MS-based label-free protein
quantification software licensed from Eli Lilly and Com-
pany was used to perform the protein quantification. First,
all extracted ion chromatograms (XIC) were aligned by
retention time, after the raw files were acquired from the
LTQ. Each aligned peak should match parent ion, charge
state, daughter ions (MS/MS data) and retention time
(within a one-minute window). If any of these parameters
are not matched, the peak is disqualified from the quantifi-
cation analysis. Then, after the alignment, the area-under-
the-curve (AUC) from individually aligned peak was
measured, normalized, and compared for their relative
abundance using methods described in [14]. Last, we trans-
formed all peak intensities to a log2 scale for quantile nor-
malization. If multiple peptides have the same protein
identification, their quantile normalized log2 intensities are
averaged to obtain log2 protein intensities, which are fit by
the analysis of variance (ANOVA) statistical model for each
protein as yy:

Yile =t + Tj + Spe + i + &4t (1)

where  I; ~ N(0,07), Sk ~ N(0,03), e ~ N(0,0%),
# is the mean intensity value, T} is the fixed group effect
(caused by the experimental conditions or treatments
being evaluated), Sy is the random sample effect (ran-
dom effects from either individual biological samples or
sample preparations), I; is the random replicate effect
(random effects from replicate injections of the same
sample), and ¢;;, are the within-groups errors. All of the
injections were in random order and the instrument was
operated by the same operator. All random effects are
assumed independent of each other and independent of
the within-groups errors ;.
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Statistics test

Statistical Significance was measured by a three-step
method. First, we conducted a permutation test to cal-
culate the permutation test p value (also called false dis-
covery rate). Then we calculated the FDR adjusted p
value. Last, we calculated the FDR q value using the
Storey-Tibshirani method [23].

We chose three significance screening filters (cutoffl
g<0.2, cutoff2 g<0.1, and cutoff3 ¢<0.05) to select pro-
teins where we estimated significant differences in the
healthy samples and each of the cancer subtypes. The
False Positive Rate (FPR) or expected proportion of false
positive among the proteins with declared changes is
FPR = qvalue x number of the proteins with declared
changes.

Permutation test

We presented a permutation test which used two-sample t-
statistics (for equal variance) and Welch’s t-Test statistics
(for unequal variance) to calculate the p-value of null
hypothesis Hy: ¢y, - p. (h: healthy samples; c:cancer sub-
type) instead of using a single t-statistics (two-sample t-sta-
tistics or Welch’s t-Test statistics) without considering
sample variance in the traditional permutation test. Our
test statistic is the difference between the mean of protein
intensities in healthy samples and the mean of proteins
intensities in cancer subtypes samples divided by the stan-
dard error of the mean. The statistical significance of pro-
tein with change was assessed by computing a permutation
test p-value for each protein, representing the chance of
observing a test statistic at least as large as the value actu-
ally obtained (Figure 1). All samples across the two groups
for each protein were permuted 100,000 times and the
complete set of t-tests between the two groups was per-
formed for each permutation according to equations (2)
and (3). The permutation p-value for a particular protein is
the proportion of the permutations in which the permuted
test p-value doesn’t exceed the observed test p-value in
absolute value.

After resampling, an F test is performed to compare
the variances of two samples from normal populations.
The F test’s null hypothesis is that the variances of the
two samples are equal. If the null hypothesis cannot be
rejected, the 2 sample t-test with equal variance will be
used. On the other hand, if the result of F-test indicates
that the null hypothesis should be rejected, Welch’s t-
Test will be used.

For equal variance, 2 sample t-test statistics is calcu-
lated as

. X1 —Xp ,

1 1 2)
SX1X2 . \/Tl +
1

ny
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Figure 1 flowchart of permutation test.

where g, . - \/("1 — 1Sj, + (m = 1S, . Sx.x, Is an estima-
2 ny+ny —2 2
tor of the common standard deviation of the two sam-
ples. The degree of freedom for this test is n; + n 5 -2.
For unequal variance, Welch’s t-Test statistics is cal-
culated as

X1 —X
P 2’ 3)
Sx,-x,
h S% S% in sienifi
Where g, . = + For use in significance test-
T ny ny

ing, the distribution of the test statistic is approximated
as being a Student’s t distribution with the degrees of
freedom calculated using

2
(s3/m1 +s3/n2)

(2 m) (= 1) + (3fm)(ma — 1)

The permutation test p-value is adjusted at each
resampling, if the permuted test p-value is less than or
equal to the observed test p-value in absolute values,
until the number of resampling reaches the number lim-
itation of permutation.

(4)

Cancer subtypes distances

Protein intensity

For protein intensity in a cancer subtype, a number of fac-
tors contribute to system variability: protein effects, sub-
type effects, individual effects and so on, plus interactions
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of these factors. Each of these main effects and interac-
tions can be accounted for in a linear mixed model. Linear
mixed model is primarily used to describe relationships
between a response variable and some covariates in data
that are grouped according to one or more classification
factors. Linear mixed model estimates variance compo-
nents using the residual maximum likelihood (REML)
approach. We used R language and environment for statis-
tical computing and graphics, which is a GNU project
which is similar to the S language and environment
(http://www.r-project.org), to fit linear mixed model.

A full factorial model was used to represent the fixed
effect and two random effects which were used to
account for individuals, subtypes and their interaction.
The corresponding linear mixed model for the expres-
sion log ratios value y;; for each gene/protein in the jth
subtypes of the ith individual, is

Yife = 1+ Sj + Ii + SIij + €ijt (5)

Where I; ~ N(0,07), SLj ~ N(0,03), i ~ N(0,02).
The fixed effects in Equation (5) are g4, the grand mean,
and S; , the subtypes. The random effects in Equation
(5) are I, the individual random effect, and SI; , the
subtypes within individual random effect. All random
effects were assumed independent of each other and
independent of the within-groups errors &.

We defined the distance between subtype s and sub-

type ¢ as
ds[ =1- COTT(SS,S[), (6)

where Corr is the Pearson correlation coefficient.
Q-value
Based on the q value of protein change between healthy
samples and cancer subtype samples, we defined the dis-
tance between subtype s and subtype ¢ as

dy = 1 — Corr(qualues, qualue,), 7)

where Corr is the Pearson correlation coefficient.
Pathway profiling
Based on the number of proteins in each pathway which
is identified by Pathway Analysis, we defined the dis-
tance between subtype s and subtype ¢ as

dy = 1 — Corr(Ns, Ny), (8)

where Corr is the Pearson correlation coefficient, N is
the vector of protein numbers in subtype s, and N, is
the vector of protein numbers in subtype ¢.
Distance score function
We provided a measure of distance or similarity
between cancer subtypes according to pathway-protein
profiling. The dendrogram for each cancer subtype was
then constructed based on the Hierarchical cluster
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analysis with the inferred cancer subtype distance
matrix. The detailed process is described as follows.

Suppose a set of pathways in each cutoff,
ok = {01,02,...,0,t}, a set of proteins in each cutoff,
Bt = {b1,by,..., by}, where k = 1,2,3 stands for three

cutoffs (cutoffl g<0.2, cutoff2 g<0.1, and cutoff3 g<0.05,
respectively). Suppose a set of pathways in all three cut-
offs, O = {01, 05,..., 0,,,}, and a set of proteins in all three
cutoffs, B = {b;, bs,..., b,}, where m is the total number
of pathways in all three cutoffs and # is the total num-
ber of proteins in all three cutoffs.

Pathway-protein matrices for the three cutoffs are Q!,
Q?, and Q3, respectively. In each Pathway-protein
matrix, the row stands for a list of pathways,
the column a list of proteins. Its i, j entry

di(k=1,2,3;i=1,2,...m;j=1,2,...n) is k if the jth
protein shows up in the ith pathway; otherwise 0.

The final pathway-protein matrix Q = [gij|lmxn can be
obtained by merging the three matrices Q', 92, and
Q3. Its element can be obtained by calculating the max-
imum value as shown in the following equation:

qij - Ierg}% qz (9)

Suppose the final pathway-protein matrix for the four
subtypes (luminal A, luminal B, HER2+, and basal-like)
and additionally unknown subtype is 9!, [ = 1,2,3,4,5
respectively. We define the distance between subtype s
and subtype ¢ as the average distance score for all path-
way-protein pairs in Q° and Q!, which is expressed as
follows

>_scoreii(s, ) > f(aq5 d5)
ij L]

d5t= = ’
mxn mxn

(10)

where f stands for the distance score function,

f(a;. 4y) = abs(q;; — q).

Pathway analysis
Pathway Analysis are performed using the web tool
HPD [24] and IPAD [21] we developed.

Pathway association network

The pathway similarity measure is defined as the extent
of overlaps, e.g., common number of genes/proteins,
shared between two different pathways [25]. The path-
way-pathway similarity score S; ; is defined as

_pinpy .

o =1..Nj=1...N,
9 pupy) J

(11)

where, N denotes total number of pathways. P; and P;
denote two different pathways, while |P;| and |P;| are the
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numbers of proteins in these two pathways. Their inter-
section P; N P; is the set of all proteins that appear in
both P; and P}, while their union P; U P; is a set of all pro-
teins either appearing in the P; or in the P;. Duplicates
are eliminated in the intersection set and union set.

Cytoscape is used to visualize and associate pathway
networks with pathway protein association matrix. The
Edge line width is proportional to the similarity of the
connected pathways. Node size is proportional to pro-
tein numbers in a pathway. Node color is proportional
to the number of proteins with change between samples
of each subtype and healthy samples in a pathway.

Prediction performance of four distance metrics

In order to validate the pathway profiling, distance score
function and permutation test we presented, we compare
the true positives and accuracy of subtype prediction
among Protein Intensity, Q-Value, Pathway Profiling
with Traditional Permutation, Pathway Profiling, and
Distance Score Function.

The nearest neighbor prediction is used to predict can-
cer subtypes with the 80 patients’ data. The nearest neigh-
bor prediction is a method that finds the closest
(according to four different distance metrics) exemplar to
the patient and predicts the subtype of the exemplar.

For protein intensity, we directly use the 80 patients’
protein intensity data. Each subtype protein intensity is
used as an exemplar. The distance between subtype s and
patient ¢ is defined as

dg = 1 — Corr(Ss, Py), (12)

where Corr is the Pearson correlation coefficient.

For Q-Value, we first compute the Q-Value for proteins
in each patient by the statistical significance testing of the
expression of the protein between all healthy women and
the patient. Each subtype Q-Value is used as an exemplar.
Pearson correlation coefficient distance measure is used to
calculate how close each patient of the training set is to
the five exemplars that are being examined.

The distance between subtype s and patient ¢ is
defined as

ds; = 1 — Corr(qvalues, qualue;), (13)

where Corr is the Pearson correlation coefficient.

For Pathway Profiling, based on the pathway-protein
matrix for each patient and each subtype, we defined
the distance between subtype s and patient ¢ as

ds[ =1- COTT(NS,N[), (14‘)

where Corr is the Pearson correlation coefficient, N is
the vector of protein numbers in subtype s, and N; is the
vector of protein numbers in patient ¢. Each subtype’s
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vector of protein numbers in pathway-protein matrix is
used as an exemplar.

For Distance Score Function, the final pathway-protein
matrix of each subtype is used as an exemplar. Similarly,
we define the distance between subtype s and patient ¢
as the average distance score for all pathway-protein
pairs in Q° and Qf, which is expressed as follows

>_scorei(s,t) - f(dy dy)
dy = " - '

mxXn mxXn

(15)

where f stands for the distance score function,
f(qf]., q;) = abs(qf]- — qu), m is the number of pathways,
and 7 is the number of proteins.

The prediction process of Pathway Profiling with tradi-
tional Permutation is the same as that of Pathway Profiling
except that the former uses traditional permutation and
the latter uses the permutation test we presented.

Results

Plasma proteomics results for breast cancer cases and
controls

The proteomics experiment included 160 plasma sam-
ples, 80 samples from women with breast cancer and 80
from healthy volunteer women which serve as controls.
The plasma proteome set have 616 proteins which were
mapped to 1458 UniprotID. Those proteins with no
match in the Uniprot database were excluded from the
pathway analysis.

Histopathological data on clinical samples

Receptor status based on immunohistochemical (IHC)
expression of the estrogen receptor (ER) or progesterone
receptor (PR) and human epidermal growth factor recep-
tor 2 (HER2) proteins was used to approximate subtype:
ER+ or PR+ and HER2- (luminal A); ER- or PR- and
HER2+ (luminal B); ER- and PR- and HER2+ (HER2+);
and ER- and PR- and HER2- (basal-like). We have a total
of 68 plasma samples from four different subtypes of
breast cancer patients and the other 12 patient samples we
called unknown subtype in which receptor statuses were
missing. The number of patients, age, tumor, and grade, in
each subtype, are shown in Table 1.

Dendrograms of breast cancer subtypes
First we calculated the breast cancer subtypes distance
based on Protein Intensity of 80 cancer samples. Each
subtype’s fixed effect was estimated by the Equation (5)
and then the distance between two subtypes were
obtained by the Equation (6).

Then, we calculated the breast cancer subtypes distance
based on Q-Value. The Q-Value of protein change
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Table 1 clinical data summary for breast cancer patients
Subtype Receptor Status Number Age Cancer Type Grade Metastasis Tumor Size
1- <40 19 - INV 7 -Gl 2 locally Recurrent Min =05
LuminalA ER+ | PR+ & HER2- 24 20-[40,65] 4 - DdS 10 - G2 3 Distant Metastasis Max = 8
3->65 1-u 5-G3 18 No Mean = 2550526
2-u
4- <40 9-INV 2 -Gl 1 locally Recurrent Min = 0.2
LuminalB ER+ | PR+ & HER2+ 15 9-[40,65] 6 - DCIS 5-@G2 2 Distant Metastasis max = 54
2->65 7-G3 12 No mean = 2.205556
1-u
2- <40 8- INV 0-GI 0 locally Recurrent min = 09
HER2Plus ER- & PR- & HER2+ 10 8-[40,65] 2 - DCIS 0-G2 4 Distant Metastasis max = 11
0->65 10 -G3 6 No mean = 3.8
0- <40 15 - INV 1-GI 3 locally Recurrent min = 0.7
Basallike ER- & PR- & HER2- 19 18-[40,65] 4 - DCIS 3-G2 3 Distant Metastasis max = 6
1->65 14 -G3 13 No mean = 2.5
1-u
1- <40 2 - 1INV 1-GlI 0 locally Recurrent
Unknown Missing 12 9-[40,65] 2 - DCIS 1-G2 2 Distant Metastasis
2->65 8-u 0-G3 1 No
10-u

INV: invasive; DCIS: Ductal Carcinoma in Situ; u: unknown

between healthy samples and cancer subtype samples
were obtained by a three-step method mentioned in the
statistics test section: 1) permutation test, 2) FDR adjusted
p-value and 3) FDR Q-Value. The distance between two
subtypes were obtained by the Equation (7).

Next, we calculated the breast cancer subtypes distance
based on Pathway Profiling. Three cutoffs (cutoffl g<0.2,
cutoff2 g<0.1, and cutoff3 g<0.05) were chosen to identify
proteins with significant changes in the healthy samples
and each of the breast cancer subtypes. For example, the
numbers of proteins with significant changes identified by
cutoffl were 780, 829, 818, 804, and 440, respectively, for
luminal A, luminal B, HER2+, basal-like, and unknown.

The updated KEGG human pathway database consists
of 215 pathways and 4955 gene IDs which we mapped to
22532 UniProt ID. We integrated the pathway database to
our Oracle supported biol0G2 server and used the path-
way web tool HPD [24] and IPAD [21] we developed to
perform pathway analysis.

We got three pathway-protein matrices for each sub-
type, where the row is pathway and the column is protein
biomarkers. Up-arrow stands for up-regulated, and down-
arrow for down-regulated. The final pathway protein
matrix after merging the three matrices is shown in Addi-
tional File 1. The distance between two subtypes were
then obtained by the Equation (8).

Lastly, we calculated the breast cancer subtypes dis-
tance based on Distance Score Function. The Cancer
Subtype Distance Matrix was obtained from Equation
(10) (as shown in Table 2).

We tested with the four distance measurement meth-
ods (Figures 2, 3, 4, 5). In the dendrogram of subtypes
in Protein Intensity profiling (Figure 2), basal-like, lumi-
nal A and luminal B together are clustered together.
The distance matrices based on Q-Value across four
subtypes and additionally unknown subtype clearly dis-
tinguish between the luminal group (luminal A and
luminal B) and the basal group (basal-like and HER2+)
(Figure 3). Dendrograms in both Figure 4 and 5 show
that 1) the luminal group (luminal A and luminal B) are
clustered together, as well as the basal group (basal-like
and HER2+), 2) the luminal group and the basal group
are more close to each other than to unknown subtype,
and 3) luminal A and luminal B are more close to each
other than basal-like and HER2+ to each other(Figure 4,
Figure 5 and Figure 6a).

Evaluation

Our validations of the dendrogram at the pathway-level
are three-folds. First we tested the prediction perfor-
mance of four distance metrics. A distance measuring

Table 2 cancer subtype distance matrix

Distance LuminalA LuminalB HER2Plus BasalLike Unknown
LuminalA 0 151 573 589 1190
LuminalB 151 0 544 598 713
HER2PIlus 573 544 0 302 990
BasallLike 589 598 302 0 1011
Unknown 1190 713 990 101 0
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Figure 2 heatmap of protein change across four subtypes (luminal a, luminal b, her2+, and basal-like) and additionally unknown
subtype. The y axis is protein markers. Each colored cell represents a protein intensity calculated by the Equation (5). The rows use hierarchical
clustering with Euclidean distance. The columns use hierarchical clustering with protein intensity distance defined in the Equation (6).

Unknown
BasallLike
LuminalA
LuminalB

method with an accurate performance prediction can be
used as a good clustering method. Then Literature cura-
tion was used to evaluate if our result is consistent with
previous reports. Last, Pathway Association Network
analysis was performed to mine the biological meaning of

the pathway-assisted clustering, which in turn verified
the feasibility of the method and the validity of the
results.

In our first evaluation, we validated the Pathway Profil-
ing and Distance Score Function metrics method and
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Figure 3 heatmap of g value across four subtypes (luminal A,
luminal B, HER2+, and basal-like) and additionally unknown
subtype. The y axis is protein markers. Each colored cell represents
a Q value. The rows use hierarchical clustering with Euclidean
distance. The columns use hierarchical clustering with Q-Value
distance defined in the Equation (7).

permutation test we presented by comparing among the
four distance metrics: Protein Intensity, Q-Value, Path-
way Profiling, Distance Score Function, and Pathway Pro-
filing with Traditional Permutation (Figure 7 and
Additional File 2). The Distance measuring based on
Pathway Profiling and Distance Score Function show
fewer incorrect predictions and markedly improved accu-
racy (53 (66%) and 48 (71%) true positives for all five sub-
types and all four known subtypes in Pathway Profiling;
56 (70%) and 51 (75%) true positives for all five subtypes
and all four known subtypes in Distance Score Function).
The pathway profiling distance measuring based on our
permutation test shows improved accuracy compared to
the pathway profiling distance measuring based on tradi-
tional permutation test (41 (51%) and 36 (53%) true posi-
tives for all five subtypes and all four known subtypes in
Distance Score Function; 53 (66%) and 48 (71%) true
positives for all five subtypes and all four known subtypes
in Pathway Profiling).

In the literature curation, we found our results (Figure
4, Figure 5, and Figure 6a) are consistent with previous
findings. For example, the Cancer Genome Atlas Net-
work analyzed primary breast cancers by genomic DNA
copy number arrays, DNA methylation, exome sequen-
cing, messenger RNA arrays, microRNA sequencing and

Color Key

0 20 40 60
Value

s £ E: g 2

8 = o c c

£ e S E £

= » o

= S w 3 3
m T

Figure 4 pathway profiling across four subtypes (luminal A,
luminal B, HER2+, and basal-like) and additionally unknown
subtype(g-value < 0.1). The y axis is pathways. Each colored cell
represents number of protein in a pathway. The rows use
hierarchical clustering with Euclidean distance. The columns use
hierarchical clustering with Pathway Profiling distance defined in the

Equation (8).

reverse-phase protein arrays [26]. Their results from the
genomic, clinical and proteomic features of breast cancer
subtypes have established a high reliability compared to
previous clustering results based singly on gene expres-
sion values. Based on the summary of the genomic, clini-
cal and proteomic features of subtypes, which include the
percentage of ER+/HER2-, HER2+, TNBCs, TP53 path-
way, PIK3CA/PTEN pathway, RB1 pathway and DNA
mutations, we performed hierarchical cluster analysis
using the Euclidean distance metric (Figure 8). In the Fig-
ure 8, the luminal group (luminal A and luminal B) are
grouped together and the basal group (basal-like and
HER2+) are grouped together too, and luminal A and
luminal B are more close to each other than basal-like
and HER2+ to each other, which are consistent with our
results in Figure 4, Figure 5 and Figure 6a.

Our results are also in accordance with some clustering
analysis based on gene expression [27-29]. But clustering
based on gene expression had diverse results. For exam-
ple, Serlie et al found that the luminal group and basal
group were separated in 78 breast cancer tissue samples
[27] and that Luminal B was categorized into basal group
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Figure 5 hierarchical clustering of breast cancer subtypes. The distances were computed by the Equation (10) according to the Distance
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in 115 malignant breast tumors [30]. Marcotte et al. iden-
tified that HER2+ was more close to Luminal group than
to basal-like [31]. The low reproducibility of the subtypes’
distance measuring from the expression of individual
genes in microarray experiments has led to the sugges-
tion that experiments be analyzed in mass spectrometry
and in terms of gene functions and pathways, in order to
enhance the robustness of the results.

Lastly, we performed the Pathway Association Network
Analysis to understand the intrinsic relationship between
the subtypes of breast cancers which in turn validated
our results of dendrogram based on Pathway Profiling
and Distance Score Function.

The top 22 pathways were selected from the pathway
protein matrices in the Additional File 1 with average pro-
tein number >5 (Figure 6a). In the Figure 4, pathway pro-
filing with all pathways shows luminal A and luminal B
hold together just a little bit tighter than basal-like and
HER2+. After we filtered out those pathways with average
protein number >5, we obtained a similar dendrogram
(Figure 6a) to the dendrogram (Figure 5) we obtained
using Distance Score Function, where luminal A and lumi-
nal B are more close to each other than basal-like and
HER2+ to each other. This might suggest that functionally
important pathways contribute more to the intrinsic rela-
tionship between the subtypes of breast cancer.

We then used the top 22 pathways to build a Pathway
Association Network for each subtype as shown in Fig-
ures 6b-6f. The increasing red depth of nodes across the

four subtypes (luminal A, luminal B, HER2+, and basal-
like) and the unknown typing indicates the activated
pathways due to tumor progression. The diagram of the
Pathway Association Network provides visual cues about
how the network changes with development of subtype.
It shows that the changes of different breast cancer sub-
types at the pathway level are more relatively conserved
although each breast cancer subtype may be associated
with change of many different proteins (Additional
File 1). For example, 1) 15 out of the 22 pathways are in
common across luminal A, luminal B, basal-like, and
HER2+ (neuroactive ligand-receptor interaction, reninan-
giotensin system, huntington’s disease, chemokine signal-
ing pathway, alzheimer’s disease, cell adhesion molecules,
olfactory transduction, endocytosis, calcium signaling
pathway, toll-like receptor signaling pathway, oxidative
phosphorylation, ppar signaling pathway, vascular
smooth muscle contraction, parkinson’s disease, thyroid
cancer); 2) an immune system pathway (complement and
coagulation cascades), an immune disorders pathway
(systemic lupus erythematosus), and a neurodegenerative
diseases pathway (prion diseases) are more activated
from the basal group to the luminal group, but the
change of activated pathways within either the basal
group or the luminal group is relatively conserved if com-
pared with those change between the two groups. Lumi-
nal A and luminal B share similar network structure
although focal adhesion pathway and regulation of actin
cytoskeleton pathway can distinguish luminal A from
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luminal B. And basal-like and HER2+ share similar net-
work structure, although complement and coagulation
cascades pathway and systemic lupus erythematosus can
distinguish basal-like and HER2+. The relationship of

breast cancer subtypes shown in (Figures 6b-6f) are in
consistent with the intrinsic relationships in the dendro-
grams we drew based on Pathway Profiling and Distance
Score Function.
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Discussion
Distances between breast cancer subtypes
Dendrogram linking gene/protein or subtype samples can
be generated to show degrees of similarity between breast
cancer subtypes. The dendrogram of subtypes in Protein
Intensity profiling (Figure 2) grouped basal-like, luminal A
and luminal B together. The distance matrix based on Q
value across the four known subtypes produced similar
hierarchical clustering with previously reported works
from degree of similarity of gene expression profile
between subtypes[5]. Basal-like should not be classified as
Luminal tumor, because most of basal-like and HER2+ are
significantly more likely to be grade III than the luminal A
tumors [5,7,8]. Compared to the luminal A which appears
to be associated with the best prognosis, the HER2 and
basal-like have poor prognostic feature as defined by rou-
tine pathology methods [5,7,30,32]. The possible reason is
that the degree of similarity between subtypes based on
gene expression value or protein intensity might not cor-
rectly indicate the relationship between subtypes, (they
may indicate well the relationship between genes or pro-
teins). Although useful relationships between co-expressed
genes or similar protein change patterns may be discov-
ered from the variance of gene expression or protein
intensity, genes with similar expression patterns or pro-
teins with similar intensity change don’t always mean they
have similar functions or play roles in similar pathways;
therefore, to some extent, they will miscategorize samples
(subtypes).

Pathway Profiling and Distance Score Function both
outperform the traditional gene expression or protein

change profiling in measuring the distance or similarity
of subtypes. Dendrograms in Figures 4 and 5 indicate: 1)
the luminal group (luminal A and luminal B) are grouped
together, as well as the basal group (basal-like and HER2
+), 2) the luminal group and the basal group are more
close to each other than to unknown subtype, and 3)
luminal A and luminal B are more close to each other
than basal-like and HER2+ to each other(Figure 4, Figure
5 and Figure 6a). As mentioned in evaluation section,
these are consistent with the previous findings [26-29].

We believe the dendrograms we drew in Figures 5 and
6a relatively accurately reflects the intrinsic relationship
between the four breast cancer subtypes. For example, the
survival analysis of breast cancer subtypes found that the
breast cancer subtypes also differed significantly in breast
cancer specific survival: basal-like (75%), HER2+(52%),
luminal A (84%), and luminal B (87%) [7]. Relatively high
Kaplan-Meier survival curves were observed in Luminal A
and Luminal B, and relatively steep falls in breast cancer
specific survival were observed in the first 4 to 5 years for
the basal-like and HER2+ and Basal-like [7].

Our results suggest that the distance or similarity of can-
cer subtypes based on pathway analysis might be able to
filter the noise in gene expression variance or protein
intensity change; therefore, focusing on function and inter-
action between them might provide further insight into
the intrinsic relationship of cancer subtypes. Our results
also revealed that intrinsic trait combination specific path-
way changes may influence tumor progression and be
helpful for early detection and early therapeutic inter-
vention.
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There are several potential limitations to this study.
First, classifications based on ER PR and HER?2 status are
only approximations of the molecular breast cancer sub-
types. Conclusions based on the receptor-based approxi-
mations cannot necessarily be applied to the molecular
subtypes. For example, Carey et al. [7] reported that this
definition for luminal B does not identify all luminal B
tumors because only 30% to 50% are HER2 positive, so
our approximation of the luminal B group as ER or PR
positive and HER2 positive may miscategorize a propor-
tion of the true luminal B group as luminal A. Another
possible limitation to the study relates to the relatively
small numbers in some subtypes, particularly the luminal
B group and HER2+ group, which contained only 15 and
10 patients, respectively, compared to luminal A with 24
patients. However, with the development of our ongoing
CPTAC, more patient samples will be collected. And in
the future, as the technology of molecular markers
improves, more sophisticated markers than ER, PR, and
HER2 immunophenotype may become available. Third,
there is Unknown subtype instead of normal-like subtype
in our data. Although we guess it might possibly be nor-
mal-like subtype, it cannot be treated as normal like sub-
type. Figure 8 shows the improved prediction accuracy
after we remove the Unknown subtype. Correctly catalo-
ging those unknown subtypes will help to improve dis-
tance measuring and prediction of cancer subtype.

BasalLike

HER2Plus

LuminalB

LuminalA

Figure 8 dendrogram of primary breast cancers from the
cancer genome atlas network. The summary of the genomic,
clinical and proteomic features of subtypes from the Cancer
Genome Atlas Network, which includes the percentage of ER
+/HER2-, HER2+, TNBCs, TP53 pathway, PIK3CA/PTEN pathway, RB1
pathway and DNA mutations, was used to draw the phylogenetic
tree with hierarchical cluster analysis under Euclidean distance
metric.
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Breast cancer and other disease pathway

Breast cancer genes, as genes of a complex disease, not
only suffer from the disturbance of its local sub-network,
but also share some common genetic origin with other
related diseases. For example, Gol et al. suggested by the
cancer sub-network analysis that many cancer pheno-
types share common genetic origins with other diseases
[33].

Further we investigated the breast cancer-related dis-
ease pathways including complement system, pathways
in cancer, thyroid cancer, systemic lupus erythematosus,
huntington’s disease, prion diseases, alzheimer’s disease,
parkinson’s disease, and oxidative phosphorylation (addi-
tional file 1).

The complement system consists of a series of about 25
proteins that work to “complement” the work of antibo-
dies in destroying bacteria. The complement system has
important protective functions in autoimmune system,
but can also, when inappropriately activated, cause tissue
damage. Deficiencies in the early pathway components
C1, C2 and C4 predispose the development of autoim-
mune disease such as SLE and SLE-like disorders. In
recent years, it has become evident that complement acti-
vation is involved in the tumor cytotoxicity[34]. Adminis-
tration of murine monoclonal antibodies against various
tumor antigens in patients leads to antitumor effects
including tumor regression and the localizaiton of both
C4 and C3 at the tumor site [34]. The ability of murine
monoclonal antibodies to mediate antibody-dependent
cellular cytotoxicity (ADCC) with human effector cells
and cytotoxicity mediated by complement activation
makes these antibodyies promising candidates for cancer
therapy [35].

In the pathways in cancer, TGFA and ERBB2 are both
important regulators of normal mammary gland physiol-
ogy, and aberrations in their signaling have been asso-
ciated with breast tumorigenesis [36]. ERBB2 in breast
cancer have been approved for clinical use. And the
TGER are potentially amenable to therapies for treatment
of human breast disease[37]. In the Huntington’s disease,
parkingson’s disease, oxidative phosphorylation, and alz-
heimer’s disease pathways, CLTC is involved in inflam-
matory myofibroblastic tumors [38] and lower expression
of MAPT is associated with HER2 overexpression [39].

Permutation test

Most protein identification methods were based on fold
change. For example, a fold change or two samples Stu-
dent’s original t test was carried out by comparing phy-
siological changes between normal and disease states to
identify serum biomarkers to detect breast cancer [40].
As we know, a fold change method doesn’t take the
variability of a protein into account and a t-test requires
an assumption of normal distribution of data. However,
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the datasets we used didn’t show normal distribution.
The log2 transformated intensity values for all 1458 pro-
teins from healthy women were not from a normal dis-
tribution (One-sample Kolmogorov-Smirnov test, D =
0.0419, p-value < 2.2e-16). We also found the intensity
values from the four breast cancer subtypes and addi-
tionally unknown subtype were not from a normal dis-
tribution either.

T-test is a parametric test and the permutation process
is non-parametric. By using permutation test we made
no assumption about the distribution under the null
hypothesis. Usually, the assumptions in the null hypoth-
esis are weakened, and it becomes harder to reject.

In addition to validation using a normal quantile plot, if
using Student’s original definition of the t-test, the two
populations being compared should have the same var-
iance. If the sample sizes in the two groups being com-
pared are not equal, Student’s original t-test is not robust
to the presence of unequal variances[41]. Welch’s t-test
has been used by most statistics packages such as t.test
function in R when the two sample variance is assumed to
be different because it is insensitive to equality of the var-
iances regardless of whether the sample sizes are similar.
However, if we have no good reason to believe that the
population variances are unequal, the result of Student’s
Original t-test becomes more reliable than that of Welch’s
t-test. For example, suppose two random samples, (30.02,
29.99, 30.11, 29.97, 30.01, 29.99) and (29.89, 29.93, 29.72,
29.98, 30.02, 29.98) (F test statistics = 0.2122, p-value =
0.1141 > 0.05. We cannot reject the null hypothesis that
true difference in variances is equal to 0), the result of Stu-
dent’s original t-test (statistics = 1.959, p-value = 0.078)
becomes more suggestive of a difference in the mean for
the two populations of samples than that of Welch’s t-test
(statistics = 1.959, p-value = 0.091).

During the data permutation, even if the two samples
could originally have come from the same population,
the variance difference between the two permuted sam-
ples could change at each resampling. Using only one
type of t-test invariably during the permutation process
will obviously result in inaccurate statistics of signifi-
cance. For example, the ttperm function in Category
package of R language uses only Welch’s t-tests to per-
form each permutation.

Using the q value change based on the permutation test
p value, breast cancer was classified into four breast can-
cer subtypes and one unknown subtype with HER2+ and
basal-like grouped together (Figure 3), whereas with the
traditional permutation test, basal-like was classified as
Luminal group, same as the dendrogram in the protein
change (Figure 2). Our permutation test method is highly
robust to the equality of the variances regardless of
whether the same sizes are similar and carries more
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conviction than the other permutation test, which doesn’t
consider the effect of equality of variances.

Conclusion

We report for the first time the pathway-assisted cluster-
ing of breast cancer plasma samples, using LC-MS/MS
proteomics results. Even though proteomics experiment
suffer from a general perception of being noisy and
highly variable, we show that with proper bioinformatics
integration of breast cancer biological context, it is possi-
ble to achieve accurate and sensitive breast cancer sub-
type classifications. We believe pathway analysis
performed at the level similar to ours, which include
both intra-pathway and inter-pathway analysis, is key to
overcoming noises in the data. Our results also show that
proteomic pathway-assisted clustering of breast cancer
subtypes can provide biological insight into the intrinsic
mechanisms and relationships between different breast
cancer subtypes. This insight may help researchers
develop diagnostic solutions and customized treatment
plans, all based on blood sample. We believe integrative
pathway-assisted proteomics analysis described here can
become a model for reliable classification of other cancer
subtypes and can be used for mining information hidden
both within a pathway and between pathways for all
cancers.

Additional material

Additional file 1: pathway protein matrix.

Additional file 2: comparing between the four distance metrics
(protein intensity, g-value, pathway profiling, and distance score
function) and pathway profiling with traditional permutation.
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