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MOLECULAR
NEURODEGENERATION

Spinal cord trauma and the molecular point of

no return

Ping K Yip and Andrea Malaspina’

Abstract

A mechanical trauma to the spinal cord can be followed by the development of irreversible and progressive
neurodegeneration, as opposed to a temporary or partially reversible neurological damage. An increasing body of
experimental and clinical evidence from humans and animal models indicates that spinal cord injury may set in
motion the development of disabling and at times fatal neuromuscular disorders, whose occurrence is not
normally associated with any major environmental event. This outcome appears to be dependent on the co-
occurrence of a particular form of mechanical stress and of a genetically-determined vulnerability. This increased
vulnerability to spinal cord injury may depend on a change of the nature and of the timing of activation of a
number of neuroprotective and neurodestructive molecular signals in the injured cord. Among the main
determinants, we could mention an altered homeostasis of lipids and neurofilaments, an earlier inflammatory
response and the failure of the damaged tissue to rein in oxidative damage and apoptotic cell death. These
changes could force injured tissue beyond a point of no return and precipitate an irreversible neurodegenerative
process. A better knowledge of the molecular signals activated in a state of increased vulnerability to trauma can
inform future treatment strategies and the prediction of the neurological outcome after spinal cord injury.

Introduction

Acute or chronic compressive radiculopathies and/or mye-
lopathies are associated with a wide range of transitory or
permanent neurological disturbances [1,2]. Less commonly,
as a result of these traumatic events, the development and
progression of pain, loss of power and muscle wasting can
be observed over time. These neurological features are
more typical of amyotrophic neuralgias, neuromuscular
disorders better known as idiopathic or genetically-induced
conditions [3]. Different modalities of neurotraumas have
also been linked to the development of either localised
muscle wasting (focal amyotrophy), or to the development
of a more widespread form of muscle weakness and wast-
ing which become clinically indistinguishable from motor
neuron disease (MND), an irreversible and generally fatal
neurodegenerative disorder associated with a survival of
approximately 3 to 5 years from disease onset and to the
loss of motor cells in the cortex, brain stem and spinal
cord [4]. Case studies have indicated how amyotrophic lat-
eral sclerosis (ALS), a clinical form of MND, may have a
higher occurrence in individuals exposed to hard physical
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contact, including mechanical traumas to the head, neck or
back [5-18]. The potential role of trauma in engendering
ALS also emerges in association with other stressors, like
bone fractures and surgical intervention [19,20].

From a molecular perspective, the clinical observations
reported above suggest that a neurotrauma may mobilise
molecular processes leading to a progressive neurodegen-
erative disorder normally occurring as an idiopathic or
genetically-induced condition. The development of a pro-
gressive neurodegenerative disorder following spinal cord
injury (SCI) may be facilitated by a genetic trait which
renders certain individuals more vulnerable to the pre-
existence of a sub-clinical degenerative process in the
affected tissue, which is more likely to be present with
aging and to be made worse and/or precipitated by neuro-
trauma. The recognition of molecular factors determining
the hitherto unforeseen consequences of neurotrauma con-
stitute an important step towards the understanding of
neurodegeneration and towards the development of novel
treatment strategies and biomarkers. This paper will review
the molecular response to spinal trauma and its temporal
unravelling, as well as those states known to modulate
spinal cord tissue vulnerability to trauma.
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Spinal cord injury: early and late injury genes and tissue
regeneration

Different molecules and their spatio-temporal activation
in the injured tissue may have diverging effects on total
cell loss and on tissue regeneration. As such, they deter-
mine the outcome of SCI. Mechanical injuries cause
necrosis of those neurons directly affected by the force of
impact (primary injury phase). A secondary injury phase
is characterised by a protracted neuronal loss driven by
changes in oxygen, glucose, neuroactive lipids and eicosa-
noids homeostasis, by the release of free radicals and bio-
genic amines, endogenous opioids and excitatory amino
acids [21-27]. The use of large-scale spinal cord tran-
scriptional analysis in well-established animal models of
SCI has shown the rapid differential regulation of a num-
ber of genes, here referred to as early injury genes (within
a few hours from injury), and the slower response of
others termed as late injury genes (more than 48 hours
from injury). Expression profiling of injured spinal cord
tissue is a powerful method for unearthing the molecular
consequences of trauma, particularly if gene expression
changes are considered in light of the associated func-
tional and histopathological alterations. In Figures 1 and
2 we have reported the main molecular responses which
have been described in the rat spinal cord following
injury, according to recent pathway analyses of gene
expression studies and to other relevant transcriptomic
studies of SCI [28,29]. Within each molecular pathway,
we have selected some of the most representative differ-
entially regulated genes with a very early and a late acti-
vation (genes activated in the first few hours from injury
and after 48 hours respectively). The figures display the
levels of transcriptional regulation and the position of the
reported gene expression change with respect to the epi-
centre of injury, along with the functional role and the
neuropathological changes which have been associated
with the differential regulation of each gene.

A number of molecular pathways become activated in
an early post-SCI phase (less than 48 hours from SCI;
Figure 1) [29-39]. This early response, mostly reported
at the epicentre of injury, encompasses biological signals
and early injury genes which have opposite effects on
cell survival. Whilst apoptotic and pro-inflammatory
responses are likely to be detrimental to cell survival
other more protracted growth signals facilitate tissue
repair. Among the latter, metallothioneins promote
angiogenesis and neuronal re-growth [30,37,38]. Cytos-
keletal proteins impact variably on tissue survival. Loss
of neurofilaments like the microtubule-associated pro-
teins (Map2) for example, prevents neurotoxic protein
aggregates disrupting axonal transport, whilst vimentin
up-regulation reduces the protracted release from
macrophages of toxic reactive oxygen species (ROS)
[37,38,40,41]. A reduction in Ca2+ ATPase activity in
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the injured tissue causes a neurotoxic increase in intra-
cellular calcium and up-regulation of genes modulating
cell cycle mostly resulting in neuronal death. In contrast,
down-regulation of genes involved in neurotransmission
via regulation of sodium and potassium channels as well
as AMPA receptors exert an anti-apoptotic effect
[30-32,39,42-48]. The change of neurons and axons
membrane excitability has been associated to neuronal
degeneration in animal models and in neurophysiologi-
cal studies conducted on patients with ALS [49,50]. The
predominant down-regulation of these signals may thus
be seen to play a part in the cell-survival drive.

Delayed molecular responses, mostly identified distally
from the injury epicentre, involve the differential regula-
tion of late injury genes which modulate apoptosis, growth,
neurotransmission, the homeostasis of the extracellular
matrix and of cell metabolism (Figure 2) [28,31,34]. Some
of these late responses can have an effect on lipid metabo-
lism. For example, the differential regulation of glycerol-3-
phosphate dehydrogenase (GpdI), a mitochondrial enzyme
bridging carbohydrate and lipid metabolism, reduces ROS
generation whilst the dioxygenase 12-lipoxygenase
(Alox12) may work along the same lines, incorporating
oxygen into specific positions of polyunsaturated fatty
acids [31,51,52]. The down-regulation of anti-apoptotic
genes such as cat, Bagl and Bcl2 can exert an increase in
neuronal cell death [53]. As already mentioned, the late
activation of key modulators of membrane excitability also
reported to become over-expressed in ALS, such as the
hyperpolarization-activated cyclic nucleotide-gated cation
channel (Hcn), is likely to impair the functional recovery
by enhancement of axonal excitability [54] Similarly to
growth factors, heat shock proteins exert a neurorestora-
tive effect for neurons, glial and muscle cells, both as a
rapid and as a delayed response [32,35,37-39,55].

Increased vulnerability to spinal trauma: what does it
hide?

The degree of tissue destruction and the residual neuro-
logical disability following SCI depend primarily on the
nature of the mechanical stress (e.g. penetrating injuries
versus compressive and/or traction type of impact)
[29-39], on the different spatial distributions and tem-
poral activations that different neurorestorative and neu-
rodestructive molecular signals may have, in line with
those reported in animal models of SCI (Figures 1 and 2).
Certain states modify the response to SCI, including a)
the pre-existence of a subclinical neurodegenerative pro-
cess, a situation that becomes more likely with aging, and
b) the presence of a specific genetic trait which increases
the vulnerability to trauma.

Neurodegeneration and the effects of trauma

Acute and chronic traumatic encephalopathies in colli-
sion sports have been linked to the deposition of TAR
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Figure 1 Differentially regulated genes that become activated or inhibited within the first few hours from injury, reported as early
injury genes. Examples of molecular responses (pathways) identified in normal rodent spinal cord after mechanical injury, according to the
pathway analysis of recent transcriptomic studies of SCI [28,29]. We report information regarding the functional and neuropathological effects
that each reported gene may have, based on an overview of published data. The nature of the differential regulation and the location of the
transcriptional change with regard to the epicenter of injury are also reported. Blue color indicates an increase in gene expression. Red color
indicates a decrease in gene expression. References: 1; Aimone et al., ‘04, 2; Bareyre et al,, ‘02, 3; Carmel et al, ‘01, 4; Di Giovanni et al, ‘03, 5;
Malaspina et al, ‘08, 6; Nesic et al, '02; 7; Pan et al, ‘02; 8; Resnick et al,, ‘04; 9; Schmitt et al, ‘06, 10; Song et al, ‘01.
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Figure 2 Differentially regulated genes that appear to have a delayed response which become activated or inhibited more than 2
days from the trauma, reported as late injury genes. Examples of molecular responses (pathways) identified in normal rodent spinal cord
after mechanical injury, according to the pathway analysis of recent transcriptomic studies of SCI [28,29]. We report information regarding the
functional and neuropathological effects that each reported gene may have, based on an overview of published data. The nature of the
differential regulation and the location of the transcriptional change with regard to the epicenter of injury are also reported. Blue color indicates
an increase in gene expression. Red color indicates a decrease in gene expression. References: 2; Bareyre et al, ‘02, 11; Fan et al, ‘01, 12; Jokic
et al, 10.

DNA-binding protein 43 (Tardbp) in the brain, a hall-
mark of ALS pathology, in individuals who will later be
affected by a neuromuscular disorder indistinguishable
from ALS [13]. Hence, neurotrauma could initiate an
ALS-like neuropathology or worsen a pre-existing sub-
clinical ALS state. This concept has been investigated
using pre-symptomatic rodent models of ALS, engi-
neered using the mutant human superoxide dismutase 1
(SOD1) gene which is found in up to 10% of familial
cases of ALS [28,56,57]. Both pre-symptomatic SODI
mutated rats and mice showed a poor post-injury loco-
motor recovery, compared to wild type littermates, fol-
lowing mild compression SCI and sciatic nerve injury
respectively [28,56]. In the post-injury phase, the trans-
genic rat cord displayed a more robust activation of sev-
eral pro-apoptotic genes, cytochrome-C release, a high
level of expression of neurofilaments and an early acti-
vation of a wide range of inflammatory signals [28]. It
has also been possible to identify a significant activation
of molecules involved in lipid metabolism, in isoprenoid
biosynthesis and in the proteasome ubiquination system,
along with a late up-regulation of lysosomal cysteine

proteases and of genes involved in neurotransmission. A
more subdued surge of growth-promoting signals at the
epicenter of injury is another characteristic of the
injured transgenic SODI spinal cord [28,58-61]. Whilst
the post-injury transgenic spinal cord displays an altered
transcriptional profile compared to wild type tissue,
there are no overt histopathological differences between
these tissues with regard to the extension of myelin
destruction, motor cell loss and the inflammatory infil-
trates caudal to the epicenter of injury [28]. This obser-
vation illustrates how SCI in pre-symptomatic animals
carrying a SODI gene mutation may not necessarily
cause more structural changes compared to wild type
animals, although the trauma may be disruptive enough
at a molecular level to instigate functional disruption.
Aging and SCI

Elderly patients have a 5 to 8-fold higher mortality rate fol-
lowing SCI compared to younger patients [62-66]. The vul-
nerability to SCI in the elderly may be linked to a process
of senescence of the brain, involving beta amyloid deposi-
tion in neurons and microglia [67-69]. Aging is also one of
the most important risk factors for the development of
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Table 1 Gene modifiers of the response to spinal cord injury and/or to neurotrauma.

Gene Experimental paradigm Gene function Neuropathology References
variant
ApoE Human and ApoE -/- animal Lipid transport Neurofibrillary tangles  Jordan et al, 1997
models Saunders et al,
1993
Setzer et al, 2008
ABCD1 Human carriers Transport and metabolise very long-chain fatty acids Axonal demylination Berger & Gartner,
2006
Fatemi et al, 2003
Raymond et al,
2010
Bach1 Bach -/- mice Pro-oxidant; (transcriptional repressor of heme Cellular death Kanno et al, 2009
oxygenase-1) Yamada et al.,
2008
SOD1 Animal models Oxidative stress, apoptosis, inflammation, Neuronal death, Reactive Jokic et al, 2010
neurofilaments, lipid metabolism astrogliosis Sharp et al, 2005
TDP-43  Human trauma and Nerve injury DNA, RNA and protein binding Neuronal death Mckee et al, 2010
animal models Moisse et al.,, 2009
SEPT9 Humans Cytoskeleton, cell division, tumorigenesis Axonal degeneration Kuhlenbaumer et
al, 2005
MHC2TA Root avulsion animal models Major MHC class I Neuronal death Harnesk et al,,
2008
Piehl et al, 2007
Beta App Human trauma and injury animal Protein cleavage, oxidative stress Neurofibrillary tangles  Li et al,, 1995
models Uryu et al, 2002
Uryu et al, 2007
FGF Dominant negative animals Angiogenesis, wound healing, embryonic Cellular death Eckenstein et al,
development 2006
HSP Animal models Molecular chaperones, oxidative stress, apoptosis Neuronal death Reddy et al, 2008

The table details for each gene, the experimental context where the effect of the gene was tested and the molecular pathways through to be implicated in the

specific gene-driven molecular response to trauma.

most neurodegenerative disorders, which manifest clinically
after the progressive accumulation of microscopic tissue
alterations in the CNS has overcome a certain threshold.
Acute or chronic traumatisms may accelerate this process
of abnormal protein deposition, leading to the premature
surfacing of neurodegenerative conditions. Trauma to the
neuroaxis can also enhance the level of protein aggregation,
a process that causes the appearance of the histological
hallmarks of idiopathic and genetically induced neurode-
generative disorders [40,70,71]. The spectrum of protein
aggregates observed in neurodegenerative disorders whose
expression could be conditioned by trauma includes beta
amyloid and phosphorylated tau proteins normally
observed within neurofibrillary tangles in Alzheimer’s dis-
ease [72], alpha-synuclein within Lewy bodies found in Par-
kinson’s disease [73], neurofilaments in bunina and
spheroids bodies typical of ALS neuropathology and prion
protein in Prion disease [71]. Trauma may further impair
axonal transport and the functioning of the proteasome
system, two molecular functions at the origin of the forma-
tion of most toxic protein aggregates.

Genes modifying the molecular response to trauma

Recent experimental data show how a number of genes
may act as modifiers of animals and humans response to

SCI, thus collectively or independently increasing one’s
susceptibility to injury (Table 1 and Figure 3). Allelic var-
iants of these genes or mutations causing loss or gain of
function condition the unraveling of various molecular
cascades which are key components of the response to
injury (Figure 3). An altered protein cleavage, one of the
main driving forces behind protein aggregation in neuro-
degenerative disorders, can be further enhanced by
trauma in the presence of specific Apolipoprotein E
(Apoe) and beta amyloid precursor protein (App) var-
iants. The ApoE#4 allele has been unanimously linked to
an increased risk of late onset Alzheimer’s disease and to
the development of other neurodegenerative disorders
with professional boxing [74]. Loss of Apoe reduces
recovery following neurotrauma or ischemic insults, as
shown in Apoe-deficient mice whereas carriers of the
ApoE4 allele have also a 4 to 6-fold increased risk of
developing cervical spondylotic myelopathy (CSM) in a
situation of chronic spinal cord compression [2,75]. Apoe
fragments produced by the trauma-induced proteolytic
cleavage of this protein may disrupt the cell’s cytoskele-
ton by phosphorylation of tau and promote neurofibril-
lary tangles which ultimately cause neuronal death
[76,77]. Hence the detrimental effect of the ApoE4 allele
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Figure 3 Schematic diagram showing the cascade of molecular changes initiated by an injury to the spinal cord, which leads to
neuronal dysfunction and death. Those genes thought to be able to modify the effect of trauma (Table 1) have the potential to alter each of
the reported molecular pathways, by inhibition (red line) or by activation of a specific response (green arrow), thus changing the overall
molecular profile in the injured tissue and affecting the rate of neuronal death.
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in neurodegeneration may be partly due to its higher sus-
ceptibility to proteolytic cleavage compared to E2 or E3
isoforms [78]. Similarly, a derangement of proteolysis
may explain the increased level of deposition of beta
amyloid following trauma, as demonstrated neuropatho-
logically in humans and transgenic mice (Tg2576)
expressing mutant human beta amyloid precursor pro-
tein [52,72,79].

Change in lipid metabolism and in the homeostasis of
lipid mediators is another route through which genes
are thought to modulate the nervous tissue susceptibility
to trauma, similarly to what was previously discussed for
the SODI gene. For example, beta amyloid is known to
modulate lipid peroxidation whilst Apoe is a lipid-bind-
ing protein that is important in the redistribution of
lipids among cells in the CNS and in cholesterol trans-
port [72,74,78-80]. Mutations of the ATP-binding cas-
sette transporter subfamily D1 (ABCDI1) gene, which
encode for defective protein transporters in the peroxi-
somal membrane, affect the homeostasis of saturated

and unbranched very long-chain fatty acids. Traumas
can precipitate X-linked adrenoleukodystrophy (X-ALD)
in young males or a milder variant of this condition
named adrenomyeloneuropathy (AMN) in ABCDI
mutation carriers, a slowly progressive axonopathy in
the spinal cord tracts and in the peripheral nerves
[81-84]. In some cases, neuroimaging has shown how
the pathological expression of the disease following
trauma remains confined to the CNS and to the spinal
cord areas more directly affected by the mechanical
injury [83,85-89].

Several of the genes mentioned above are likely to mod-
ulate tissue vulnerability to mechanical trauma through
oxidative stress, an important determinant of SCI-induced
secondary injury neuronal loss. X-ALD post mortem
brains [90] and mouse model of X-ALD [91] show signifi-
cant levels of oxidative damage. Mice deficient in Bachl, a
transcriptional repressor of the heme oxygenase-1
(Hmox1) gene which has a cytoprotective and anti-oxidant
effect, showed a better profile of functional recovery
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following moderate SCI and a significant smaller area of
injury [92,93]. ABCD1 can also give rise to inflammatory-
related demyelination [81]. Trauma-induced lipid peroxi-
dation in mutant App animals is also pointing towards
oxidative stress as well as a deranged lipid metabolism as
important factors in the determination of susceptibility to
trauma [79].

Variants of genes exerting control over the inflammatory
response, like polymorphisms of the Ciita (alternative
symbol: Mhc2ta) have been reported to be associated with
both lower expression of MHC class II-associated genes
and with an increased neurodestruction in animal models
of root avulsion injury [94,95]. ApoE4 increases the inflam-
matory tone following neurotrauma with a significant
surge of 116, Tnf and nitric oxide in the injured tissue [96].
Heat shock proteins (HSPs) are intracellular stress-respon-
sive molecular chaperons, which participate in the second-
ary injury phase by scavenging damaged proteins. Whilst
universally known to provide an effective clearance of
abnormal proteins, their recognized motor-cell sparing
effect in SCI effect is linked to their ability to prevent
chronic inflammation, once these proteins are released by
acutely stressed microglial, endothelial, and ependymal
cells, [97].

The silencing or ablation in dominant-negative animals
of the fibroblast growth factor receptor (Fgfr), which is
known to inhibit fibroblast growth factor (Fgf) signaling,
does not appear to cause any overt neurological disorder.
However, this genetic manipulation seems to induce a
higher level of neuronal vulnerability to a stab injury to
the spinal cord in mice [98]. Endogenous Fgf released by
astrocytes and neurons after mechanical injury is thought
to counteract the excitotoxic or ischemic damage by acti-
vating anti-apoptotic signals in stressed neurons [98].

Mannose binding lectin (Mbl1/2)-deficient mice have
been described to show exacerbated CA3 cell death and
remarkable behavioral changes after traumatic brain
injury, compared to wild type mice [99]. Mannose bind-
ing lectin is a glycoprotein of the collectin family that
plays an important role in the host’s initial response to
infection by initiating complement activation and pro-
moting phagocytosis by leukocytes [100]. The septin-9
(SEPT9) gene has been associated to an increased sus-
ceptibility to develop a form of brachial plexus pathology
as a result of different stressors including immunizations
and traumas [3]. SEPT9 belongs to the septin family of
proteins, GTPases active on cell cycle and on cytoskeletal
components, including microtubules and actin [3].

Conclusions: SCI and the molecular point of no
return

The neurological impairment induced by SCI may gra-
dually subside or, despite comprehensive rehabilitative
efforts over a period of time, turn into an irreversible
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functional deficits. More atypical post-injury clinical pic-
tures include localized, non-progressive as well as dif-
fused and evolving forms of amyotrophy, neurological
pictures very close to what observed in MND [101]. In
some other cases, protracted and repetitive mechanical
stress like the strenuous use of a limb due to particular
occupational exposures or professional sports have been
linked to the development of recurrent painful brachial
plexus neuropathies, with features of muscle weakness
and atrophy as well as sensory loss, similarly to what
seen in hereditary neuralgic amyotrophies [3]. Whether
permanent or progressive, the neurological conse-
quences of trauma reflect a complex interplay of genetic
and environmental factors, which condition an indivi-
dual’s susceptibility to withstand injury. This paper has
embraced the body of experimental data describing
genes which may potentially modulate susceptibility to
trauma, in order to dissect those molecular events that
may be responsible of the establishment of irreversible
neurodegeneration in the post-injury phase, here defined
as the “point of no return”.

We postulate that the response of each individual to
injury may operate according to a “molecular threshold”,
beyond which the response to a particular type of SCI
leads to relentless tissue destruction and functional loss.
The relatively few studies that have developed an experi-
mental strategy to explore this concept have shown that
the genetic determinants likely to be involved in this “fatal
switch” modulate inflammation and oxidative stress, parti-
cipate in lipid metabolism, protein cleavage and in neurofi-
laments homeostasis, whilst altering the balance between
apoptotic and growth signals (Figure 3). It is likely that the
contribute of the reported gene modifiers through the
molecular pathways activated in injured tissue and their
effect in defining the final outcome of SCI, rely on an
altered profile of expression of most of the components of
these molecular cascades and also to the change of their
spatio-temporal regulation with regard to the time and
site of injury. For example, a SODI gene mutation in a
pre-symptomatic rat exposed to compression SCI changes
significantly the unravelling of molecular events in the first
week following the trauma, resulting in a more robust
inflammatory response occurring sooner after the impact.
The injured tissue neurofilaments heavy chain expression
does not decline significantly and the activation of genes
involved in lipid metabolism does take place sooner and in
a much bigger scale, compared to wild type littermates
under the same experimental conditions [28]. The first
two events mentioned above are likely to have a detrimen-
tal effect through the increased inflammatory and apopto-
sis-mediated cell destruction and through a surge of
cytoskeletal protein aggregation undermining axonal
transport, whereas the third event would likely promote
cell survival. The post-injury change of homeostasis of
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lipid and inflammatory mediators, as well as of neurofila-
ments are examples of complex molecular signals involved
in the modulation of irreversible neurodegeneration in dif-
ferent pathological contexts, particularly in ALS [102,103].
The up-regulation of lipids in the post-injury phase is in
line with what has been reported in ALS patients and in
animal models of ALS, where an early derangement of
mediators of lipid homeostasis is a distinctive feature of
the pathology and may be part of a rescue mechanism of
degenerating neurons [102].

The modality of mechanical force applied to the spinal
cord and the level of tissue penetration account also for
the different post-injury behaviour in the same SOD1
gene mutated rat model. Compression and stabbing
spinal cord injuries on the pre-symptomatic G93A-SOD1
rat model of ALS, for example, evoke completely differ-
ent tissue responses at both molecular and cellular level
[28,57]. Surviving motor neurons in the G93A-SOD1
rodents subjected to compression SCI undergo signifi-
cant atrophy when compared to wild type littermates, a
feature not seen using penetrating injuries in the same
animal model [28,57].

Both in animal models of most neurodegenerative disor-
ders and in real life, neurotrauma may precipitate the
pathological process which is already altering the fine
structure and the function of a macroscopically intact tis-
sue. The injury may simply accelerate the course of neuro-
degeneration, which would have otherwise followed a
different time line. Aging is clearly an important factor in
this interaction, as it is an important risk factor for the
development of neurodegenerative disorders and of the
subtle molecular changes that pre-date the main clinical
manifestations of most neurological conditions.

Understanding the molecular framework of the
response to SCI in relationship to aging and to the pre-
sence of a potential underlying genetic vulnerability is an
essential precondition for the development of disease-
modifying treatments, of prognostic biomarkers and to
monitor the response to a targeted and timely treatment
strategy. A better knowledge of the molecular framework
which conditions the outcome from neurotrauma is also
an ideal ground for a better understanding of the wider
concept of both idiopathic and genetically-induced
neurodegeneration.

List of abbreviations

ALS: Amyotrophic lateral sclerosis; ALD: Adrenoleukodystrophy; Alox12: 12-
Lipoxygenase; AMN: Adrenomyeloneuropathy; Apoe: Apolipoprotein; Apo£4:
Apolipoprotein E4 allele; App: Amyloid beta (A4) precursor protein; Atpla3:
ATPase, Na+/K+ transporting, alpha 3 polypeptide; Atp2al: ATPase, Ca++
transporting, cardiac muscle, fast twitch 1; Atp2b2: ATPase, Ca++
transporting, plasma membrane 2; Bad: Bcl2 associated agonist of cell death;
Bach1: BTB and CNC homology 1, basic leucine zipper transcription factor 1;
Bag1: Bcl2-associated athanogene; Bcl2: B-cell CLL/lymphoma 2; Bdnf. Brain-
derived neurotrophic factor; Bmp2: Bone morphogenetic protein 2; Bmpria:

Page 8 of 10

Bone morphogenetic protein receptor, type IA; Cat: Catalase; Ccnd: cyclin
D1; Ciita: Class I, major histocompatibility complex, transactivator; CSM:
Cervical spondylotic myelopathy; Dcn: Decorin; fgf: Fibroblast growth factor;
Fgfr1: Fibroblast growth factor receptor 1; GABA: gamma-aminobutyric acid;
Gabbri: GABA B receptor; Gabra5: GABA A receptor, alpha 5; Gabrb1: GABA A
receptor, beta 1 Gabbr2: GABA B receptor 2; Gadd45a Growth arrest and
DNA-damage-inducible gene 45a; Gpd1: Glycerol-3-phosphate
dehydrogenase 1; Gria3: ionotropic glutamate receptor 3; Grm3:
Metabotropic glutamate receptor 3; Hcn2: Hyperpolarization activated cyclic
nucleotide-gated potassium channel 2; Hmox1: Heme oxygenase (decycling)
1, HSPs: Heat shock proteins; Hspb1: Heat shock 27kDa protein 1; Hspa4:
Heat shock protein 70KDa protein 4; Igf1: Insulin-like growth factor 1; //1b:
Interleukin 1 beta; /l6: Interleukin 6; Kcncl: Potassium voltage gated channel,
Shaw-related subfamily, member 1; Kcnh2: Potassium voltage-gated channel,
subfamily H (eag-related), member 2; Kcnk1: Potassium channel, subfamily K,
member 1; Map2: Microtubule-associated protein 2; Mbl1/2: Mannose-
binding lectin (protein A and C) 1 and 2; MND: Motor neurons disease;
MMP: Matrix metalloproteinase; Mt1a: Metallothionein 1a; Mt2:
Metallothionein II; Myc: Myelocytomatosis oncogene; Nefl: Neurofilament
light polypeptide; Ngfr. Low-affinity nerve growth factor; Ntrk2; Neurotrophic
tyrosine kinase receptor type 2; Pcna: Proliferating cell nuclear antigen; ROS:
Reactive oxygen species; SEPT9; Septin 9; Scnia: sodium channel, voltage-
gated, type |, alpha; Scn8a: odium channel, voltage gated, type VIII, alpha
subunit; Slcéal: solute carrier family 6 (neurotransmitter transporter, GABA),
member 1; SODT: Superoxide dismutase 1; Tardbp: TAR DNA binding protein;
Tnf. Tumor necrosis factor; Vim: Vimentin.

Acknowledgements

We are grateful to The Royal London Hospital Charitable Foundation and to
the Motor Neuron Disease Association UK for its financial support to our
research projects on ALS.

Authors’ contributions
PKY & AM: Equal contribution to the writing of this manuscript and approval
of the final submitted text.

Competing interests
The authors declare that they have no competing interests.

Received: 17 August 2011 Accepted: 8 February 2012
Published: 8 February 2012

References

1. Ghatak NR, Campbell WW, Lippman RH, Hadfield MG: Anterior horn
changes of motor neuron disease associated with demyelinating
radiculopathy. J Neuropathol Exp Neurol 1986, 45:385-395.

2. Setzer M, Hermann E, Seifert V, Marquardt G: Apolipoprotein E gene
polymorphism and the risk of cervical myelopathy in patients with
chronic spinal cord compression. Spine (Phila Pa 1976) 2008, 33:497-502.

3. Kuhlenbaumer G, Hannibal MC, Nelis E, Schirmacher A, Verpoorten N,
Meuleman J, Watts GD, De VE, Young P, Stogbauer F, et al: Mutations in
SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet 2005,
37:1044-1046.

4. Leigh PN, Abrahams S, Al-Chalabi A, Ampong MA, Goldstein LH, Johnson J,
Lyall R, Moxham J, Mustfa N, Rio A, et al: The management of motor
neurone disease. J Neurol Neurosurg Psychiatry 2003, 74(Suppl 4):iv32-iv47.

5. Abel EL: Football increases the risk for Lou Gehrig's disease, amyotrophic
lateral sclerosis. Percept Mot Skills 2007, 104:1251-1254.

6. Binazzi A, Belli S, Uccelli R, Desiato MT, Talamanca IF, Antonini G, Corsi FM,
Scoppetta C, Inghilleri M, Pontieri FE, et al: An exploratory case-control
study on spinal and bulbar forms of amyotrophic lateral sclerosis in the
province of Rome. Amyotroph Lateral Scler 2009, 10:361-369.

Bracco L, Antuono P, Amaducci L: Study of epidemiological and
etiological factors of amyotrophic lateral sclerosis in the province of
Florence, Italy. Acta Neurol Scand 1979, 60:112-124.

8. Chen H, Richard M, Sandler DP, Umbach DM, Kamel F: Head injury and
amyotrophic lateral sclerosis. Am J Epidemiol 2007, 166:810-816.

Chio A, Benzi G, Dossena M, Mutani R, Mora G: Severely increased risk of
amyotrophic lateral sclerosis among lItalian professional football players.
Brain 2005, 128:472-476.


http://www.ncbi.nlm.nih.gov/pubmed/3014067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3014067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3014067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16186812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16186812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14645465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17879657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17879657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19922125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19922125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19922125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/495044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/495044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/495044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17641152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17641152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15634730?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15634730?dopt=Abstract

Yip and Malaspina Molecular Neurodegeneration 2012, 7:6
http://www.molecularneurodegeneration.com/content/7/1/6

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

Chio A, Calvo A, Dossena M, Ghiglione P, Mutani R, Mora G: ALS in Italian
professional soccer players: the risk is still present and could be soccer-
specific. Amyotroph Lateral Scler 2009, 10:205-209.

Kondo K, Tsubaki T: Case-control studies of motor neuron disease:
association with mechanical injuries. Arch Neurol 1981, 38:220-226.
Matser JT, Kessels AG, Lezak MD, Troost J: A dose-response relation of
headers and concussions with cognitive impairment in professional
soccer players. J Clin Exp Neuropsychol 2001, 23:770-774.

McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, Perl DP,
Hedley-Whyte ET, Price B, Sullivan C, et al: TDP-43 proteinopathy and
motor neuron disease in chronic traumatic encephalopathy. J
Neuropathol Exp Neurol 2010, 69:918-929.

Riggs JE: Antecedent trauma and amyotrophic lateral sclerosis in young
adult men. Mil Med 1993, 158:55-57.

Riggs JE: The latency between traumatic axonal injury and the onset of
amyotrophic lateral sclerosis in young adult men. Mil Med 2001,
166:731-732.

Schmidt S, Kwee LC, Allen KD, Oddone EZ: Association of ALS with head
injury, cigarette smoking and APOE genotypes. J Neurol Sci 2010,
291:22-29.

Strickland D, Smith SA, Dolliff G, Goldman L, Roelofs RI: Physical activity,
trauma, and ALS: a case-control study. Acta Neurol Scand 1996, 94:45-50.
Wicks P, Ganesalingham J, Collin C, Prevett M, Leigh NP, Al-Chalabi A: Three
soccer playing friends with simultaneous amyotrophic lateral sclerosis.
Amyotroph Lateral Scler 2007, 8:177-179.

Kihira T, Kanno S, Miwa H, Okamoto K, Kondo T: The role of exogenous
risk factors in amyotrophic lateral sclerosis in Wakayama, Japan.
Amyotroph Lateral Scler 2007, 8:150-156.

Yamada M, Furukawa Y, Hirohata M: Amyotrophic lateral sclerosis:
frequent complications by cervical spondylosis. J Orthop Sci 2003,
8:878-881.

Bareyre FM, Schwab ME: Inflammation, degeneration and regeneration in
the injured spinal cord: insights from DNA microarrays. Trends Neurosci
2003, 26:555-563.

DeWitt DS, Prough DS, Taylor CL, Whitley JM: Reduced cerebral blood
flow, oxygen delivery, and electroencephalographic activity after
traumatic brain injury and mild hemorrhage in cats. J Neurosurg 1992,
76:812-821.

Kruman II, Mattson MP: Pivotal role of mitochondrial calcium uptake in
neural cell apoptosis and necrosis. J Neurochem 1999, 72:529-540.
Pedersen MO, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L,
Penkowa M: Metallothionein-I+Il in neuroprotection. Biofactors 2009,
35:315-325.

Takahashi H, Manaka S, Sano K: Changes in extracellular potassium
concentration in cortex and brain stem during the acute phase of
experimental closed head injury. J Neurosurg 1981, 55:708-717.
Yamakami |, Mclntosh TK: Effects of traumatic brain injury on regional
cerebral blood flow in rats as measured with radiolabeled microspheres.
J Cereb Blood Flow Metab 1989, 9:117-124.

Zemper ED: Analysis of cerebral concussion frequency with the most
commonly used models of football helmets. J Athl Train 1994, 29:44-50.
Jokic N, Yip PK, Michael-Titus A, Priestley JV, Malaspina A: The human
G93A-SOD1 mutation in a pre-symptomatic rat model of amyotrophic
lateral sclerosis increases the vulnerability to a mild spinal cord
compression. BMC Genomics 2010, 11:633.

Malaspina A, Jokic N, Huang WL, Priestley JV: Comparative analysis of the
time-dependent functional and molecular changes in spinal cord
degeneration induced by the G93A SOD1 gene mutation and by
mechanical compression. BMC Genomics 2008, 9:500.

Aimone JB, Leasure JL, Perreau VM, Thallmair M: Spatial and temporal
gene expression profiling of the contused rat spinal cord. Exp Neurol
2004, 189:204-221.

Bareyre FM, Haudenschild B, Schwab ME: Long-lasting sprouting and gene
expression changes induced by the monoclonal antibody IN-1 in the
adult spinal cord. J Neurosci 2002, 22:7097-7110.

Carmel JB, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart RP:
Gene expression profiling of acute spinal cord injury reveals spreading
inflammatory signals and neuron loss. Physiol Genomics 2001, 7:201-213.
Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden Al:
Gene profiling in spinal cord injury shows role of cell cycle in neuronal
death. Ann Neurol 2003, 53:454-468.

34.

35.

36.

37.

38.

39.

40.

43.

44,

45,

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

Page 9 of 10

Fan M, Mi R, Yew DT, Chan WY: Analysis of gene expression following
sciatic nerve crush and spinal cord hemisection in the mouse by
microarray expression profiling. Cell Mol Neurobiol 2001, 21:497-508.
Nesic O, Svrakic NM, Xu GY, McAdoo D, Westlund KN, Hulsebosch CE, Ye Z,
Galante A, Soteropoulos P, Tolias P, et al: DNA microarray analysis of the
contused spinal cord: effect of NMDA receptor inhibition. J Neurosci Res
2002, 68:406-423.

Pan JZ, Ni L, Sodhi A, Aguanno A, Young W, Hart RP: Cytokine activity
contributes to induction of inflammatory cytokine mRNAs in spinal cord
following contusion. J Neurosci Res 2002, 68:315-322.

Resnick DK, Schmitt C, Miranpuri GS, Dhodda VK, Isaacson J, Vemuganti R:
Molecular evidence of repair and plasticity following spinal cord injury.
Neuroreport 2004, 15:837-839.

Schmitt C, Miranpuri GS, Dhodda VK, Isaacson J, Vemuganti R, Resnick DK:
Changes in spinal cord injury-induced gene expression in rat are strain-
dependent. Spine J 2006, 6:113-119.

Song G, Cechvala C, Resnick DK, Dempsey RJ, Rao VL: GeneChip analysis
after acute spinal cord injury in rat. J Neurochem 2001, 79:804-815.

Lin H, Schlaepfer WW: Role of neurofilament aggregation in motor
neuron disease. Ann Neurol 2006, 60:399-406.

Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM: Vimentin is secreted
by activated macrophages. Nat Cell Biol 2003, 5:59-63.

Lees GJ: Inhibition of sodium-potassium-ATPase: a potentially ubiquitous
mechanism contributing to central nervous system neuropathology.
Brain Res Brain Res Rev 1991, 16:283-300.

Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV: Blockade
of calcium-permeable AMPA receptors protects hippocampal neurons
against global ischemia-induced death. Proc Natl Acad Sci USA 2005,
102:12230-12235.

Palmer AM, Carter N: The role of sodium channels in disease. Drug News
Perspect 2001, 14:568-576.

Spillson AB, Russell JW: Metabotropic glutamate receptor regulation of
neuronal cell death. Exp Neurol 2003, 184(Suppl 1):597-105.

Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS,
Tian M, Dugan LL, Choi DW: Mediation of neuronal apoptosis by
enhancement of outward potassium current. Science 1997, 278:114-117.
Zeevalk GD, Nicklas WJ: Attenuation of excitotoxic cell swelling and GABA
release by the GABA transport inhibitor SKF 89976A. Mol Chem
Neuropathol 1996, 29:27-36.

Zeevalk GD, Nicklas WJ: Activity at the GABA transporter contributes to
acute cellular swelling produced by metabolic impairment in retina.
Vision Res 1997, 37:3463-3470.

Meehan CF, Moldovan M, Marklund SL, Graffmo KS, Nielsen JB, Hultborn H:
Intrinsic properties of lumbar motor neurones in the adult G127insTGGG
superoxide dismutase-1 mutant mouse in vivo: evidence for increased
persistent inward currents. Acta Physiol (Oxf) 2010, 200:361-376.

Shibuya K, Misawa S, Arai K, Nakata M, Kanai K, Yoshiyama Y, Ito K, Isose S,
Noto Y, Nasu S, et a: Markedly reduced axonal potassium channel
expression in human sporadic amyotrophic lateral sclerosis: An
immunohistochemical study. Exp Neurol 2011, 232:149-153.

Brand MD: The sites and topology of mitochondrial superoxide
production. Exp Gerontol 2010, 45:466-472.

Li Y, Maher P, Schubert D: A role for 12-lipoxygenase in nerve cell death
caused by glutathione depletion. Neuron 1997, 19:453-463.

Pedersen MO, Larsen A, Stoltenberg M, Penkowa M: Cell death in the
injured brain: roles of metallothioneins. Prog Histochem Cytochem 2009,
44:1-27.

Chu HY, Zhen X: Hyperpolarization-activated, cyclic nucleotide-gated
(HCN) channels in the regulation of midbrain dopamine systems. Acta
Pharmacol Sin 2010, 31:1036-1043.

Brown IR: Heat shock proteins and protection of the nervous system.
Ann N'Y Acad Sci 2007, 1113:147-158.

Sharp PS, Dick JR, Greensmith L: The effect of peripheral nerve injury on
disease progression in the SOD1(G93A) mouse model of amyotrophic
lateral sclerosis. Neuroscience 2005, 130:897-910.

Suzuki M, Klein S, Wetzel EA, Meyer M, McHugh J, Tork C, Hayes A,
Svendsen CN: Acute glial activation by stab injuries does not lead to
overt damage or motor neuron degeneration in the G93A mutant SOD1
rat model of amyotrophic lateral sclerosis. Exp Neurol 2010, 221:346-352.
Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ: Microarray
analysis of the cellular pathways involved in the adaptation to and


http://www.ncbi.nlm.nih.gov/pubmed/19267274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19267274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19267274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7011280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7011280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11910543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11910543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11910543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20720505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20720505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8437741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8437741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11515328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11515328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20129626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20129626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8874593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8874593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17538780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17538780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17538776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17538776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14648282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14648282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14522149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14522149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1564544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1564544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1564544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9930724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9930724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19655389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7310492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7310492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7310492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2910893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2910893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16558258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16558258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18947433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18947433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18947433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18947433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15380473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15380473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12177206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12177206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12177206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11773606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11773606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12666113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12666113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11860187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11860187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11860187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11992467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11992467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15073526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16517380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16517380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17006927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17006927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12483219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12483219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1665097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1665097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16093311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16093311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16093311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12806444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9311914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9311914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8887938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8887938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9425523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9425523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21906595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21906595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21906595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20064600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20064600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9292733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9292733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19348909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19348909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17656567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20005223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20005223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20005223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17715356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17715356?dopt=Abstract

Yip and Malaspina Molecular Neurodegeneration 2012, 7:6
http://www.molecularneurodegeneration.com/content/7/1/6

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

progression of motor neuron injury in the SOD1 G93A mouse model of
familial ALS. J Neurosci 2007, 27:9201-9219.

Kabashi E, Durham HD: Failure of protein quality control in amyotrophic
lateral sclerosis. Biochim Biophys Acta 2006, 1762:1038-1050.

Kudo LC, Parfenova L, Vi N, Lau K, Pomakian J, Valdmanis P, Rouleau GA,
Vinters HV, Wiedau-Pazos M, Karsten SL: Integrative gene-tissue
microarray-based approach for identification of human disease
biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet
2010, 19:3233-3253.

Lobsiger CS, Boillee S, Cleveland DW: Toxicity from different SOD1
mutants dysregulates the complement system and the neuronal
regenerative response in ALS motor neurons. Proc Natl Acad Sci USA
2007, 104:7319-7326.

Fassett DR, Harrop JS, Maltenfort M, Jeyamohan SB, Ratliff JD, Anderson DG,
Hilibrand AS, Albert TJ, Vaccaro AR, Sharan AD: Mortality rates in geriatric
patients with spinal cord injuries. J Neurosurg Spine 2007, 7:277-281.
Furlan JC, Fehlings MG: The impact of age on mortality, impairment, and
disability among adults with acute traumatic spinal cord injury. J
Neurotrauma 2009, 26:1707-1717.

Jackson AP, Haak MH, Khan N, Meyer PR: Cervical spine injuries in the
elderly: acute postoperative mortality. Spine (Phila Pa 1976) 2005,
30:1524-1527.

Kuhne CA, Ruchholtz S, Kaiser GM, Nast-Kolb D: Mortality in severely
injured elderly trauma patients-when does age become a risk factor?
World J Surg 2005, 29:1476-1482.

Scivoletto G, Morganti B, Ditunno P, Ditunno JF, Molinari M: Effects on age

on spinal cord lesion patients’ rehabilitation. Spinal Cord 2003, 41:457-464.

Rodrigue KM, Kennedy KM, Park DC: Beta-amyloid deposition and the
aging brain. Neuropsychol Rev 2009, 19:436-450.

Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB: Progressive dendritic
changes in aging human cortex. Exp Neurol 1975, 47:392-403.

Streit WJ, Sammons NW, Kuhns AJ, Sparks DL: Dystrophic microglia in the
aging human brain. Glia 2004, 45:208-212.

Anderton BH: Changes in the ageing brain in health and disease. Philos
Trans R Soc Lond B Biol Sci 1997, 352:1781-1792.

Lindner AB, Demarez A: Protein aggregation as a paradigm of aging.
Biochim Biophys Acta 2009, 1790:980-996.

Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, Lee VM,
Trojanowski JQ, Smith DH: Multiple proteins implicated in
neurodegenerative diseases accumulate in axons after brain trauma in
humans. Exp Neurol 2007, 208:185-192.

Eller M, Williams DR: alpha-Synuclein in Parkinson disease and other
neurodegenerative disorders. Clin Chem Lab Med 2011, 49:403-408.
Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S:
Apolipoprotein E epsilon4 associated with chronic traumatic brain injury
in boxing. JAMA 1997, 278:136-140.

Jha A, Lammertse DP, Coll JR, Charlifue S, Coughlin CT, Whiteneck GG,
Worley G: Apolipoprotein E epsilon4 allele and outcomes of traumatic
spinal cord injury. J Spinal Cord Med 2008, 31:171-176.

Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-
Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD: Binding of
human apolipoprotein E to synthetic amyloid beta peptide: isoform-
specific effects and implications for late-onset Alzheimer disease. Proc
Natl Acad Sci USA 1993, 90:8098-8102.

Xu Q, Walker D, Bernardo A, Brodbeck J, Balestra ME, Huang Y: Intron-3
retention/splicing controls neuronal expression of apolipoprotein E in
the CNS. J Neurosci 2008, 28:1452-1459.

Mahley RW: Apolipoprotein E: cholesterol transport protein with
expanding role in cell biology. Science 1988, 240:622-630.

Uryu K, Laurer H, McIntosh T, Pratico D, Martinez D, Leight S, Lee VM,
Trojanowski JQ: Repetitive mild brain trauma accelerates Abeta
deposition, lipid peroxidation, and cognitive impairment in a transgenic
mouse model of Alzheimer amyloidosis. J Neurosci 2002, 22:446-454.
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-
Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ,
et al- Association of apolipoprotein E allele epsilon 4 with late-onset
familial and sporadic Alzheimer’s disease. Neurology 1993, 43:1467-1472.
Berger J, Gartner J: X-linked adrenoleukodystrophy: clinical, biochemical
and pathogenetic aspects. Biochim Biophys Acta 2006, 1763:1721-1732.
Moser HW, Raymond GV, Dubey P: Adrenoleukodystrophy: new
approaches to a neurodegenerative disease. JAMA 2005, 294:3131-3134.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Page 10 of 10

Raymond GV, Seidman R, Monteith TS, Kolodny E, Sathe S, Mahmood A,
Powers JM: Head trauma can initiate the onset of adreno-
leukodystrophy. J Neurol Sci 2010, 290:70-74.

Schaumburg HH, Powers JM, Raine CS, Suzuki K, Richardson EP Jr:
Adrenoleukodystrophy. A clinical and pathological study of 17 cases.
Arch Neurol 1975, 32:577-591.

Carmant L, Decarie JC, Fon E, Shevell MI: Transient visual symptoms as
the initial manifestation of childhood adrenoleukodystrophy. Pediatr
Neurol 1998, 19:62-64.

Fatemi A, Barker PB, Ulug AM, Nagae-Poetscher LM, Beauchamp NJ,
Moser AB, Raymond GV, Moser HW, Naidu S: MRI and proton MRSI in
women heterozygous for X-linked adrenoleukodystrophy. Neurology
2003, 60:1301-1307.

Turpin JC, Paturneau-Jouas M, Sereni C, Pluot M, Baumann N: Adult
disclosure of a case of familial adrenoleukodystrophy. Rev Neurol (Paris)
1985, 141:289-295.

Weller M, Liedtke W, Petersen D, Opitz H, Poremba M: Very-late-onset
adrenoleukodystrophy: possible precipitation of demyelination by
cerebral contusion. Neurology 1992, 42:367-370.

Wilkinson A, Hopkins 1, Pollard AC: Can head injury influence the site of
demyelination in adrenoleukodystrophy? Dev Med Child Neurol 1987,
29:797-800.

Gilg AG, Singh AK, Singh I: Inducible nitric oxide synthase in the central
nervous system of patients with X-adrenoleukodystrophy. J Neuropathol
Exp Neurol 2000, 59:1063-1069.

Powers JM, Pei Z, Heinzer AK, Deering R, Moser AB, Moser HW, Watkins PA,
Smith KD: Adreno-leukodystrophy: oxidative stress of mice and men. J
Neuropathol Exp Neurol 2005, 64:1067-1079.

Kanno H, Ozawa H, Dohi Y, Sekiguchi A, Igarashi K Itoi E: Genetic ablation
of transcription repressor Bach1 reduces neural tissue damage and
improves locomotor function after spinal cord injury in mice. J
Neurotrauma 2009, 26:31-39.

Yamada K, Tanaka N, Nakanishi K, Kamei N, Ishikawa M, Mizuno T,

Igarashi K, Ochi M: Modulation of the secondary injury process after
spinal cord injury in Bach1-deficient mice by heme oxygenase-1. J
Neurosurg Spine 2008, 9:611-620.

Harnesk K, Swanberg M, Ockinger J, Diez M, Lidman O, Wallstrom E,
Lobell A, Olsson T, Piehl F: Vra4 congenic rats with allelic differences in
the class Il transactivator gene display altered susceptibility to
experimental autoimmune encephalomyelitis. J Immunol 2008,
180:3289-3296.

Piehl F, Swanberg M, Lidman O: The axon reaction: identifying the genes
that make a difference. Physiol Behav 2007, 92:67-74.

Colton CA, Brown CM, Vitek MP: Sex steroids, APOE genotype and the
innate immune system. Neurobiol Aging 2005, 26:363-372.

Reddy SJ, La MF, Park P: The role of heat shock proteins in spinal cord
injury. Neurosurg Focus 2008, 25:E4.

Eckenstein FP, McGovern T, Kern D, Deignan J: Neuronal vulnerability in
transgenic mice expressing an inducible dominant-negative FGF
receptor. £xp Neurol 2006, 198:338-349.

Yager PH, You Z, Qin T, Kim HH, Takahashi K, Ezekowitz AB, Stahl GL,
Carroll MC, Whalen MJ: Mannose binding lectin gene deficiency increases
susceptibility to traumatic brain injury in mice. J Cereb Blood Flow Metab
2008, 28:1030-1039.

Takahashi K, Ip WE, Michelow IC, Ezekowitz RA: The mannose-binding
lectin: a prototypic pattern recognition molecule. Curr Opin Immunol
2006, 18:16-23.

Cerami C, Valentino F, Piccoli F, La BV: A cervical myelopathy with a
Hirayama disease-like phenotype. Neurol Sci 2008, 29:451-454.

Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-
Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, et al:
Dyslipidemia is a protective factor in amyotrophic lateral sclerosis.
Neurology 2008, 70:1004-1009.

. Kim SM, Kim H, Kim JE, Park KS, Sung JJ, Kim SH, Lee KW: Amyotrophic

lateral sclerosis is associated with hypolipidemia at the presymptomatic
stage in mice. PLoS One 2011, 6:¢17985.

doi:10.1186/1750-1326-7-6
Cite this article as: Yip and Malaspina: Spinal cord trauma and the
molecular point of no return. Molecular Neurodegeneration 2012 7:6.



http://www.ncbi.nlm.nih.gov/pubmed/17715356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17715356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16876390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16876390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20530642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20530642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20530642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17877260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17877260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19413491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19413491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12883544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12883544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19908146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19908146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/48474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/48474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9460061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19527771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17826768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17826768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17826768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21342025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21342025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9214529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9214529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18581664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18581664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8367470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8367470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8367470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3283935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3283935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11784789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11784789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11784789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8350998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8350998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16949688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16949688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16380594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16380594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19945717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19945717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/169765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9682889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9682889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12707433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12707433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1736167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1736167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1736167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3691981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3691981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11138926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11138926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16319717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19035757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19035757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18292553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18292553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18292553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17561176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17561176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15639315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15639315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19035702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19035702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16487970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16487970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16487970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18183030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18183030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16368230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16368230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19057849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19057849?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18199832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21464953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21464953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21464953?dopt=Abstract

	Abstract
	Introduction
	Spinal cord injury: early and late injury genes and tissue regeneration
	Increased vulnerability to spinal trauma: what does it hide?
	Neurodegeneration and the effects of trauma
	Aging and SCI
	Genes modifying the molecular response to trauma


	Conclusions: SCI and the molecular point of no return
	Acknowledgements
	Authors' contributions
	Competing interests
	References

