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Abstract

Background: Despite the significant progress made in colon cancer chemotherapy, advanced
disease remains largely incurable and novel efficacious chemotherapies are urgently needed.
Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated
promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this
study was to identify genes in colon cancer cells that are differentially regulated by two clinically
advanced hydroxamic acid HDACI, vorinostat and LBH589 to provide rationale for novel drug
combination partners and identify a core set of HDACi-regulated genes.

Methods: HCT 116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and
growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using
MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed
using the lllumina Human-6 V2 BeadChip array and Ingenuity® Pathway Analysis.

Results: Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell
cycle arrest and inhibited the growth of both HCT 116 and HT29 cells. Bioinformatic analysis of the
microarray profiling revealed significant similarity in the genes altered in expression following
treatment with the two HDACi tested within each cell line. However, analysis of genes that were
altered in expression in the HCT | 16 and HT29 cells revealed cell-line-specific responses to HDACi
treatment. In addition a core cassette of | | genes modulated by both vorinostat and LBH589 were
identified in both colon cancer cell lines analyzed.

Conclusion: This study identified HDACi-induced alterations in critical genes involved in
nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential
intervention points for novel therapeutic combinations in colon cancer. This information will assist
in the identification of novel pathways and targets that are modulated by HDACi, providing much-
needed information on HDACi mechanism of action and providing rationale for novel drug
combination partners. We identified a core signature of || genes which were modulated by both
vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the
development and validation of a common gene set which may represent a molecular signature of
HDAC inhibition in colon cancer.
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Background

Within the cellular microenvironment, regulation of gene
expression can occur post-transcriptionally through mod-
ification of histones and non-histone proteins by acetyla-
tion, phosphorylation, methylation, ubiquitination and
sumoylation. Two distinct families of enzymes, histone
acetyltransferases (HAT) and histone deacetylases
(HDAC), work in concert by performing opposing func-
tions to maintain a tightly regulated pattern of acetylation
homeostasis. HDACs are zinc-dependent hydrolases
which can be classified into 4 different families (class I,
IIa, IIb, and IV) that are involved in the remodeling of
chromatin by deacetylation of specific lysine residues on
histone tails [1,2]. The action of HDACs occurs through
formation of large multi-protein complexes with co-acti-
vating, co-repressing, and chromatin-remodeling pro-
teins.

It has further been demonstrated that the actions of
HDACs and the resultant deacetylation of specific lysine
residues is not limited to histones, but occurs on non-his-
tone proteins such as a-tubulin, Hsp90, gluccocorticoid
receptors, DNA methyltransferase 1 (DNMT 1) and multi-
ple transcription factors (p53, E2F, GATA1, TFIIE and
TFIIF) [3-5]. As such, the role of HDACs in the regulation
of cellular processes is more complex than first thought,
extending far beyond regulating gene expression and
involving active roles in cell-cycle-related processes [6-8].
It is therefore not surprising that dysregulation of HDAC
and HAT activity has been identified and reported to con-
tribute to the progression of a number of cancers includ-
ing leukemia, lymphoma, gastric, prostate, breast and
colon [9-13].

Multiple HDAC inhibitors (HDACI) have been developed
to date and their administration results in the acetylation
of both histone and non-histone proteins, leading to the
modulation of between 2 and 10% of expressed genes
[14]. The classes of compounds identified as HDACI
include: short-chain fatty acids (such as valproic acid),
hydroxamic acids (such as TSA, PXD101, LBH589 and
vorinostat), cyclic tetrapeptides (such as depsipeptide,
FK228) and benzamides (such as MS-275) [15]. Mecha-
nistically, HDACi have been shown to induce G1 and G2/
M cell cycle arrest, promote differentiation, induction of
apoptotic signaling cascades, mitotic failure, polyploidy
and increased generation of reactive oxygen species [16-
18]. The hydroxamic acid-based HDACis, vorinostat
(SAHA, Merck) [19,20] and LBH589 (panobinostat,
Novartis) [21] are pan-inhibitors of class I and II HDACs
that have demonstrated potent cytotoxicity in vitro against
a variety of solid tumor cell lines. Vorinostat is currently
FDA-approved for the treatment of cutaneous T-cell lym-
phoma (CTCL) and is currently in clinical investigation
for mesothelioma, non-small cell lung cancer and colon
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cancer. LBH589 is also under extensive clinical investiga-
tion in CTCL and a variety of solid tumors.

Colorectal cancer is the third most commonly diagnosed
cancer in both men and women in the United States with
a predicted 147,000 new cases in 2009 [22]. Although
chemotherapy response rates and patient overall survival
rates have improved in recent years [23,24], effective
colon cancer treatment is hindered by the high occurrence
of drug resistance, subsequent treatment failure and
patient mortality, resulting in a critical need to identify
and exploit novel therapeutic targets and drug combina-
tions to improve clinical efficacy. HDACi have demon-
strated potent activity against colon cancer cell lines in
vitro and in xenograft models [15,25,26] with little or no
cytotoxicity reported against normal cells and clinical
evaluations thus far have demonstrated favorable toxicity
profiles [27,28].

Several studies to date have demonstrated that HDACi
induce alterations in the expression of multiple drug tar-
gets and/or metabolic pathways that are critical molecular
determinants for cancer therapeutics. Importantly combi-
nation treatment with additional agents targeting these
modulated pathways has resulted in synergistic growth
inhibitory effects on cancer cells in vitro and in vivo. It has
been recently reported that HDACi synergize with 5-FU in
vitro and in vivo in colon cancer cell line models through
HDACi-induced downregulation of the 5-FU target
enzyme thymidylate synthase (TS), providing a mechanis-
tic basis for the drug synergy [25,29]. The HDACi vorino-
stat is also reported to acetylate and markedly reduce the
chaperone activity of HSP90 in T-cell lymphoma models
resulting in a synergistic interaction with the HSP90
inhibitor bortezomib [30]. This combination was subse-
quently extended to colon cancer cell lines with similar
synergistic anti-proliferative effects [31]. In addition, the
HDACI vorinostat was demonstrated to induce tumor
cell-selective expression of the TRAIL death receptors 4
and 5 sensitizing breast cancer xenografts to the effects of
a TRAIL-agonistic antibody [32], an observation which is
currently being clinically evaluated in lymphoma
patients. More recently, HDACi were also reported to
enhance the apoptotic effects of EGFR inhibitors in lung
cancer models [33,34] and clinical evaluation of this is
ongoing. Therefore, the identification of novel genes
modulated by HDACI in colon cancer cells may provide
pathway-driven rationale for novel and urgently needed
efficacious drug combinations.

This study was designed to determine the effects of two
clinically relevant HDACI, vorinostat and LBH589 on the
growth characteristics of two cytogenetically distinct
colon cancer cell line models HCT116 and HT29. In addi-
tion, HDACi-induced alterations in global gene expres-
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sion were analyzed using the Illumina Human-6 V2
BeachChip arrays and Ingenuity® Pathway Analysis.

Methods

Compounds and Reagents

LBH589 was provided by Novartis Pharmaceuticals (East
Hanover, NJ). Vorinostat was provided by Merck and Co.,
Inc. (Whitehouse Station, NJ) and the National Cancer
Institute (Bethesda, MD). CellTiter?® AQueous MTS rea-
gent was purchased from Promega (Madison, WI).

Cell Lines

HCT116 colon cancer cells were a generous gift of Prof.
Bert Vogelstein (Johns Hopkins University, Balitmore,
MD) and HT29 colon cancer cells were purchased from
ATCC (Manassas, VA). HCT116 and HT29 cell lines were
maintained in McCoy's 5A medium, supplemented with
10% fetal bovine serum (Lonza, East Rutherford, NJ),
penicillin/streptomycin and sodium pyruvate (Invitro-
gen, Carlsbad, CA). Cells were maintained in a humidi-
fied Hepa Class100 Incubator (Thermo, Waltham, MA) at
37°C and 5% CO,. Cell lines were routinely screened for
mycoplasma using the MycoALERT Detection kit (Lonza).

Growth Inhibition Assay

Cells were seeded in 96 well plates at 3 x 103 cells/well in
100 pl of growth media and treated with the indicated
concentrations of drug for 72 h at 37°C with 5% CO,.
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-  tetrazolium),  assay
(Promega) was performed as previously described [35].
Growth inhibition was measured by comparing A490 of
drug-treated cells to that of untreated controls set at
100%. The IC;, value was calculated from sigmoidal dose-
response curves using Prism 5.0 (GraphPad, San Diego,
CA). Statistical significance of ICs, values between cell
lines was evaluated by ANOVA using SAS 9.3.1 statistical
software (Cary, NY).

Flow Cytometric/Sub-G | Analysis

Cells were seeded at 2.5 x 105> cells/well in 6-well plates.
Duplicate wells were treated with the indicated concentra-
tion of drug for 24 h and harvested as previously
described [25]. Cells were then analyzed using a Coulter®
EPICS® ELITE flow cytometer (Beckman Coulter, Fuller-
ton, CA) equipped with a 15 mW Argon laser (excitation
beam 488 nm). Viable cells were gated on a dot plot dis-
play of forward scatter versus side scatter to eliminate cell
doublets. Cell cycle populations were quantified using
histogram analysis software (Expo32, Beckman Coulter).
Cells with DNA content <1 were considered apoptotic.

Western Blotting
Following treatment with indicated concentrations of
drug for specified time points, Western blot was per-
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formed as described previously [36]. Acetylated histones
were detected using anti-acetyl-H3 and anti-acetyl-H4 rab-
bit antibodies (Upstate). Monoclonal anti-Poly (ADP-
Ribose) Polymerase (PARP) was obtained from Cell Sign-
aling (Danvers, MA). Secondary antibodies goat-anti-
mouse HRP or goat-anti-rabbit HRP were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). Anti-B-actin
was purchased from Sigma (St. Louis, MO) and used to
control for loading.

Microarray Drug Treatments and RNA Isolation

HCT116 and HT29 colon cancer cells were seeded at 7 x
106 cells/10 cm plate and treated with either 50 nM
LBH589 or 2 uM vorinostat for 24 h at 37°C and 5% CO,.
All treatments were conducted in triplicate and fresh
medium was added to untreated control cells. Following
the 24 h incubation, cells were harvested and RNA was
isolated using the RNeasy® Mini Kit (Qiagen, Valencia,
CA) according to the manufacturer's protocol. RNA was
subjected to lithium chloride precipitation to remove any
possible genomic DNA contamination. The integrity of
the RNA was analyzed by spectrophotometry and capil-
lary electrophoresis.

Microarray Expression Profiling

Microarray expression profiling was performed by the
USC/Norris Cancer Center Genomics Core Facility (Los
Angeles, CA). The RNA was amplified into cRNA and
biotinylated by in vitro transcription using the Illumina®
TotalPrep RNA Amplification Kit (Ambion, Applied Bio-
systems, Foster City, CA) according to the manufacturer's
protocol. Biotinylated cRNAs were purified, fragmented,
and subsequently hybridized to an lllumina Human-6 V2
BeadChip (Illumina, San Diego, CA).

Data normalization and statistical analysis

Microarray statistical analysis was performed with the
assistance of Asuragen Inc., (Austin, TX). The background
subtraction, expression summary, normalization, and log
base 2 transformation of gene signals were carried out
using Quantile Normalization [37]. For statistical analy-
sis, one-way ANOVA was used for multiple group compar-
ison across all samples in the experiment, followed by
multiple testing correction to determine the false discov-
ery rate (FDR; Benjamini and Hochberg method [38]).
Genes with a FDR-adjusted p-value of < 0.05 were consid-
ered statistically significant and termed differentially
expressed genes (DEGs). Pair-wise comparisons were then
performed for all DEGs. For each pair of treatments, a
two-sample t-test was carried out for every gene, followed
by multiple testing correction to determine FDR. The
resulting list of genes and associated p-values were graph-
ically represented by hierarchical clustering, Venn analy-
sis, principal components analysis (not shown), and
volcano plots (not shown).
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Ingenuity® Pathway Analysis (IPA)

In the HCT116 and HT29 cancer cell lines, a total of 3043
and 2232 differentially expressed genes respectively that
had FDR-adjusted (p < 0.05) were used for the pathway
analysis. Gene reference accession numbers were
imported into the Ingenuity® Pathway Analysis (IPA) soft-
ware (Ingenuity® Systems, http://www.ingenuity.com,
Mountain View, CA). In the HCT116 and HT29 cancer cell
lines, 2289 and 1679 of these genes respectively were
mapped to the Ingenuity database. Up- and down-regu-
lated genes were both included as a defined parameter for
the core analysis. Genes mapped to genetic networks,
were then ranked by a score that defines the probability
that a collection of genes equal to or greater than the
number in a network can be achieved by chance alone.
According to IPA, a score of 3 indicates that there is a 1/
1000 chance that the focus genes are in a network due to
random chance, and therefore, scores of >3 have a 99.9%
confidence of not being generated by random chance
alone. This score was used as the cut-off for identifying
gene networks that were significantly affected by the
HDACIi, LBH589 and vorinostat. In a similar way, DEGs
were mapped to canonical pathways and tested by the
Fishers Exact Test p-value. Canonical pathways were repre-
sented as a histogram of pathway vs. -log(p-value). In
addition, for canonical pathways a ratio value was calcu-
lated as the number of molecules in a given pathway that
meet the cut criteria, divided by the total number of mol-
ecules that make up that pathway.

Quantitative real-time PCR

The abundance of selected transcripts, which had been
previously identified by microarray expression profiling at
24 h, was re-evaluated by qPCR at 6, 12, and 24 h. The
total RNA was isolated from HCT116 and HT29 colon
cancer cells with TRIzol reagent (Invitrogen). RNA (0.5
ng) was reverse transcribed to cDNA using the Promega
Reverse Transcription System according to manufacturers
instructions and analyzed using an Applied Biosystems
7500 PCR Detection System (Applied Biosystems Inc.).
All reactions were performed in triplicate in a final vol-
ume of 25 pl. All amplifications were primed by pairs of
chemically synthesized 18- to 24-mer olignucleotides
designed using freely available primer design software
(Primer-BLAST, NCBI) to generate target amplicons of
100-200 bp. Reaction conditions were as follows: Activa-
tion at 95°C for 10 min and 40 cycles of denaturation at
95°C for 15 s, annealing at 55°C for 35 s, and extension
at 72°C for 45 s. Melt curve analysis of all samples was
routinely performed to ascertain that only the expected
products had been generated. All primers utilized dis-
played PCR efficiencies of >90%. Target genes were nor-
malized to GAPDH and quantified using the comparative
Crmethod described by Livak et al. [39] and as used pre-
viously [36]. Histograms and statistical analyses (2-tailed
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unpaired t-test) were performed with Prism 5.0 (Graph-
Pad Software).

Results

Vorinostat and LBH589 inhibit the growth of colon cancer
cells

The HCT116 and HT29 cell lines were originally derived
from human colon adenocarcinomas, and were selected
in this study based on marked differences in their cytoge-
netics. Specifically, these cell lines differ in a number of
key genes which have been reported to determine
response to chemotherapeutics including the presence of
mutant p53 in HT29 cells and activating k-ras and p-cat-
enin mutations in the HCT116 cells. In addition, HCT116
cells display a near-diploid karyotype while HT29 cells
exhibit hyper triploidy. These cell lines were initially ana-
lyzed to determine the effects of vorinostat and LBH589
on cellular proliferation. Cells were exposed to increasing
concentrations of each drug for 72 h and subsequently
analyzed by MTS assay. The ICs;, 1,y values for LBH589 in
the HCT116 and HT29 colon cancer cells were in the low
nanomolar range at 3.49 nM (95% CI 3.1 - 3.9 nM) and
9.8 nM (95% CI 8.7 - 10.9 uM) respectively (Figure 1A).
The 1C50(7; 1y values for vorinostat in the HCT116 and
HT29 cells were in the low micromolar range at 1.06 uM
(95% CI 0.94 - 1.1 uM) and 1.56 uM (95% CI 1.45 - 1.67
puM) respectively (Figure 1B). The HCT116 cells demon-
strated a >2-fold increase in sensitivity to LBH589 (p =
0.0019) and a 1.5-fold increase in sensitivity to vorinostat
(p = 0.027) over the HT29 cells.

HDACi treatment rapidly induces histone acetylation

Inhibition of HDACs results in disruption of cellular
acetylation homeostasis and can induce hyper-acetylation
of both histone and non-histone proteins. In order to
examine this effect in our colon cancer cell line models,
we treated cells with either 2 uM vorinostat or 50 nM
LBH589 and analyzed the acetylation status of selected
histone proteins. As histone acetylation is reported to be a
rapid event following HDACI treatment we analyzed the
expression of acetyl-H3 (Ac-H3) and acetyl-H4 (Ac-H4)
from 0.5 to 4 h post-treatment. In HCT116 cells, treat-
ment with 2 uM vorinostat resulted in significant Ac-H4 at
2 h post-treatment, however 50 nM LBH589 induced
modest but detectable Ac-H4 as early as 0.5 and 1 h post-
treatment which increased significantly at 2 and 4 h (Fig-
ure 1C and 1D). Interestingly, Ac-H3 was detected as early
as 0.5 h post-treatment with both HDACi and increased in
a time-dependent manner. In HT29 cells, an increase in
Ac-H4 was not detectable following treatment with both
HDAC: until 4 h post-treatment (Figure 1D). In contrast,
Ac-H3 was detected at low levels as early as 0.5 h post-
treatment with levels remaining consistent until 4 h post-
treatment where a marked increase in Ac-H3 was
observed. These results demonstrate that HDACI treat-
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In vitro characterization of HDACIi, LBH589 and vorinostat, in HCTI116 and HT29 colon cancer cells. HCTI1 16
and HT29 colon cancer cells were exposed to increasing concentrations of either (A) LBH589 or (B) vorinostat alone for 72
h and subsequent growth inhibition was measured by MTS assay (Promega). Values are presented as percent control, calcu-
lated from the growth inhibition induced by a given concentration of drug compared to the untreated control. Values are aver-
ages of 3 independent experiments + SEM. The I1C; 7, ,, values were calculated from the sigmoidal dose-response curves in
Prism 5.0 (GraphPad). (C-D) Western blot analysis of acetyl-H3 and acetyl-H4 in (C) HCT116 and (D) HT29 cells treated
with 2 uM vorinostat (Vor) or 50 nM LBH589 for 0.5, |, 2 and 4 h. B-actin was used to control for loading.

ment has detectable and measurable effects on histone
acetylation in colon cancer cells within 30 minutes of
drug treatment.

HDACi-induce cell cycle arrest and apoptosis

HDACI are reported to rapidly induce cell cycle arrest and
induce tumor cell-selective apoptosis. To investigate this,
flow cytometry was subsequently utilized to examine the
effects of HDACi treatment on cell cycle distribution in
HCT116 and HT29 colon cancer cells. Each cell line was
treated with 50 nM LBH589 and 2 uM vorinostat (concen-
trations which were shown to induce similar patterns of
histone acetylation) for 24 h and DNA content was subse-
quently analyzed by propidium iodide staining. The
HCT116 colon cancer cells treated with either HDAC;,

LBH589 or vorinostat, displayed a significant G2/M arrest
accompanied by a sharp reduction of cells in G1. Interest-
ingly, cells with subdiploid DNA content (Sub-G1), indic-
ative of cell death, increased from 2% in untreated
controls to 30.2 and 34.4% following treatment with
LBH589 and vorinostat respectively (Figure 2A). In HT29
cells, treatment with vorinostat resulted in an accumula-
tion of cells arresting in G1 accompanied by a reduction
of cells in both G2 and S. Interestingly, LBH589 induced
a G2 arrest with a reduction of cells in G1 and S phases
(Figure 2B). Despite displaying a similar IC5,;, 1,) value
for vorinostat to that of the HCT116 cells, HT29 cells
showed only a modest increase in cell death from 2% to
9.5% following treatment with vorinostat. Similarly,
despite the concentration of LBH589 being in excess of
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Figure 2

Cell cycle and apoptotic anlaysis of HDACi-treated colon cancer cells. Flow cytometric analysis of (A) HCT1 16 and
(B) HT29 cells treated with 2 uM vorinostat (Vor) or 50 nM LBH589. Histogram bars represent mean + SEM. (C-D) Western
blot analysis of poly (ADP-ribose) polymerase (PARP) cleavage as a measure of the induction of apoptosis in HCT I 16 and

HT29 cells treated with | and 2 pM vorinostat or 25 and 50 nM LBH589 for 12 and 24 h. B-actin was used to control for load-

ing.

the 1Cs4(7, 1) value for HT29 cells, cell death increased
modestly from 2% to 14.4% (Figure 2B). These data sug-
gest that while both cell lines display similar sensitivity to
the growth inhibitory effects of HDACI, the HT29 cells are
significantly more resistant to the onset of HDAGI-
induced apoptosis in this time-frame. To confirm these
differential levels of HDACi-induced apoptosis, HCT116
and HT29 cells were analyzed for the cleavage of poly
(ADP-ribose) polymerase (PARP) (a hallmark of apopto-
sis) from its native 115 kDa to the 89 kDa subunit by
Western blot. Compared to vehicle-treated cells, HCT116
cells displayed strong dose-dependent cleavage of PARP at
24 h post treatment evidenced in particular by the strong
immunoreactivity of the 85 kDa subunit when compared
to the full length PARP (Figure 2C). Twenty-four h post-
treatment, PARP cleavage was detected at low levels in
HT29 cells in a dose-dependent manner as evidenced by
the appearance of the cleaved subunits (Figure 2D). These
results support the flow cytometric analysis whereby
HCT116 are significantly more susceptible to rapid
HDACi-induced apoptosis than the HT29 cells.

Microarray profiling in HDACi treated colon cancer cells

To identify the molecular events which occur in response
to HDAC inhibition in colon cancer cells, we treated both
HCT116 and HT29 colon cancer cells with the clinically
relevant concentrations of 50 nM LBH589 or 2 uM vori-

nostat for 24 h, isolated mRNA and subsequently ana-
lyzed gene expression using the Illumina Human-6 V2
BeadChip array platform as outlined in the methods sec-
tion. Genes with a FDR-adjusted p-value of < 0.05 were
considered differentially expressed genes (DEGs) relative
to vehicle treated controls. The heat maps generated from
the microarray analysis in HCT116 and HT29 cells treated
with HDACI were subject to hierarchical clustering analy-
sis. The heat map demonstrates that both vorinostat and
LBH589 segregated independently from the vehicle-
treated controls in both cell lines. However, the cluster
tree generated also demonstrates that while vorinostat
and LBH589 segregate from the vehicle-treated controls,
they demonstrate very similar clustering patterns indicat-
ing that they induce similar transcriptional response
within each cell line (Figure 3).

Differentially expressed genes in response to HDACi
treatment

To compare the effects of HDACI treatment relative to
vehicle-treated cells, Venn analysis was utilized. In
HCT116 cells, a combined total of 3566 genes were mod-
ulated by HDAC:I treatment (both LBH589 or vorinostat)
representing approximately 7% of the total gene set ana-
lyzed by the array. Within this set, 3100 DEGs were iden-
tified following vorinostat treatment of which 57 genes
were uniquely modulated by vorinostat treatment as illus-
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trated by the Venn diagram (Figure 4A). Following treat-
ment with LBH589, 3509 DEGs were identified of which
466 genes were uniquely modulated by LBH589 (Figure
4A). This data demonstrates that in HCT116 cells, vorino-
stat and LBH589 exert similar effects on gene expression
with 85% of all DEGs modulated in a consistent manner
by both vorinostat and LBH589 treatment.

In HT29 cells, 2645 genes were modulated in total by
both HDACI representing approximately 5% of the total
gene set analyzed by the array (Figure 4B). Of this total,
2448 genes were modulated by vorinostat of which 216 of
these DEGs were unique only to vorinostat treatment (Fig-
ure 4B). Following treatment with LBH589, 2429 genes
were modulated of which 197 were unique transcrip-
tional responses to LBH589 not observed with vorinostat
treatment (Figure 4B). This indicates that there is also sig-
nificant similarity in the transcriptional changes induced
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860 HT29
Total 4688 Total 5023
Figure 4

Venn analysis of differentially expressed genes in
vorinostat and LBH589-treated HCTI116 and HT29
colon cancer cells. HCT 116 and HT29 cells were treated
with either 2 uM vorinostat or 50 nM LBH589 for 24 h and
gene expression analyzed on the lllumina Human-6 V2 Bead-
Chip array. Genes with an FDR-adjusted p-value of < 0.05
were considered differentially expressed and subjected to
Venn analysis. Venn analysis was first performed by analyzing
cell-line-specific alterations in each individual cell line; (A)
HCTI 16 cells treated with vorinostat or LBH589. (B) HT29
cells treated with vorinostat or LBH589. Subsequent Venn
analysis demonstrates the drug-specific alterations induced
by (C) vorinostat (Vor) and (D) LBH589 in both cell lines.
Numbers within each circle represent the total number of
genes modulated in that experimental condition, the num-
bers immediately below each Venn diagram indicate the total
number of modulated genes by both experimental conditions
in that Venn diagram.

by vorinostat and LBH589 in HT29 cells with 75% of the
total DEG set common transcriptional changes in
response to either HDACi.

Of the 3100 DEGs modulated by vorinostat treatment in
HCT116 cells, 24 were up-regulated and 17 were down-
regulated >2-fold. Of the 3509 genes modulated follow-
ing treatment with LBH589 in HCT116 cells, 92 genes
were upregulated and 150 were downregulated >2-fold.
The top 15 up- and downregulated genes modulated >2-
fold for both vorionostat and LBH589 treatment in
HCT116 cells are displayed in Table 1.

Similarly, in HT29 cells, the majority of DEGs were also
modulated <2-fold when compared to vehicle-treated
controls as was observed in the HCT116 cells. Of the 2448
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Table I: Differentially expressed genes (>2 Fold) in response to HDACi in HCT116 colon cancer cells.
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HCTI16
Accession# Gene Symbol Gene Name Fold Change P-Value
Induced LBH589
NM_001901.2 CTGF Connective tissue growth factor 6.09 6.9E-04
NM_182908.3 DHRS2 Dehydrogenase/reductase member 2 4.78 |.7E-04
NM_003378.2 VGF VGF nerve growth factor inducible 474 | .OE-04
NM_183376.1 ARRDC4 Arrestin domain containing 4 4.15 6.9E-04
NM_173798.2 ZCCHCI2 Zinc finger, CCHC domain containing 12 4.13 |.8E-05
NM_006865.2 LILRA3 Leukocyte immunoglobulin-like receptor, subfamily A, member 3 3.94 7.2E-05
NM_033184.2 KRTAP2-4 Keratin associated protein 2-4 3.61 7.2E-04
NM_000558.3 HBAI Hemoglobin, alpha | 3.60 3.2E-04
NM_016352.3 CPA4 Carboxypeptidase A4 3.47 2.7E-04
NM_001554.4 CYR6I Cysteine-rich, angiogenic inducer, 61 3.44 2.7E-05
NM_005319.3 HISTIHIC Histone |, Hlc 3.37 9.9E-05
NM_138720.1 HISTIH2BD Histone |, H2bd 335 2.2E-04
NM_031476.1 CRISPLD2 Cysteine-rich secretory protein LCCL domain containing 2 3.26 8.4E-05
NM_139072.2 DNER Delta-notch-like EGF repeat-containing transmembrane 3.21 |.5E-03
NM_005061.2 RPL3L Ribosomal protein L3-like 3.08 2.5E-05
Repressed
NM_013233.2 STK39 Serine threonine kinase 39 291 8.2E-04
NM_004091.2 E2F2 E2F transcription factor 2 -2.93 2.4E-04
NM_003302.1 TRIP6 Thyroid hormone receptor interactor 6 -2.99 7.3E-04
NM_005733.2 KIF20A Kinesin family member 20A -3.00 2.2E-05
NM_005329.2 HAS3 Hyaluronan synthase 3 -3.02 4.1E-05
NM_145810.1 CDCA7 Cell division cycle associated 7 -3.06 2.4E-03
NM_005434.4 MALL Mal, T-cell differentiation protein-like -3.07 2.8E-04
NM_002129.2 HMGB2 High-mobility group box 2 -3.13 3.6E-03
NM_018649.2 H2AFY2 H2A histone family, member Y2 -3.28 8.7E-04
NM_001038.5 SCNNIA Sodium channel, nonvoltage-gated | -3.59 6.6E-04
NM_004217.2 AURKB Aurora kinase B -3.61 5.4E-04
NM_001237.3 CCNA2 Cyclin A2 -3.72 2.9E-05
NM_001071.1 TYMS Thymidylate synthase -3.88 |.1E-04
NM_181803.1 UBE2C Ubiquitin-conjugating enzyme E2C -3.95 2.6E-04
NM_001423.2 EMPI Epithelial membrane protein | -4.17 I.3E-05
Induced Vorinostat
NM_001901.2 CTGF Connective tissue growth factor 476 2.0E-05
NM_003378.2 VGF VGF nerve growth factor inducible 4.35 |.8E-03
NM_182908.3 DHRS2 Dehydrogenase/reductase member 2 4.05 6.2E-04
NM_183376.1 ARRDC4 Arrestin domain containing 4 335 4.4E-04
NM_173798.2 ZCCHCI2 Zinc finger, CCHC domain containing 12 3.27 |.7E-06
NM_016352.3 CPA4 Carboxypeptidase A4 291 1.0E-03
NM_017445.1 H2BFS H2B histone family, member S 2.86 2.8E-04
NM_138720.1 HISTIH2BD Histone |, H2bd 2.85 |.6E-04
NM_033184.2 KRTAP2-4 Keratin associated protein 2-4 2.81 2.6E-03
NM_001554.4 CYR6I Cysteine-rich, angiogenic inducer, 61 2.73 1.3E-05
NM_139072.2 DNER Delta-notch-like EGF repeat-containing transmembrane 2.62 2.2E-03
NM_005319.3 HISTIHIC Histone |, Hlc 2.57 5.4E-04
NM_006865.2 LILRA3 Leukocyte immunoglobulin-like receptor, subfamily A, member 3 237 1.2E-03
NM_005952.2 MTIX Metallothionein |% 2.37 1.2E-03
NM_080593.1 HIST IH2BK Histone |, H2bk 2.36 9.2E-06
NM_005950.1 MTIG Metallothionein |G 2.33 7.4E-03
Repressed
NM_003998.2 NFKBI Nuclear factor of kappa light polypeptide gene enhancer in B-cells | (p105) -2.04 6.9E-04
NM_018043.5 TMEMI6A Transmembrane protein |6A -2.05 |.6E-03
NM_003302.1 TRIP6 Thyroid hormone receptor interactor 6 -2.08 6.6E-03
NM_145810.1 CDCA7 Cell division cycle associated 7 -2.08 2.4E-03
NM_004217.2 AURKB Aurora kinase B -2.08 |1.7E-03
NM_001235.2 SERPINHI Serpin peptidase inhibitor, clade H (heat shock protein 47), member | 211 7.4E-05
NM_001425.2 EMP3 Epithelial membrane protein 3 -2.11 1.0E-03
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Table I: Differentially expressed genes (>2 Fold) in response to HDACi in HCT1 16 colon cancer cells. (Continued)

NM_005329.2 HAS3 Hyaluronan synthase 3
NM_001237.3 CCNA2 Cyclin A2

NM_002129.2 HMGB2 High-mobility group box 2
NM_005434.4 MALL Mal, T-cell differentiation protein-like
NM_001423.2 EMPI Epithelial membrane protein |
NM_181803.1 UBE2C Ubiquitin-conjugating enzyme E2C
NM_018649.2 H2AFY2 H2A histone family, member Y2
NM_001071.1 TYMS Thymidylate synthase

-2.11 2.4E-05
-2.15 | .5E-03
-2.17 I.3E-03
-2.17 4.2E-04
-2.23 |.6E-04
-2.31 3.1E-04
-2.51 2.2E-06
-2.74 7.4E-06

DEGs modulated by vorinostat treatment in HT29 cells,
138 were up-regulated and 53 were down-regulated >2-
fold. Of the 3509 genes modulated following treatment
with LBH589 in HT29 cells, 163 genes were upregulated
and 54 were downregulated >2-fold. The top 15 up- and
downregulated genes for both vorinostat and LBH589
treatment in HT29 cells are displayed in Table 2.

Identification of biological pathways modulated by HDACi
We further analyzed the HDACi-DEGs to explore the key
biological pathways modulated by HDACi treatment. We
performed pathway analysis using Ingenuity® Pathway
Analysis (IPA) on the DEGs in both the HCT116 and
HT29 cell lines, treated with LBH589 and vorinostat. In
the HCT116 cells, 2289 of the 3043 DEGs and 1679 of the
2232 DEGs in the HT29 cells mapped to defined genetic
networks in IPA Knowledge Base. Five networks were
found to be altered by HDACI in that they possessed sig-
nificantly more of the identified DEGs present than would
be expected by random chance. These networks included
cell cycle; DNA replication, recombination and repair;
apoptosis; gene expression and cell growth and prolifera-
tion. The mapped DEGs were subsequently analyzed for
the top 12 canonical biological pathways that demon-
strated significance within each dataset. In HCT116 cells,
5 common pathways were modulated by both HDAC;];
coagulation system, pyrimidine metabolism, metabolism
of xenobiotics, arachidonic acid metabolism and fatty
acid metabolism (Figure 5A and 5B). In HT29 cells, 7
common pathways were modulated by both HDACI;
arginine and proline metabolism; urea cycle and metabo-
lism of amino groups; arachidonic acid metabolism; fruc-
tose and mannose metabolism; pentose phosphotate
pathway; nitrogen metabolism and bile acid biosynthesis
(Figure 5C and 5D).

Common gene signature of HDAC inhibition in colon
cancer cells

One of the key objectives of this study was to identify a
cassette of genes which were consistently regulated by
both vorinostat and LBH589 in both cell lines examined.
Such a cassette of consistently regulated genes may serve
as molecular markers for HDACI treatment in colon can-
cer cells.

From the Venn analysis, it is apparent that there is signifi-
cant differences in how the HCT116 and HT29 cells
respond to HDACiI treatment. Specifically, when HCT116
and HT29 cells were treated with vorinostat, a combined
total of 4688 DEGs (p-value < 0.05) were identified. How-
ever, of this combined total of 4688 DEGs, only 860
(18.3%) genes were transcriptional changes common to
both cell lines (Figure 4C and 4D). Similarly, in both cell
lines a combined total of 5023 DEGs (p-value < 0.05)
were identified following treatment with LBH589. How-
ever, of these 5023 DEGs, only 915 (18.2%) were tran-
scriptional changes common to both cell lines (Figure 4C
and 4D). From this overlapping gene list, up- and down-
regulated genes in the HCT116 and HT29 cells were
directly compared using a 1.5-fold cutoff. From this com-
parative list, we identified a panel of 11 genes, 6 genes that
are significantly upregulated and 5 that are downregulated
in a consistent manner in both cell lines by treatment with
both HDAC: (Table 3).

Verification of microarray results by quantitative real-time
RT-PCR

In order to assess the robustness of the microarray analy-
sis, quantitative real-time RT-PCR (qPCR) analysis was
performed to validate a selected panel of 15 DEGs and 2
non-DEGs [39], using the primer sets given in Table 4.
qPCR was performed on cDNA generated using RNA inde-
pendently isolated from HCT116 and HT29 treated with
either 2 uM vorinostat or 50 nM LBH589. Due to the ple-
otropic effects on gene expression induced by HDACI, we
first confirmed that our selected JPCR normalizing gene
was not modulated by HDACi treatment in either cell line
prior to DEG verification. We selected 2 house-keeping
genes, 18s rRNA and GAPDH, whose expression was
unchanged in the microarray analysis (non-DEGs) and
confirmed using qPCR that these genes retained consist-
ent expression during HDACi treatment (Figure G6A).
GAPDH was subsequently used to normalize all qPCR
data. To further validate and characterize the DEGs iden-
tified by the microarray analysis, we analyzed the time-
dependent change in expression of the selected DEGs at 6,
12 and 24 hours post-HDACI treatment when compared
to vehicle-treated time-matched controls. The pattern of
expression obtained for 14 of the 15 selected DEGs 24 h
post-treatment showed consistent directional conforma-
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Table 2: Differentially expressed genes (>2 Fold) in response to HDACi in HT29 colon cancer cells.

HT29
Accession # Gene Symbol Gene Name Fold Change P-Value
Induced LBH589
NM_002305.2 LGALSI Lectin, galactoside-binding soluble | 5.22 3.0E-03
NM_003088.2 FSCNI Fascin homolog |, actin-bundling protein 5.06 5.6E-03
NM_006262.3 PRPH Peripherin 458 9.8E-04
NM_004223.3 UBE2L6 Ubiquitin-conjugating enzyme E2L 6 4.58 9.7E-04
NM_182908.3 DHRS2 Dehydrogenase/reductase member 2 4.37 5.5E-03
NM_006086.2 TUBB3 Tubulin, beta 3 4.06 1.4E-02
NM_002084.2 GPX3 Glutathione peroxidase 3 4.05 5.2E-03
NM_153247.1 SLC29A4 Solute carrier family 29, member 4 3.92 1.1E-03
NM_003283.3 TNNTI Troponin T type | 3.92 1.3E-03
NM_178012.3 TUBB2B Tubulin, beta 2B 392 3.4E-03
NM_001928.2 CFD Complement factor D (adipsin) 3.87 5.4E-03
NM_006117.2 PECI Peroxisomal D3, D2-enoyl-CoA isomerase 3.83 6.8E-03
NM_005319.3 HISTIHIC Histone |, Hlc 3.78 1.3E-03
NM_005952.2 MTIX Metallothionein | 3.66 5.9E-03
NM_017707.2 DDEFLI Development and differentiation enhancing factor-like | 3.60 6.6E-04
Repressed
NM_206963.1 RARRESI Retinoic acid receptor responder | -2.41 1.0E-02
NM_001031733.1 CALML4 Calmodulin-like 4 -2.42 I.1E-03
NM_007167.2 ZMYMé6 Zinc finger, MYM-type 6 =243 8.8E-03
NM_002423.3 MMP7 Matrix metallopeptidase 7 -2.55 7.1E-03
NM_08091 1.1 UNG Uracil-DNA glycosylase -2.58 1.1E-02
NM_145810.1 CDCA7 Cell division cycle associated 7 -2.59 2.0E-03
NM_006169.2 NNMT Nicotinamide N-methyltransferase -2.61 4.4E-03
NM_020371.2 AVEN Apoptosis, caspase activation inhibitor -2.66 4.3E-04
NM_005375.2 MYB V-myb myeloblastosis viral oncogene homolog -2.72 1.2E-03
NM_052813.2 CARD9 Caspase recruitment domain family, member 9 -2.75 1.8E-02
NM_014312.3 VSIG2 V-set and immunoglobulin domain containing 2 -2.81 2.5E-03
NM_020384.2 CLDN2 Claudin 2 -3.03 2.5E-02
NM_020299.3 AKRIBIO Aldo-keto reductase family |, member B10 -3.20 1.7E-02
NM_007193.3 ANXAI0 Annexin A10 -3.69 4.1E-03
NM_001071.1 TYMS Thymidylate synthase -3.82 I.1E-03
Induced Vorinostat
NM_002305.2 LGALSI Lectin, galactoside-binding, soluble, | 5.07 |1.6E-03
NM_003088.2 FSCNI Fascin homolog |, actin-bundling protein 4.6l 2.3E-04
NM_004223.3 UBE2L6 Ubiquitin-conjugating enzyme E2L 6 4.47 1.2E-02
NM_006262.3 PRPH Peripherin 4.39 5.9E-03
NM_182908.3 DHRS2 Dehydrogenase/reductase member 2 4.21 I.1E-04
NM_006086.2 TUBB3 Tubulin, beta 3 4.08 1.6E-03
NM_002084.2 GPX3 Glutathione peroxidase 3 3.98 2.0E-03
NM_017707.2 DDEFLI Development and differentiation enhancing factor-like | 3.74 7.9E-03
NM_001928.2 CFD Complement factor D 3.72 |1.5E-02
NM_003078.3 SMARCD3 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, 3.67 2.0E-02
subfamily d, member 3
NM_003283.3 TNNTI Troponin T type | 3.67 |.5E-03
NM_006117.2 PECI Peroxisomal D3, D2-enoyl-CoA isomerase 3.62 3.5E-03
NM_178012.3 TUBB2B Tubulin, beta 2B 3.59 7.1E-04
NM_015896.2 ZMYNDIO Zinc finger, MYND-type containing 10 3.57 8.8E-03
NM_005319.3 HISTIHIC Histone |, Hlc 3.50 7.7E-03
Repressed
NM_001031733.1 CALML4 Calmodulin-like 4 243 5.0E-03
NM_005752.2 CLEC3A C-type lectin domain family 3, member A -2.45 7.5E-04
NM_005375.2 MYB V-myb myeloblastosis viral oncogene homolog -2.56 3.5E-03
NM_020371.2 AVEN Apoptosis, caspase activation inhibitor -2.60 7.8E-03
NM_014312.3 VSIG2 V-set and immunoglobulin domain containing 2 -2.62 3.5E-04
NM_005117.2 FGFI9 Fibroblast growth factor 19 -2.64 9.3E-03
NM_007167.2 ZMYMé6 Zinc finger, MYM-type 6 -2.67 1.6E-02
NM_004688.1 NMI N-myc (and STAT) interactor -2.69 3.9E-04
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Table 2: Differentially expressed genes (>2 Fold) in response to HDACi in HT29 colon cancer cells. (Continued)

NM_052813.2 CARD9 Caspase recruitment domain family, member 9 -2.70 2.8E-04
NM_08091 1.1 UNG Uracil-DNA glycosylase -2.79 1.6E-02
NM_018689.1 KIAAT199 KIAAT199 -2.95 3.2E-04
NM_020384.2 CLDN2 Claudin 2 -3.06 2.3E-02
NM_020299.3 AKRIBIO Aldo-keto reductase family |, member B10 -3.07 2.8E-05
NM_007193.3 ANXAI0 Annexin Al0 -3.49 1.3E-02
NM_001071.1 TYMS Thymidylate synthase -3.59 8.3E-03
NM_001031733.1 CALML4 Calmodulin-like 4 -2.43 5.0E-03

tion (up- or downregulation) and cell-line specific modu-
lation between the qPCR and microarray analyses. THBS-
1, AVEN and AURKB demonstrated significant cell-line
specific changes in expression at 24 h as observed in the
microarray analyses (Figure 6B-D). HIST1IH1C was ini-
tially identified as consistently upregulated by the micro-
array analysis, but subsequent qPCR analysis indicated
this gene to be consistently downregulated with either
HDACI in both cell lines (Figure 6E). QPCR validation of
our core panel of 11 genes also demonstrated consistent
modulation at 24 h with the microarray analysis. In addi-
tion, these 11 genes also demonstrated time-dependent
changes in expression at 6 and/or 12 h post HDACi treat-
ment (Figure 7 and 8). However, in several instances, the
fold-changes obtained by qPCR were significantly higher
for several genes than those obtained in the microarray
analyses, particularly for the more heavily regulated genes
as previously reported [40]. For example, DHRS2 was
induced by ~5-fold in both cell lines following HDACi
treatment in the microarray analysis. Subsequent qPCR
analysis determined the fold-increase in DHRS2 tran-
scripts to be in the order of 36-97-fold in HT29 cells and
226-445-fold in the HCT116 cells (Figure 7). Similarly,
thymidylate synthase (TYMS) was down-regulated by
HDACI in both cell lines 2.7 - 3.8-fold in the microarray
analysis, whereas qPCR determined that HDACi treat-
ment induced a >30-fold downregulation of TYMS 24 h
post-treatment in both cell lines (Figure 8).

Discussion

In an effort to characterize the response of colon cancer
cells to HDACI, we analyzed the gene expression profile of
two colon cancer cell lines following treatment with two
HDAC], vorinostat and LBH589. Both HDAC: resulted in
significant inhibition of tumor cell proliferation, an accu-
mulation of acetylated histones and the onset of apoptotic
cell death. However, LBH589 exerted antiproliferative
effects at significantly lower concentrations than vorinos-
tat, consistent with previous reports utilizing these
HDACI [25,34,41]. Specifically, the ICs, for LBH589 was
in the single digit nanomolar range while vorinostat
required concentrations in excess of 1 uM. The concentra-
tions at which HDACi induce their antiproliferative effects
is of importance particularly in the context of clinically
achievable serum concentrations and the extrapolation of

in vitro observations to clinical settings. Pharmacokinetic
data from clinical trials following a twice-daily dose of
vorinostat determined that the half-life was in the range of
1 - 3.5 h and maximal serum concentrations did not peak
over 2 uM and rapidly diminished [27,42,43]. Of note,
the half-life of LBH589 was determined to be in the order
of 10-14 h and serum concentrations of 400 - 700 nM are
achievable at doses which are well tolerated [28]. There-
fore, the concentration of LBH589 required to achieve
50% growth inhibition in our colon cancer cells was well
within clinically achievable concentrations whereas the
concentration of vorinostat was within, but approaching
the upper limit of reported serum concentration ranges.

The cDNA microarray analysis demonstrated that in each
cell line that the gene expression profile was significantly
altered after a 24 h exposure to either HDAC inhibitor,
vorinostat (2 uM) or LBH589 (50 nM). Considering the
mechanism of action of HDACi including histone acetyla-
tion-induced chromatin remodeling and the acetylation
of non-histone proteins including transcription factors, it
is intriguing that only 5-7% of genes in the colon cancer
cell lines analyzed were modulated by HDACi treatment.
However, our results are consistent with other microarray
profiling experiments which reported as few as 2% and as
high as 10% modulated by HDACi. These reports and the
data presented herein would indicate that HDACi do not
induce global gene expression changes and may instead
target specific sets of genes. An important observation in
this study was that vorinostat and LBH589 induced very
similar transcriptional profiles within each cell line. As
both of these agents are hydroxamate-class HDACI, this
observation is somewhat expected. Additional studies
have identified very similar transcriptional changes pro-
duced by the two hydroxamic-acid based HDACI, TSA and
vorinostat, while also demonstrating a different gene
expression profile obtained with the benzamide class
HDAGi MS-275 [14].

The analysis of our data demonstrates that HDACi induce
significant cell-line specific effects on genes involved in
the regulation of a number of critical tumor processes
including angiogenesis, mitosis, DNA replication, recom-
bination and repair and apoptosis. More specifically, the
potent anti-angiogenic matrix glycoprotein throm-
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Figure 5

Top 12 canonical pathways that were significantly modulated by HDAC: as identified by Ingenuity® Pathway
Analysis (IPA). HCT116 colon cancer cells treated for 24 h with (A) 2 uM vorinostat (Vor) or (B) 50 nM LBH589 (LBH);
HT29 colon cancer cells treated for 24 h with (C) 2 uM vorinostat (Vor) or (D) 50 nM LBH589 (LBH). 2289 of the 3043 dif-
ferentially expressed genes (DEGs) in the HCT 16 and 1679 of the 2232 DEGs in the HT29 cancer cell lines mapped to
defined genetic networks in IPA. Fisher's exact test was used to calculate a p-value determining the probability that the associ-
ation between the genes in the dataset and the canonical pathway is explained by chance alone. A ratio of the number of genes
from the dataset that map to the pathway divided by the total number of molecules in a given pathway that meet the cut crite-
ria, divided by the total number of molecules that make up that pathway is displayed.
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Table 3: Summary of changes in gene expression for the core set of HDAC inhibitor regulated genes

HCTI16 HT29

Accession # Gene Symbol Gene Name Fold Change* Fold Change*

Induced LBH589 VOR LBH589 VOR
NM_182908.3 DHRS2 Dehydrogenase/reductase member 2 4.78 4.05 4.37 4.21
NM_183376.1 ARRDC4 Arrestin domain containing 4 4.15 3.35 221 2.14
NM_138720.1 HISTIH2BD  Histone |, H2bd 3.35 2.53 3.44 3.33
NM_005952.2 MTIX Metallothionein 1X 2.87 2.37 3.66 3.31
NM_005950.1 MTIG Metallothionein 1G 2.78 2.08 3.30 3.00
NM_015149.2 RGLI Tal guanine nucleotide dissociation stimulator-like | 2.52 1.56 3.12 3.03

Repressed
NM_001071.1 TYMS Thymidylate synthase -3.88 -2.74 -3.82 -3.59
NM_145810.1 CDCA7 Cell division cycle associated 7 -3.06 -2.08 -2.59 -2.42
NM_08091 1.1 UNG Uracil-DNA glycosylase -2.54 -1.55 -2.58 -2.79
NM_003998.2 NFkBI Nuclear factor of kappa light polypeptide gene enhancer in B-cells | -2.55 -2.04 -1.65 -1.8

(p105)
NM_001025242.1 IRAK | Interleukin-| receptor-associated kinase | -1.97 -1.65 -2.15 -2.08

bospondin-1 (THBS1), was significantly upregulated 14-
fold in HCT116 cells at 24 h (Table 1). HT29 cells how-
ever, showed no modulation until 24 h post-treatment
where only a modest increase of 2-fold was observed by
qPCR. HDACIi are reported to be potent inhibitors of
tumor angiogenesis and induction of THBS1 has previ-
ously been reported following HDAC inhibition [44].
Similarly, in HCT116 the most heavily upregulated gene
following treatment with either vorinostat or LBH589 was
connective tissue growth factor (CTGF; Table 1). CTGF is
a multifunctional secreted matricellular protein associ-
ated with fibrotic disorders, angiogenic regulation, and
possibly tumor development [45]. Human tumors overex-
pressing CTGF demonstrated reduced microvessel density
indicative of potential antiangiogenic properties, and
ovarian tumors overexpressing CTGF demonstrated
enhanced tumor cell invasion [46]. In HT29 cells, fibrob-
last growth factor 19 (FGF19) was significantly downreg-
ulated by both HDACi (Table 2). FGF19 binds to FGF
receptor 4 and has been shown to mediate cell cycle pro-
gression, angiogenesis and promote tumor growth
through the beta-catenin pathway. Knockdown of FGF19
in colon cancer cells decreased tumor growth in vitro and
in vivo [47]. It is possible that the antiangiogenic and anti-
tumor action of HDACi are mediated, in part, through
modulation of key angiogenic regulators such as these
and would indicate that HDACi may potentiate the thera-
peutic efficacy when used in combination with inhibitors
of tumor angiogenesis.

In HT29 cells, microarray analysis identified that both
HDAC: induce a potent downregulation of the anti-apop-
totic caspase inhibitor protein AVEN. qPCR confirmed
that AVEN is significantly downregulated in HT29 cells by
vorinostat and LBH589 >5-fold at 24 h and only modestly
regulated in HCT116 cells <2-fold at 24 h. AVEN is

reported to inhibit caspase activation through inhibition
of APAF-1 self-association [48]. The downregulation of
AVEN would suggest that HDACi-induced apoptosis in
the HT29 cells may be regulated in part via the mitochon-
dria, supporting the mechanism of oxidative stress injury
as previously reported [18].

We also observed significant cell-line-specific alterations
in genes involved in mitosis. Aurora kinase B was identi-
fied as downregulated by both vorinostat and LBH589 in
HCT116 cells. The Aurora kinase family are critical regula-
tors of mitotic cell division having roles in centrosome
function, mitotic spindle formation, chromosome segre-
gation and cytokinesis [49]. Overexpression of Aurora
kinases A and B have been linked to genetic instability and
are frequently overexpressed in solid tumors such as
colorectal cancer [50,51] and inhibition of aurora kinases
has become an attractive therapeutic strategy with multi-
ple inhibitors in clinical development. Of note, recent
studies have reported that LBH589 induces the degrada-
tion of aurora kinase A and B in renal and non-small cell
lung cancer cells resulting in G2/M arrest and apoptosis
[52,53]. Interestingly, we observed downregulation of
aurora kinase B with HDACi treatment only in the
HCT116 cells where a potent G2/M arrest and significant
apoptosis was observed (Table 1, Figure 5B).

Approximately 18% of the DEGs identified after HDACi
treatment were modulated in a similar manner in both
cell lines. This core set of genes encompass genes involved
in cell cycle, nucleotide metabolism, nucleosome assem-
bly and apoptosis. We identified a panel of 11 genes, 6 up-
and 5 downregulated by both HDACI in both cell lines.
Previously, Glaser et al. identified a core set of 13 genes
regulated by three HDACis in bladder and breast cancer
carcinoma cell line models. Upon comparison, one upreg-
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Figure 6

qPCR validation of house-keeping and cell-line specific HDACi-induced gene expression changes. HCT| 16 and
HT29 cells were treated with 2 uM vorinostat or 50 nM LBH589 for 6, 12 and 24 h. Total RNA was extracted and qPCR anal-
ysis was performed as described in the 'materials and methods' using the primer sets given in Table 4. Histogram bars repre-
sent the mean * SD for two independent RNA isolations analyzed in triplicate. (A) Verification of unaffected 18s and GAPDH
expression with HDACi treatment. GAPDH was normalized to 18s and 18s was normalized to GAPDH. qPCR validation of
the induction of (B) THBS-1, (C) AVEN (D) AURKB (E) HISTIHIC. All genes were normalized to GAPDH, * denotes a p-
value < 0.05 for both HDAC: treatment groups when compared to respective time-matched control.
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qPCR time-dependent validation of core HDACi-induced gene expression changes in HCT116 and HT29 cells.
HCTI16 and HT29 cells were treated with 2 uM vorinostat (Vor) or 50 nM LBH589 for 6, 12 and 24 h. Total RNA was
extracted, reverse transcribed and qPCR analysis was performed as described in the 'materials and methods' using the primer
sets given in Table 4. Histogram bars represent the mean + SD for two independent RNA isolations analyzed in triplicate. All
genes were normalized to GAPDH, * denotes p-value < 0.05 for both HDACi treatment groups when compared to respective
time-matched control.

ulated gene (histone H2B) and one down-regulated gene  and may employ different mechanisms of gene expression
(thymidylate synthase) are consistent between our core  regulation. An additional study analyzed the effects of
gene set and those reported by Glaser et al. [14]. One of = HDACI in renal cancer cells and identified consistent
the primary reasons for this is that out core gene set was  directional modulation of short-chain alcohol dehydroge-
defined solely from colon cancer cells which are physio-  nase, aldo-keto reductase and fibroblast growth factor
logically distinct from both bladder and breast cancers  gene families [54].
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qPCR time-dependent validation of core HDACi-repressed gene expression changes in HCTI116 and HT29

cells. HCTI116 and HT29 cells were treated with 2 uM vorinostat (Vor) or 50 nM LBH589 for 6, 12 and 24 h. Total RNA was
extracted, reverse transcribed and qPCR analysis was performed as described in the 'materials and methods' using the primer
sets given in Table 4. Histogram bars represent the mean + SD for two independent RNA isolations analyzed in triplicate. All
genes were normalized to GAPDH, * denotes p-value < 0.05 for both HDACi treatment groups when compared to respective

time-matched control.

Two genes within our core set of HDACi-modulated genes
are directly involved in nucleotide metabolism and DNA
repair. Downregulation of both thymidylate synthase
(TYMS) and UNG was observed in both cell lines follow-
ing treatment with either HDACIi. Thymidylate synthase is
essential for the de novo synthesis of thymidylate, an

essential precursor required for DNA replication and
repair. UNG is the gene encoding uracil-DNA glycosylase,
a base excision repair protein involved in uracil excision
from DNA. Both these enzymes are reported to mediate
response to the antimetabolite class of chemotherapeutic
agents including inhibitors of TS such as 5-fluorouracil
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Table 4: qPCR Primer Sequences
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Gene
Name Accession # Strand Primer Sequence Size (bp)
18s rRNA NR_003286.1 F CGCCGCTAGAGGTGAAATTC 62
R TTGGCAAATGCTTTCGCTC
ARRDC4 NM_183376.2 F CCGGCCGGTGAAGGCATCAT 140
R TCCAACACTGCCCGCACACA
AURKB NM_004217.2 F GACCTAAAGTTCCCCGCTTC 165
R GACAGATTGAAGGGCAGAGG
AVEN NM_020371.2 F TGCTCACAGCAGTAAATGCC 155
R TGCAAGGAAGGAGGCTAGAA
CDCA7 NM_031942.4 F CATGGAAACCTCGTCATCCT 95
R TACAGCCTTCCCGAACTGAC
DHRS2 NM_182908.4 F GTCCTTCCTGTGCTCTCCAG 169
R AGACTCTGCCTCCAGATCCA
GAPDH NM_002046.3 F ATGGGGAAGGTGAAGGTCG 107
R GGGTCATTGATGGCAACAATATC
HISTIHIC NM_005319.3 F ACACCGAAGAAAGCGAAGAA 116
R AGCCTTAGCAGCACTTTTGG
HISTIH2BD NM_138729.1 F AAGGCCGTCACCAAGTACAC 136
R TTTCAGGCAGATGAGACTTCC
IRAK NM_0001569.3 F GCTGGCCCTGTACGAGGAT 129
R ACACATCAGCTCTGAAATTCATCAC
MTIG NM_005950.1 F CCCCAACTGCTCCTGTGCCG 202
R GGGAGCAGGGCTGTCCCGA
MTIX NM_005952.3 F GCAAATGCAAAGAGTGCAAA 146
R ACAGCTGTCCTGGCATCAG
NFBI NM_003998.2 F CACGAATGACAGAGGCGTGTA 130
R TGGCGGATTAGCTCTTTTTCC
RGLI NM_015149.3 F GCCGTCCCAAGGGACCGAATG 166
R GCCGCCTCTGGGTACGCTTC
THBSI NM_003246.2 F CACGCTGCAGGACAGCAT 69
R GGCCGCCTCAGCTCATT
TYMS NM_001071.2 F GGAGGAGTTGCTGTGGTTTATCAAG 108
R AGGCTGTCCAAAAAGTCTCGGG
UNG NM_003362.2 F TTATGGTGAAACAGGGGAGA 176
R AGTGGAACTGGCAGAGACTG

[55,56]. A number of other studies have confirmed that
downregulation of TS mRNA and protein is a common
event in response to HDACi treatment [14,25,57]. We
recently confirmed that downregulation of TS was a com-
mon event in an extended panel of colon cell lines and
was driven primarily through a transcriptional mecha-
nism in response to HDAC inhibition. This interaction
resulted in synergistic antiproliferative effects between
HDAC: and 5-FU in colon cancer cells [25] supporting the
concept that HDACi-mediated alterations in known drug
targets may provide opportunity for new therapeutic com-
binations.

Short-chain alcohol dehydrogenase family member 2
(DHRS2) was identified as the most heavily induced gene
by HDAC: in our core set of genes. DHRS2 was originally
identified following its upregulation by treatment with
butyrate and was later confirmed to be involved in the dif-
ferentiation of monocytes to dendritic cells [58,59].

HDACI treatment is reported to induce cellular differenti-
ation and induction of pro-differentiation genes such as
DHRS?2 is a plausible mechanism [60].

MT1X and MT1G were both heavily induced in both cell
lines by HDACi treatment. These genes encode two highly
inducible ubiquitous proteins belonging to a family of
cysteine-rich metallothionein proteins. Metallothioneins
can bind to both physiological and xenobiotic heavy met-
als [61]. Previous studies have identified regulation of
other metallothionein family members in response to
HDACI [14]. MT1G is reported to be a tumor suppressor
gene and is frequently epigenetically silenced in a number
of human malignancies [62,63]. Although the mecha-
nism that results in the induction of metallothionein pro-
teins is unknown, both the MT1X and MT1G genes map
to chromosome 16q13 and it is likely that HDACi-medi-
ated events in this region such as chromatin relaxation
result in the increased transcription of both of these genes.
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NF-«B regulates the expression of a significant number of
genes involved in immune response, angiogenesis, cell
adhesion, proliferation, differentiation, and apoptosis
[64,65]. The NFKB1 gene encodes the predominant p50/
p105 form and represents one of the core genes signifi-
cantly downregulated by HDACI treatment in this study.
As such, many different types of human tumors have dys-
regulated NF-«xB, primarily via constitutive activation that
mediates continued cell proliferation and averts the onset
of apoptosis [66]. Downregulation of NF-xB is a likely
mechanism by which HDACi induce aspects of their
apoptotic effects in colon cancer cells. We also identified
the IL-1 receptor associated kinase (IRAK1) as consistently
downregulated by HDACi in our core set of genes. IRAK1
encodes the interleukin-1 receptor-associated kinase 1
which is reported to be partially responsible for IL1-
induced upregulation of NF-kB [67] and was one of ~100
genes identified as consistently upregulated in a microar-
ray meta-comparison of genes upregulated in solid
tumors of epithelial origin [68].

Our core set of genes includes the histone family member
HIST1H2BD which encodes the histone H2B protein and
was >3-fold induced by HDACi treatment. HISTIH2BD
has previously been reported to be induced by HDACi
treatment [14]. While the mechanism of induction of this
gene is unknown, it is located within the large histone
gene cluster on chromosome 6p22-p21.3 and it is likely
that the HDACi-induced alterations in this region, possi-
bly through chromatin relaxation allowing transcriptional
machinery access, results in this induction.

We have analyzed the gene expression profiles of two of
the most clinically advanced hydroxamate class HDAC;,
vorinostat and LBH589, in two colon cancer cell line
models. We identified significant overlap in differentially
expressed gene profiles for vorinostat and LBH589 within
each cell line indicating similar mechanism of action for
these HDACI. Interestingly, we also identified a strong
cell-line dependence of gene expression changes induced
by these HDACi with only 18% commonality in HDACi-
induced DEGs. Within this gene expression overlap, we
identified a core set of 6 up- and 5 downregulated genes
that are regulated by both of HDACI in both cell lines.
Defining a core set of genes that represent markers of
HDAC inhibition is an important first step in the identifi-
cation and validation of clinical markers for evaluating
HDAC:i target inhibition and efficacy. Currently, analysis
of histone acetylation from tumor tissue and more fre-
quently from isolated peripheral blood mononuclear cells
is used as evidence of HDACi biological activity. However,
histone acetylation following HDACi treatment has been
shown to be highly reversible and often inconsistent. A
panel of HDACi-regulated genes may provide a more sen-
sitive and reliable means to determining the efficacy of
HDACI treatment in the clinic. We also identified altera-

http://www.biomedcentral.com/1755-8794/2/67

tions in additional pathways which may enhance the ther-
apeutic potential of both conventional and targeted
therapeutics, including genes involved in angiogenesis,
nucleotide metabolism and mitosis. As HDACi advance in
clinical development, these agents are likely to be incor-
porated into combination treatment strategies with both
conventional and novel chemotherapeutic agents. There-
fore, the identification of pathways and drug targets mod-
ulated by HDAC inhibition could be critically important
in elucidating their disease-specific mechanism of action
and assisting in the identification of effective drug combi-
nation partners.

Conclusion

This study identified HDACi-induced alterations in criti-
cal genes involved in nucleotide metabolism, angiogen-
esis, mitosis and cell survival which may represent
potential intervention points for novel therapeutic combi-
nations in colon cancer. This information will assist in the
identification of novel pathways and targets that are mod-
ulated by HDACI, providing much-needed information
on HDACi mechanism of action and providing rationale
for novel drug combination partners. We identified a core
signature of 11 genes which were modulated by both vori-
nostat and LBH589 in a similar manner in both cell lines.
These core genes will assist in the development and vali-
dation of a common gene set which may represent a
molecular signature of HDAC inhibition in colon cancer.
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