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Abstract

Background: Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating
breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the
simultaneous effects of all genes or chromosomal segments and combining the estimates to predict the total
genomic breeding value (GEBV). Accurate prediction of GEBVs is a central and recurring challenge in plant and
animal breeding. The existence of a bewildering array of approaches for predicting breeding values using markers
underscores the importance of identifying approaches able to efficiently and accurately predict breeding values.
Here, we comparatively evaluate the predictive performance of six regularized linear regression methods– ridge
regression, ridge regression BLUP, lasso, adaptive lasso, elastic net and adaptive elastic net– for predicting GEBV
using dense SNP markers.

Methods: We predicted GEBVs for a quantitative trait using a dataset on 3000 progenies of 20 sires and 200 dams
and an accompanying genome consisting of five chromosomes with 9990 biallelic SNP-marker loci simulated for
the QTL-MAS 2011 workshop. We applied all the six methods that use penalty-based (regularization) shrinkage to
handle datasets with far more predictors than observations. The lasso, elastic net and their adaptive extensions
further possess the desirable property that they simultaneously select relevant predictive markers and optimally
estimate their effects. The regression models were trained with a subset of 2000 phenotyped and genotyped
individuals and used to predict GEBVs for the remaining 1000 progenies without phenotypes. Predictive accuracy
was assessed using the root mean squared error, the Pearson correlation between predicted GEBVs and (1) the
true genomic value (TGV), (2) the true breeding value (TBV) and (3) the simulated phenotypic values based on
fivefold cross-validation (CV).

Results: The elastic net, lasso, adaptive lasso and the adaptive elastic net all had similar accuracies but
outperformed ridge regression and ridge regression BLUP in terms of the Pearson correlation between predicted
GEBVs and the true genomic value as well as the root mean squared error. The performance of RR-BLUP was also
somewhat better than that of ridge regression. This pattern was replicated by the Pearson correlation between
predicted GEBVs and the true breeding values (TBV) and the root mean squared error calculated with respect to
TBV, except that accuracy was lower for all models, most especially for the adaptive elastic net. The correlation
between the predicted GEBV and simulated phenotypic values based on the fivefold CV also revealed a similar
pattern except that the adaptive elastic net had lower accuracy than both the ridge regression methods.

Conclusions: All the six models had relatively high prediction accuracies for the simulated data set. Accuracy was
higher for the lasso type methods than for ridge regression and ridge regression BLUP.
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Introduction
Genomic selection (GS), the prediction of genomic
breeding values (GEBVs) using dense molecular markers,
is rapidly emerging as a key component of efficient and
cost-effective breeding programs. The prediction of
GEBVs is currently undertaken using multiple methods
with varying degrees of complexity, computational effi-
ciency and predictive accuracy. Comparative evaluation
of the performance of the existing methods is thus essen-
tial to identify those best suited to GS and determine
when their performance is optimal. Here, we evaluate the
relative performance of six regularized (penalized) linear
regression models for GS. The methods comprise ridge
regression (RR) [1], ridge regression best linear unbiased
prediction (RR-BLUP) [2], the least absolute shrinkage
and selection operator (lasso) [3-5], elastic net [6-8],
adaptive lasso [9] and adaptive elastic net (ADAENET)
[10]. The appeal and success of regularization models in
many application domains, including genomic selection,
relate to their use of penalties that facilitate fitting mod-
els with predictors that run into thousands, including
many irrelevant to the response, far exceed the sample
size, or are highly correlated, with high efficiency and
prediction accuracy.

Methods
Data
An outbred population of 1000 individuals was simu-
lated over 1000 generations, followed by 150 individuals
over 30 generations, using the LDSO software [11]. Bial-
lelic SNP markers (n = 9990) were distributed on 5
chromosomes, each 1 Morgan in size, at every 0.05 cM
for a total of 1998 SNPs. For analysis, data correspond-
ing to the last generation of the simulated pedigree of
20 sires, each mated to 10 different dams and yielding
15 progenies per dam were selected, for a total of 3000
progenies. For each full-sib family of 15 progenies, 10
progenies were genotyped and phenotyped (n = 2000
progenies) whereas the remaining 5 were genotyped but
not phenotyped (n = 1000 progenies). The 3000 proge-
nies served as the candidates for genomic prediction in
this study. Our aim here is to predict (1) the true expec-
tation of the phenotypes of the 1000 non-phenotyped
candidates (i.e. the true genomic value, TGV) and (2)
the true expectation of the phenotypes of the progenies
of the 1000 non-phenotyped candidates (i.e., the true
breeding value, TBV).
The marker information was stored in a matrix

X =
{
xij

}
, with xij denoting the marker covariate for the

i-th genotype (i = 1, 2,..., n) and the j-th marker (j = 1,
2,..., p) for the biallelic SNP markers with alleles A1 and
A2 coded as 1 for A1A1, -1 for A2 A2 and 0 for A1 A2 or
A2 A1.

The regularization models
The basic linear regression model used to predict
GEBVs with all the six regularization models is:

y = μ1n + Xβ + e, (1)

where y=(y1,...,yn)
T is the vector of observed pheno-

types, 1n is a column vector of n ones and μ is a com-
mon intercept, X is a n × p matrix of markers; b is the
vector of the regression coefficients of the markers and
e is the vector of the residual errors with var (e) = Iσ 2

e .
In what follows, we assume that the observed pheno-
types have been mean-centered.

Ridge regression
Ridge regression [1] is ideal if there are many predictors,
all with non-zero coefficients and drawn from a normal
distribution [12]. In particular, it performs well with many
predictors each having small effect and prevents coeffi-
cients of linear regression models with many correlated
variables from being poorly determined and exhibiting
high variance. RR shrinks the coefficients of correlated
predictors equally towards zero. So, for example, given k
identical predictors, each would get identical coefficients
equal to 1/kth the size that any one predictor would get if
fit singly [12]. RR thus does not force coefficients to vanish
and hence cannot select a model with only the most rele-
vant and predictive subset of predictors.
The ridge regression estimator solves the regression

problem in (1) using ℓ2 penalized least squares:

β̂
(
ridge

)
= argmin

β

∥∥y − Xβ
∥∥2
2 + λ ‖β‖22 (2)

where
∥∥y − Xβ

∥∥2
2 =

∑n

i=1

(
yi − xTi β

)2
is the ℓ2 -norm

(quadratic) loss function (i.e. residual sum of squares),

xTi is the i-th row of X, ‖β‖22 =
∑p

j=1
β2
j is the ℓ2 -norm

penalty on b, and l ≥ 0 is the tuning (penalty, regulari-
zation, or complexity) parameter which regulates the
strength of the penalty (linear shrinkage) by determining
the relative importance of the data-dependent empirical
error and the penalty term. The larger the value of l,
the greater is the amount of shrinkage. As the value of
l is dependent on the data it can be determined using
data-driven methods, such as cross-validation. The
intercept is assumed to be zero in (2) due to mean-
centering of the phenotypes.

Ridge regression BLUP
Ridge regression BLUP uses the same estimator as ridge
regression but estimates the penalty parameter by

REML as λ = σ 2
e /σ

2
β , where σ 2

e is the residual variance,
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var (β) = Iσ 2
β is the variance of the regression coeffi-

cients and var (β) = Iσ 2
β [2].

Lasso
Lasso regression methods are widely used in domains
with massive datasets, such as genomics, where efficient
and fast algorithms are essential [12]. The lasso is, how-
ever, not robust to high correlations among predictors
and will arbitrarily choose one and ignore the others
and break down when all predictors are identical [12].
The lasso penalty expects many coefficients to be close
to zero, and only a small subset to be larger (and non-
zero). The lasso estimator [3] uses the ℓ1 penalized least
squares criterion to obtain a sparse solution to the fol-
lowing optimization problem:

β̂ (lasso) = argmin
β

∥∥y − Xβ
∥∥2
2 + λ‖β‖1, (3)

where ‖β‖1 =
∑p

j=1

∣∣βj
∣∣ is the ℓ1 -norm penalty on b,

which induces sparsity in the solution, and l ≥ 0 is a
tuning parameter.
The ℓ1 penalty enables the lasso to simultaneously reg-

ularize the least squares fit and shrinks some components
of β̂(lasso) to zero for some suitably chosen l. The cycli-
cal coordinate descent algorithm [12] efficiently com-
putes the entire lasso solution paths for l for the lasso
estimator and is faster than the well-known LARS algo-
rithm [13]. These properties make the lasso an appealing
and highly popular variable selection method. Even so,
the lasso has three key shortcomings – it lacks the oracle
property (see below), is unstable with high-dimensional
data and can not select more variables than the sample
size before it saturates when p >n [9].
An oracle procedure can estimate the subset of true

parameters with zero coefficients as exactly zero with
probability tending to 1; that is, as well as if the true sub-
set model were known beforehand [14]. An oracle esti-
mator, furthermore, performs asymptotically consistent
and efficient variable selection and produces asymptoti-
cally unbiased and normally distributed estimates of the
nonzero coefficients [9,14]. The oracle property is closely
related to the super-efficiency phenomenon [14]. How-
ever, the oracle property alone does not guarantee optim-
ality of estimators. Optimal estimators must also satisfy
certain additional and important regularity conditions
besides having the oracle property, such as continuous
shrinkage [9]. The lasso lacks the oracle property because
it estimates the larger nonzero coefficients with asympto-
tically non-ignorable bias [14] and can only consistently
perform variable selection when the predictor matrix (or
the design matrix) satisfies a rather strong condition [9].

Adaptive lasso
To remedy the problem of the lack of the oracle prop-
erty, the adaptive lasso estimator was proposed [9]:

β̂(AdaLasso) = argmin
β

∥∥y − Xβ
∥∥2
2 + λ

p∑
j=1

ω̂j
∣∣βj

∣∣, (4)

where ω̂j (j = 1,..., p) are the adaptive data-driven

weights, which can be estimated by ω̂j =
(∣∣∣β̂ ini

j

∣∣∣)−γ

,

where g is a positive constant and β̂
ini is an initial con-

sistent estimator of b obtained through least squares or
ridge regression if multicolinearity is important [9]. The
optimal value of g >0 and l can be simultaneously
selected from a grid of values, with values of g selected
from {0.5, 1, 2}, using two-dimensional cross-validation
[9]. The weights allow the adaptive lasso to apply differ-
ent amounts of shrinkage to different coefficients and
hence to more severely penalize coefficients with small
values. The flexibility introduced by weighting each
coefficient differently corrects for the undesirable ten-
dency of the lasso to shrink large coefficients too much
yet insufficiently shrink small coefficients by applying
the same penalty to every regression coefficient [9]. For
suitably chosen l, the adaptive lasso performs as well as
the oracle [9]. Despite being an oracle procedure, the
adaptive lasso inherits the instability of the lasso for
high-dimensional data.

Elastic net
The elastic net (ENET) is an extension of the lasso that
is robust to extreme correlations among the predictors
[12]. To circumvent the instability of the lasso solution
paths when predictors are highly correlated (e.g. SNPs
in high linkage disequilibrium), the ENET was proposed
for analyzing high dimensional data [6]. The ENET uses
a mixture of the ℓ1 (lasso) and ℓ2 (ridge regression)
penalties and can be formulated as:

β̂(enet) =
(
1 +

λ2

n

) {
argmin

β

∥∥y − Xβ
∥∥2
2 + λ2 ‖β‖22 + λ1‖β‖1

}
, (5)

On setting a=l2/(l1+l2), the ENET estimator (5) is
seen to be equivalent to the minimizer of:

β̂(enet2) = argmin
β

∥∥y − Xβ
∥∥2
2 , subject to Pα (β) = (1 − α) ‖β‖1+α ‖β‖22 ≤ s for some s (6)

where Pa(b) is the ENET penalty [6]. The ENET sim-
plifies to simple ridge regression when a=1 and to the
lasso when a=0. The ℓ1 part of the ENET does automatic
variable selection, while the ℓ2 part encourages grouped
selection and stabilizes the solution paths with respect to
random sampling, thereby improving prediction. By
inducing a grouping effect during variable selection, such
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that a group of highly correlated variables tend to have
coefficients of similar magnitude, the ENET can select
groups of correlated features when the groups are not
known in advance. Unlike the lasso, when p >>n, the
elastic net selects more than n variables. Nonetheless, the
elastic net lacks the oracle property.

Adaptive elastic net
The adaptive elastic net is a mixture of the adaptive lasso
and the elastic net that confers the oracle property to the
elastic net and alleviates the instability of the adaptive
lasso with high-dimensional data inherited from the lasso
[6,9]. The adaptive lasso attains the oracle property
whereas the elastic net fixes the multicolinearity problem.
In essence, the ADAENET unites the ideas of the adap-
tively weighted ℓ1 penalty of the adaptive lasso and the
elastic net regularization to confer the oracle property to
the lasso and enhance its stability (selection consistency
and asymptotic normality) with high-dimensional data by
solving the optimization problem [10]:

β̂(AdaEnet) =
(
1 +

λ2

n

) ⎧⎨
⎩argmin

β

∥∥y − Xβ
∥∥2
2 + λ2 ‖β‖22 + λ∗

1

p∑
j=1

ω̂j
∣∣βj

∣∣
⎫⎬
⎭, (7)

where the elastic-net estimator β̂(enet) in (5) is first
computed and then adaptive weights are constructed by:

ω̂j =
(∣∣∣β̂j (enet)

∣∣∣)−γ

, j = 1, 2, . . . , p,

and g is a positive constant.

Fitting and comparing models
The entire path of solutions (in l) for the ridge regression,
lasso and elastic net models were computed using the
pathwise cyclical coordinate descent algorithms– compu-
tationally efficient methods for solving these convex opti-
mization problems– in glmnet in R [12]. We used fivefold
CV within glmnet to exclusively search for the optimal l
[12]. For the selected optimal l we did another fivefold
CV external to glmnet to determine the optimal value for
a. A more computationally expensive two-dimensional
CV may also be used to search for an optimal pair of (a,
l) over the two-dimensional grids of parameters for the
ridge regression, lasso and the elastic net. The adaptive
lasso was fit using the parcor package in R whereas the
adaptive elastic net using an R function that calls the elas-
ticnet kindly provided to us by Zou and Zhang. Values for
each SNP marker were mean-centered except for RR-
BLUP. For the adaptive elastic net, all markers with zero
variance were excluded from analysis. Ridge regression
BLUP was fit as a mixed model and estimated by REML.
The fivefold CV external to glmnet used to select the opti-
mal a, given the optimal l, was also used to evaluate the
prediction accuracies of all the six models. This particular

CV entailed splitting the observations for each full-sib
family into five parts, four of which were concatenated
and used as the training set for estimating the regression
coefficients for the markers, while the fifth served as a vali-
dation set. Pearson correlations between the simulated and
predicted GEBVs were computed and used to evaluate
predictive accuracy. Predictive accuracy was also assessed
as the Pearson correlation between predicted GEBVs and
(1) the true genomic value (TGV), (2) the true breeding
value (TBV), as well as using the root mean squared error.

Results and discussion
Predictive accuracy, expressed as the Pearson correlation
between predicted GEBVs and the true genomic values
(TGV) and the root mean squared error derived from
TGV, ranked the elastic net, lasso and adaptive lasso
above the adaptive elastic net, ridge regression and ridge
regression BLUP (Table 1). A similar ranking was also
produced based on the true breeding values (TBV) but
with two notable differences. First, accuracy based on TBV
was lower than that derived from TGV for all models, par-
ticularly for the adaptive elastic net, which ranked lower
than the two ridge regression models. Second, root mean
squared error was distinctly higher with respect to TBV
than to TGV. The reduced accuracy reflects the fact that
our models were trained to predict TGV and not TBV
because the training data set consisted of phenotypes of
the 2000 candidates and not phenotypes of their proge-
nies. However, in most genomic selection studies, predic-
tion accuracy is more often assessed relative to the true
breeding value rather than relative to the true genomic
value.
The fivefold CV also ranked the models similarly to the

correlations based on TGV and TBV. Based on CV, the
elastic net and lasso performed better than ridge regres-
sion, ridge regression BLUP and the adaptive extensions
of lasso and the elastic net. A previous study also found
that the elastic net often outperforms RR and the lasso in
terms of model selection consistency and prediction
accuracy [6]. Thus, even though it possesses the oracle
property and is robust to multicolinearity, and hence
would be expected to have high predictive accuracy, the
adaptive elastic net had lower accuracy than the other
lasso type models in this study. This may suggest that the
set of parameters selected for the elastic net were prob-
ably not optimal and hence the need for an efficient algo-
rithm for selecting the three parameters for the adaptive
elastic net simultaneously.
The RR and RR-BLUP penalties admit all markers into

the model, resulting in a very large number of non-zero
coefficients. The two ridge penalties shrink parameter esti-
mates and will perform well for many markers with small
effects but are less effective in forcing many predictors to
vanish, as was the case for the data set simulated for the
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2011 QTLMAS workshop, and cannot therefore produce
parsimonious and interpretable models with only the rele-
vant markers. All the models with the lasso penalty per-
form simultaneous automatic variable selection and
shrinkage. The elastic net penalty provides a compromise
between the lasso and ridge penalties and has the effect of
averaging markers that are highly correlated and then
entering the averaged marker into the model. Since they
are numerous, the non-zero coefficients for the ridge
regression are far smaller than the coefficients for the
other methods.
If the number of markers (p) is more than that of phe-

notypes (n), the lasso will select at most n markers before
it saturates, which may lower its predictive accuracy but
some extensions of the lasso, such as the Bayesian lasso,
alleviate this problem using marker-specific shrinkage
[15]. The lasso tends to select only one of a set of highly
correlated predictors and simply excludes all others in
the group and hence cannot select two identical predic-
tors as can the ENET [6]. However, both the lasso and
ENET may sometimes fail to select the true model, but
when the lasso can select the true model, the ENET also
can [6].
The six methods we considered are closely related to

many other regularized statistical learning procedures,
many of which are also promising for GS. Examples of
such models include boosted ridge regression [16], numer-
ous lasso variations such as group lasso [17,18], which
includes or excludes variables in groups, adaptive group
lasso [19], lasso penalized generalized linear models [12],
the Dantzig selector [20], a slightly modified version of the
lasso, generalized elastic net [21]; smoothly clipped abso-
lute deviation procedures that reduce bias and yield con-
tinuous solutions (SCAD) [14], reproducing kernel Hilbert
spaces regression [22] and support vector regression [23].
Moreover, replacing the l1-penalty with an lq-penalty (0 <q
<1) generalizes the lasso to bridge regression, which also
has sparse and robust variants able to efficiently perform
high-dimensional variable selection [24].

The presence of epistatic interactions, nonlinear
effects, or non-independent observations may lower the
performance of the regularized linear models. In such
cases, performance may be enhanced by using lasso type
models that allow for interactions between predictors
and correlated observations [8,25], nonparameteric or
semiparametric regularized regression models [26], or
other procedures able to efficiently handle large num-
bers of interactions, such as random forests, or boosted
regression trees [27].

Conclusions
All the six models are additive and performed well for
the simulated data set and may be expected to perform
similarly well for traits where additive effects predomi-
nate and epistasis is less relevant.
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selection operator; RR: Ridge Regression; SNP: Single Nucleotide
Polymorphisms; TBV: True Breeding Value; TGV: True Genomic Value.
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Table 1 Accuracy of predictions of the six models

Model Pearson correlation Root mean squared error

5-fold cross-validation TGV TBV TGV TBV

Mean Min Max

Elastic Net 0.5071 0.4486 0.5308 0.9233 0.8659 2.2276 3.4618

Lasso 0.5062 0.4466 0.5293 0.9240 0.8705 2.1642 3.5478

Adaptive Lasso 0.4951 0.4454 0.5152 0.9195 0.8759 2.0757 3.9911

RR 0.4717 0.4050 0.5037 0.8246 0.8213 2.9046 3.3767

RR-BLUP 0.4628 0.3905 0.4951 0.8455 0.8315 2.9894 3.6487

Adaptive Elastic Net 0.4285 0.4013 0.4667 0.8968 0.8112 2.3404 4.2325

Pearson correlation between GEBVs and (1) the observed values from the 5-fold cross-validation, (2) the true expectation of the phenotypes of the 1000 non-
phenotyped candidates (TGV), (3) the true expectation of the phenotypes of the progenies of the 1000 non-phenotyped candidates (TBV); and the root mean
squared error with respect to TGV and TBV.
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