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Abstract

Background: Gamma motor neurons (y-MNs) selectively innervate muscle spindle intrafusal fibers and
regulate their sensitivity to stretch. They constitute a distinct subpopulation that differs in morphology,
physiology and connectivity from o.-MNs, which innervate extrafusal muscle fibers and exert force. The
mechanisms that control the differentiation of functionally distinct fusimotor neurons are unknown.
Progress on this question has been limited by the absence of molecular markers to specifically distinguish
and manipulate y-MNs. Recently, it was reported that early embryonic y-MN precursors are dependent
on GDNF. Using this knowledge we characterized genetic strategies to label developing y-MNs based on
GDNF receptor expression, showed their strict dependence for survival on muscle spindle-derived GDNF
and generated an animal model in which y-MNis are selectively lost.

Results: In mice heterozygous for both the Hb9::GFP transgene and a tau-lacZ-labeled (TLZ) allele of the
GDNF receptor Gfral, we demonstrated that small motor neurons with high Gfro.|-TLZ expression and
lacking Hb9::GFP display structural and synaptic features of y-MNs and are selectively lost in mutants
lacking target muscle spindles. Loss of muscle spindles also results in the downregulation of Gfral
expression in some large diameter MNs, suggesting that spindle-derived factors may also influence
populations of a-MNs with 3-skeletofusimotor collaterals. These molecular markers can be used to
identify y-MNs from birth to the adult and to distinguish y- from -motor axons in the periphery. We also
found that postnatal y-MNs are also distinguished by low expression of the neuronal nuclear protein
(NeuN). With these markers of y-MN identity, we show after conditional elimination of GDNF from
muscle spindles that the survival of y-MNs is selectively dependent on spindle-derived GDNF during the
first 2 weeks of postnatal development.

Conclusion: Neonatal y-MNs display a unique molecular profile characterized by the differential
expression of a series of markers - Gfral, Hb9::GFP and NeuN - and the selective dependence on muscle
spindle-derived GDNF. Deletion of GDNF expression from muscle spindles results in the selective
elimination of y-MNs with preservation of the spindle and its sensory innervation. This provides a mouse
model with which to explore the specific role of y-fusimotor activity in motor behaviors.
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Background

Muscle spindles provide proprioceptive information
required for motor control. Unlike other mechanorecep-
tors, the sensitivity of muscle spindles is actively regulated
by a specialized fusimotor system. This allows for contin-
uous control of the mechanical sensitivity of spindles over
the wide range of lengths and velocities that occur during
normal motor behaviors [1]. Fusimotor axons originate
either from gamma motor neurons (y-MNs), which only
innervate intrafusal fibers of the muscle spindle, or from
alpha motor neurons (a-MNs), which innervate extrafusal
muscle and also send a B-skeletofusimotor collateral axon
to innervate the muscle spindle [2-4]. Phylogenetically, y-
MNs are best developed in mammals, whereas lower ver-
tebrates (for example, amphibians) use a B-skeletofusim-
otor system alone to control the sensitivity of their muscle
spindles. The advantages of a y-fusimotor system to con-
trol spindle sensitivity independently of force-generating
extrafusal muscle fibers are not fully understood, nor are
the mechanisms that generate the distinct y- and a-MN
subtypes in mammals.

Most motor pools contain both a- and y-MNs, which
derive from common progenitors and then differentiate
to form specific cell types that differ in morphology, phys-
iology and connectivity (for reviews, see [1,5]). Investiga-
tion of the mechanisms that control y- from a-MN
differentiation has been limited by the lack of available
molecular markers to distinguish these functionally dis-
tinct subpopulations during development, as molecular
differences between postnatal o- and y-MNs have only
recently been demonstrated [6]. Without such selective
markers, y-MN identity has been based routinely on cell
size or physiological differences in conduction velocity.
However, early in postnatal development when differ-
ences in MN cell diameter are less apparent [7,8] it is not
possible to distinguish o- from y-MNs by size alone. This
is also true in adult motor pools with intermediate cell
diameters [9,10]. In addition, conduction velocity does
not mature until myelination is complete late in develop-
ment. The lack of criteria for y-MN identification during
development has thus hindered the study of the differen-
tiation of the fusimotor system and the specific roles
played by y-MNs in motor control.

Recent work has shown that survival of y-MN precursors
during embryonic development is selectively dependent
on glial cell line-derived neurotrophic factor (GDNF)
[11,12]. Absence of GDNF signaling before the induction
of muscle spindles in early embryos resulted in the loss of
7-MNs. These observations raise questions about whether
muscle spindles and spindle-derived GDNF are important
for the differentiation or survival of y-MNs during late
embryonic and postnatal development when specific
characteristics of y-MNs, such as intrafusal innervation,
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smaller cell body size and differences in axon myelina-
tion, emerge. Is the muscle spindle a required source of
GDNF? Does spindle-derived GDNF function in trophic
support of y-MNs, or some other aspect of fusimotor dif-
ferentiation and function? Does the loss of spindle GDNF
have consequences for motor behaviors?

To address these issues, we investigated the expression
pattern of the GDNF receptor Gfral and that of several
other markers in postnatal MNs and defined molecular
and genetic criteria that can be used to identify postnatal
y-MN somata independent of size and to distinguish y-
from B-fusimotor axons in the periphery. Furthermore,
genetic elimination of spindle-derived GDNF using a
novel conditional allele of the GDNF gene (GDNFI'LOX)
demonstrates that the selective dependence of y-MN sur-
vival on GDNF continues after birth and that muscle spin-
dles are a critical source of this factor in the postnatal
period. The conditional elimination of GDNF expression
from muscle spindles in the mouse results in selective vy-
MN loss with no obvious effect on other spindle compo-
nents or a-MNs, and so provides a model to investigate
the specific role of y-fusimotor activity in motor behav-
iors.

Materials and methods

Mouse genetics: generation of the GDNFFLOX gjlele
Mouse GDNF genomic clones from a 129sv/] genomic
library were kindly provided by Jose Pichel [13]. The tar-
geting vector for the GDNFFLOX gllele was constructed
from an approximately 8 kb Sphl/Ncol fragment contain-
ing the GDNF coding sequence of exon 3. loxP sites were
placed in the intronic sequence just upstream of exon 3
and in the 3' untranslated region of the GDNF gene. A
neomycin-resistance expression cassette flanked by FRT
sites was inserted upstream of the 5' loxP site. The linear-
ized targeting construct was electroporated into W9.5
embryonic stem cells, selected with G418 and screened for
homologous recombinants by Southern analysis (EcoRV
digest) using as probe a 2-kb fragment downstream of the
3' end of the targeting construct. The frequency of recom-
bination with this construct was low (<1%). Recombinant
clones were injected into C57BL/6]J blastocysts to generate
chimeric founders. After germline transfer of the GDNF-
FLOX;NEO allele was confirmed, the neomycin cassette
was excised by crossing F1 animals to ACTB-FLPe mice
[14] to generate the GDNFFLOX allele. The GDNFFLOX 3llele
was maintained on a predominantly C57BL/6] strain
background.

Other mouse lines used in this study were previously char-
acterized and generously shared, and include Gfra1-TLZ
[15), HIxb9-GFP1Tmj (Hb9::GFP) [16], Egr3NULL [17],
ErbB2FLOX[18], ErbB2NULL [19], myf5-CRE [20], and GDN-
FLacZ [21]. All animal studies were performed under an
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approved IACUC animal protocol according to the insti-
tutional guidelines of the National Institute of Neurolog-
ical Disorders and Stroke, and the College of Physicians
and Surgeons at Columbia University.

In vivo retrograde labeling of motor pools from identified
muscle

At postnatal day 18, animals were deeply anesthetized by
halothane induction, and individual muscles were surgi-
cally exposed and pressure injected using a glass micropi-
pette with 1 to 2 pl of a 2.5% solution of Fast Blue diluted
in 0.01 M phosphate buffered saline (PBS; EMS-Polyloy,
GroB-Umstadt, Germany). After recovery from surgery,
animals were held for 48 to 72 hours, and then transcar-
dially perfused with 4% paraformaldehyde diluted in 0.01
M PBS. Isolated spinal cords were immersion-fixed over-
night in the same fixative solution and washed in PBS
before processing for immunocytochemical analysis.

Immunohistochemistry

Spinal cords were dissected from postnatal day (P)5, P20
or P60 animals that were transcardially perfused with PBS
followed by 4% paraformaldehyde and postfixed over-
night, as above. For sectioning, the spinal cords were
embedded in warm 5% agar and serial transverse sections
(75 pm thick) cut in a vibratome and processed free-float-
ing. The sections were blocked with 10% normal donkey
serum diluted in PBS with 0.1% Triton X-100 (pH 7.4)
and incubated overnight at room temperature in primary
antisera diluted in PBS with 0.1% Triton X-100. The fol-
lowing day, immunoreactive sites were revealed with dif-
ferent species-specific goat or donkey secondary
antibodies, depending on the experiment, and coupled to
Alexa 488, 555, 647 (dilutions 1:250 to 1:1,000; Invitro-
gen, Carlsab, CA, USA), Cy3 or Cy5 (dilution 1:50 to
1:100; Jackson Immunoresearch Labs, West Grove, PA,
USA). All fluorescent sections were mounted in anti-fad-
ing solution Glycerol:PBS (3:7) or Vectashield (Vector
Labs, Burlingame, CA, USA).

For analysis of neonatal spinal cords and muscle spindles,
tissues were fixed overnight in 4% paraformaldehyde,
washed in PBS, cryoprotected in 30% sucrose in 0.1 M
phosphate buffer (PB) and then frozen in OCT (Pro-
SciTech, Queensland, Australia). Cryostat sections were
cut at a thickness of 14 to 20 um and placed on glass slides
for immunostaining using the same conditions as above.

Primary antibodies used in this study were specific for
vesicular glutamate transporter 1 (VGIuTl; dilution
1:10,000; guinea pig polyclonal, gift of Julia Kaltschmidt
and Tom Jessell), choline acetyl transferase (ChAT; dilu-
tion 1:250; goat polyclonal, AB144, Millipore, Temecula,
CA, USA), vesicular acetylcholine transporter (VAChT;
dilution 1:500; guinea pig polyclonal, AB1588, Milli-
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pore); B-galactosidase (dilution 1:1,000; chick polyclonal,
ab9361, AbCam, Cambridge, MA). Hb9::GFP fluores-
cence in MNs was detected without the use of immunocy-
tochemical amplification, but in the periphery, green
fluorescent protein (GFP) in motor axons was visualized
with a sheep anti-GFP polyclonal antibody (1:1,000;
4745-1051, Biogenesis, Brentwood, NY, USA). Muscle
spindles and motor axons in muscle sections were labeled
with antibodies against the peripheral axon marker pro-
tein gene product 9.5 (PGP9.5; 1:500; rabbit polyclonal
antibody, 7863-0504 AbD Serotec, Raleigh, NC, USA) and
acetylcholine receptor clusters at intrafusal and extrafusal
neuromuscular junctions were labeled with Cy5-bungaro-
toxin (1:1,000; Molecular Probes, Invitrogen).

Motor neuron counts and size distribution histograms

At each postnatal age, counts of MNs were performed on
the lateral motor column of lumbar spinal segments L4
through L5 from z-series of confocal optical sections
obtained at a magnification of 20x (0.9x optical zoom; z-
step of 2.5 um). Motor neurons labeled with a combina-
tion of ChAT, B-galactosidase and GFP were counted and
measured using Neurolucida (Microbrightfield Bio-
science, Williston, VT, USA). All ChAT+ MNs imaged in
each stack were outlined in the confocal plane where each
exhibited the maximum cell body cross-section and clas-
sified according to their differential expression of Gfro1-
TLZ and Hb9::GFP. Distribution histograms were con-
structed for each animal by grouping cell body cross-sec-
tional areas in 50 um? bins. In each animal distribution,
histograms represent pooled data from six ventral horns.
Depending on age, genotype and section thickness,
approximately 40 to 80 MNs were counted per ventral
horn. A minimum of three distribution histograms from
three different animals of similar age/genotype were aver-
aged in each experiment (exact numbers provided in the
Results section). Average histograms were fit to either sin-
gle or dual Gaussian distributions using Clampfit (version
9.0; Axon Instruments, Union City, CA, USA). From the
fitted distributions we estimated the average cross-sec-
tional area and standard deviation (SD) of the small and
large size MN populations. From the raw histogram data
we obtained relative percentages for each population
according to cell size or phenotype. In the histograms,
error bars always represent + standard error of the mean
(SEM). Depletions in certain genotypes were calculated
against all ChAT+ MNs or the number of cells identified
by a particular set of markers or cells below a certain
threshold cutoff size. Cutoff sizes for the small population
were estimated as the average (i) + 2 SD (o) of the fitted
small population distribution in control animals of simi-
lar age.
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VGIuTI and VAChT contact counts

Quantitative analysis of VGIuT1 and VAChT immunore-
active (VGIuT1+ and VAChT?+, respectively) synaptic den-
sities on MNs at postnatal day 20 were performed on z-
series of optical confocal sections obtained at high magni-
fication (63x, 1.4 NA, 1.0x optical zoom, z-step, 1 pm)
throughout the entire cell body and proximal dendrites of
randomly selected large diameter, Hb9::GFP+/Gfra.1-TLZ-
/ChAT+ and small Hb9::GFP-/Gfra.1-TLZ+/ChAT+ MNs.
VGIuT1+ and VAChT+ contacts were counted over the sur-
face of each MN. Contact densities on cell somata were
estimated by measuring the diameter of each MN cell
body in all three planes and calculating the surface area of
each cell - modeled as an ellipsoid - as previously
described [22]. Contact numbers on dendrites were nor-
malized against the length of the dendritic segments
measured in two-dimensional projections of the three-
dimensional confocal image stacks. Average densities on
Hb9::GFP+/Gfral-TLZ-/ChAT+ MNs were compared to
small Hb9::GFP-/Gfra1-TLZ+/ChAT+ MNs using t-tests.

Neurolucida reconstruction of o and y motor neurons

To analyze MN morphology and dendritic structure, con-
focal images obtained from P20 Gfral-TLZ/Hb9::GFP
compound heterozygous animals were used to recon-
struct individual Hb9::GFP+/Gfral-TLZ-/ChAT+ and
Hb9::GFP-/Gfra1-TLZ+/ChAT+ MNs using Neurolucida
software (MicroBrightfield, Williston, VT, USA). The MN
cell body was traced in a middle cross-sectional optical
section. Dendrite origins were located at the points at
which the membrane changed from convex out to con-
cave out. Each dendrite was manually traced by making
discrete measurements along their paths and manually
entering each branching point. Dendrite thickness was
first entered at dendrite origins (by adjusting cursor size)
and then readjusted at each measurement point. Recon-
structed neurons were analyzed with Neuroexplorer soft-
ware (version 8.0, MicroBrightfield) to obtain
information on the number of primary or higher order
dendrites, their average thickness, branching patterns,
total dendritic tree length, total dendrite surface and den-
dritic lengths and surfaces of individual dendrites or den-
dritic segments at different Sholl distances. Sholl analysis
calculated the amount of surface membrane in dendritic
segments at different distances from the cell body. For this
purpose a set of nested concentric spheres was centered at
the cell body with the spheres separated by 50 um, creat-
ing a series of shells of increasing distance from the cell
body. The total surface area of all dendrite segments con-
tained within each shell was added to obtain an estimate
of the distribution of dendritic surface membrane at
increasing distances from the cell body. Fine caliber distal
dendrites were better resolved with the Gfra.1-TLZ marker
compared to Hb9::GFP-labeled dendrites. As a result,
longer dendritic segments were analyzed in Gfral-TLZ+
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MNs. Therefore, the most meaningful comparisons
focused on the more proximal dendritic tree that was
equally sampled in both MN cell types.

In situ hybridization

In situ hybridization analysis was performed with digoxi-
genin-labeled cRNA probes [23] specific for Egr3 [24] and
GDNF. The sequence of the entire murine GDNF coding
region was amplified by RT-PCR of embryonic day 10.5
(E10.5) mouse RNA, cloned into pBluescript SK vector
(Stratagene, Inc., La Jolla, CA, USA) and sequenced.
GDNF riboprobes were prepared by in vitro transcription
of the GDNF cDNA.

Semithin section analysis of muscle spindles

One P18 GDNFFLOX/FLOX Eqr3CRE/CRE double homozygote
and one P18 GDNFFLOX/+ Egr3+/+ control animal were tran-
scardially perfused with 4% paraformaldehyde and 4%
glutaraldehyde diluted in 0.1 M PB. The tibialis anterior
muscle (studied here) and several others were dissected,
washed, postfixed with 2% OsO, in 0.1 M PB and embed-
ded in Spurr resin. Serial semithin sections were obtained
transversally through the blocks, contrasted with 1% tolu-
idine blue/borax and the equatorial and polar regions of
muscle spindles imaged with bright field light micros-
copy. Images were digitally recorded with a 60x or 100x
objective and using a RT-Spot Camera (Diagnostic Instru-
ments, Sterling Heights, MI, USA).

Results

Gfrol expression is restricted to subpopulations of motor
neurons in the lumbar spinal cord

Previous studies have demonstrated that Gfral is
expressed in a subset of MNs [25-28] and that GDNF/
Gfral signaling is required for the survival of spindle-
innervating MNs [11,12]. These findings suggest that
Gfral may be a marker for y-MNss. In this study, we char-
acterized the subpopulation of Gfral+ spinal MNs in
mice heterozygous for a null allele of Gfra.1 marked by the
expression of tau-lacZ (Gfral-TLZ) [15] and the Hb9-
GFP1Tmj transgene (Hb9::GFP). In Hb9::GFP animals,
the murine HB9 promoter drives expression of enhanced
GFP in MNs and a subpopulation of ventral interneurons
[16,29,30].

Immunohistochemical analysis of Gfral-TLZ hetero-
zygous animals demonstrated that Gfral is expressed
most intensely in a subpopulation of relatively small neu-
rons in lamina IX, which were independently identified as
MNs by immunostaining for ChAT (Figure 1A) or retro-
grade labeling from hindlimb muscle (Figure 1B, C). To
characterize the subpopulation of Gfra.1+ MNs, we com-
pared the distribution of their cell sizes to that of all
ChAT+ MNs. Gfral-TLZ staining was observed in the
medial and lateral motor columns, but all quantitative
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Figure | (see previous page)

Small size motor neurons in postnatal day 20 mouse spinal cords are strongly Gfrol-TLZ positive and
Hb9::GFP negative. (A) Confocal images of lumbar lamina IX showing Gfral-Tau-lacZ (TLZ) immunoreactivity (A, red,
cy3) and Hb9::GFP expression (A,, green) in ChAT+ MNs (A;, blue, Cy5); merged images in A,. Gfro.l-TLZ strongly positive
MNs are small and Hb9::GFP negative (arrows in A,_,). (B) Small, strongly Gfra.l-TLZ positive MN (B,) retrogradely labeled
from tibialis anterior muscle (Fast Blue, inset). This MN lacks Hb9::GFP (B,) (cell body location outlined). (C) Medium size MN
with weak Gfrol-TLZ immunoreactivity (C,) retrogradely labeled from tibialis anterior (inset) and expressing Hb9:GFP (C,).
(D-G) Cell body size distributions of all ChAT+ MNs (gray bars; 50 um?2 bins, n = 3 animals; 481 + 14.2 ChAT+ MNs analyzed
per animal in six 70-um thick ventral horn sections; error bars represent SEMs) with superimposed (white bars) distributions
for the following subpopulations: all Gfra.|-TLZ+ MNs (D), Gfral-TLZ+ and Hb9::GFP- MNs (E), all Hb9::GFP+ MNis (F), MNs
co-expressing Gfro.l-TLZ and Hb9:GFP (G). ChAT+ MNs were fit by two Gaussian curves of different widths representing
small (D and E, red solid line) and large populations (D to G, blue solid lines). Two similar curves (dashed lines) fit Gfro|-TLZ+
MNs. Most 'small' ChAT+ MNs are Gfra|-TLZ+. Irrespective of Gfra.l-TLZ, Hb9::GFP+ neurons (solid red lines in F and G)
display unimodal size distributions of averages and standard deviations resembling large ChAT+ MNss. Scale bars: (A) 100 pum;

(B) 40 um (also applies to (C)).

analyses focused on the lateral motor column in the
fourth and fifth lumbar spinal segments (L4-5) at P20.
ChAT+ MN cell body sizes showed a bimodal distribution
best fit by two Gaussian curves (correlation = 0.89; Figure
1D). The small size ChAT+ population had a mean aver-
age cross-sectional area of 331 + 77 um? ( + SD) while the
large size population showed a wider distribution around
a mean of 755 + 220 um?2. The distribution of all Gfra1-
TLZ+ neurons was also best fit by a bimodal distribution
(correlation = 0.9) with the same estimated parameters as
the entire population of ChAT+ neurons (small popula-
tion, 334 + 82 um?; large population, 754 + 215 pm?2).
The percentage of ChAT+ neurons that were Gfra1-TLZ
positive was significantly different in the small versus
large size groups. We used 485 pum?2in area (pu + 2c of the
small population) as the cutoff point to distinguish the
small and large populations. Using this criterion, small
MNs represent 34 + 1.4% ( + SEM; n = 3 different animals)
of all ChAT+ MNs, of which 91 + 2% are strongly Gfra.1-
TLZ positive (Figure 1E). In these L4-5 segments, approx-
imately half (52 + 6%) of the large ChAT+ MNs also
express Gfral, but the intensity of Gfra1-TLZ staining in
many large MNs was relatively low (Figure 1C) and their
numbers were variable in different pools. For example, in
the case of specific dorso-lateral lumbar motor pools in
caudal lumbar 5 and in the lumbar 6 segment, a large
majority of large diameter MNs was weakly Gfra1-TLZ+
(not shown).

We also observed that small ChAT+ MNs that displayed
strong Gfral-TLZ immunoreactivity lacked Hb9::GFP
expression, while MNs that were larger and weakly immu-
nolabeled with Gfra1-TLZ were frequently Hb9::GFP pos-
itive (Figure 1B, C). At P20, the cell body size distribution
of Hb9::GFP+ neurons demonstrates that the transgene
was selectively expressed in large, presumptive a-MNs
(unimodal distribution around 817 + 195 um?) and rep-
resent approximately 66 + 1% of all large MNs at this age

(Figure 1F). Double-labeled Gfra1-TLZ+/Hb9::GFP+ MNs
were always distributed in the large population (Figure
1G). Thus, small, putative y-type MNs are best identified
by strong Gfral-TLZ expression and the absence of
Hb9::GFP transgene expression. The cell body sizes of
Gfra1-TLZ+/Hb9::GFP- MNs are concentrated in the
smaller size bins (Figure 1E), but their distribution shows
a significant tail into large size bins and, as a result, is not
well-fit by a Gaussian distribution. Gfral-TLZ+/
Hb9::GFP- MNs comprise 89 + 3% of small (<485 um?)
ChAT+ neurons and 24 + 3% of large (>485 um?2) ChAT+
neurons at P20.

The expression of Gfral-TLZ and the expression of
Hb9::GFP in MNs are independently regulated in postna-
tal development and become increasingly restricted with
age to distinct but overlapping subpopulations (Figure 2;
Tables 1 and 2). At P1 - even before there is a clear bimo-
dal distribution of MNs - there is already a distinct popu-
lation of lamina IX neurons at all segmental levels that
express Gfra1-TLZ strongly and lack Hb9::GFP, suggesting
that the selective regulation of these genes in differentiat-
ing y-MNs begins before birth. At P5 when a bimodal size
distribution is first detected (Figure 2A-C), the majority of
MNs express Gfral-TLZ (Figure 2B), but a distinct sub-
population of these Gfra1-TLZ+ MNs is Hb9::GFP nega-
tive. These Gfra1-TLZ+/Hb9::GFP- MNs are concentrated
in the smaller cell size bins and represent 28% of all

Table I: Percentage of ChAT immunoreactive motor neurons
expressing each marker.

P5 P20 P60
Gfrol+ 83.6 £23 65.0 £ 3.1 54.1 £ 0.9
Gfro | +/Hb9::GFP- 282+ 0.9 46.2 £ 0.6 439 % 1.1
Hb9:GFP+ 702 £ 0.6 455+0.3 458+ 0.5
Gfroul+/Hb9::GFP+ 553+% 15 189 +33 102+ 1.9

Units are percentages + standard error of the mean. P, postnatal day.
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Table 2: Statistical parameters of small and large populations
fitted to all Lamina IX ChAT immunoreactive neurons of
different ages.

p, small u, large o, small o, large
P5 2975+ 3.1* 5900+ 4.1* 575%37 170.8 + 4.5%
P20 334238 7549 £ 9.1 776 + 4.1 219.7 £ 10.9
P60 347032 7638 +9.3 69.4+46 199.8 £ 1.2

*Statistically significant difference (one-way ANOVA P < 0.05). Units
are um?2 * standard error of the mean. P, postnatal day.

ChAT+ MNs (Figure 2C). By P20, the percentage of MNs
that are Gfra.1-TLZ+ and Hb9::GFP- increases to 46% (Fig-
ure 1E) and then remains stable (44% at P60; Figure 2D-
F). The percentage of MNs that are Gfra.1-TLZ+/Hb9::GFP-
increases in the first postnatal weeks because of the pro-
gressive downregulation of Hb9::GFP expression in large
MN:s, including some weakly Gfral-TLZ+ MNs that are
not y-MNs (Figure 2D). At P60 the population of putative
y-MNs that are small, strongly Gfro.1-TLZ+ and Hb9::GFP-
is well separated by size because of the relative postnatal
growth of the larger Hb9::GFP+ a-MNs during postnatal
development (Figure 2E-F).

In the course of our MN cell counts, we also made the
unexpected observation that small Gfral-TLZ+/
Hb9::GFP- MNs generally lack immunoreactivity for the
neuronal nuclear protein NeuN [31] (Figure 3). The large
majority of Hb9::GFP+ MNs at P20 (96 + 2% ( + SEM); n
= 4 animals) are NeuN positive, but only 31 + 6% of
Gfra1+/Hb9::GFP- MNs contain NeuN immunoreactivity
and this was always weak (Figure 3). Similar low percent-
ages of weak NeuN immunoreactive (NeuN-IR) neurons
were found in the Gfra1-TLZ+/Hb9::GFP- population at
PO (19%; n = 2 animals), P5 (28%; n = 2) and P10 (14%;
n = 3) (Table 3). Lack of NeuN in y-MNs was also reported
recently in an independent study [6].

In conclusion, small MNs are generally characterized by
strong Gfra1-TLZ expression, low NeuN immunoreactiv-
ity and lack of Hb9::GFP. We hypothesize that these mark-
ers define new molecular criteria by which to identify y-
MNs at birth, well before other distinguishing features are
expressed in mature a- and y-MNss.

Dendritic structure and synaptic inputs of Gfral+/
Hb9::GFP- spinal neurons are typical of y motor neurons
In addition to small size, mature y-MNs are characterized
by a distinct dendritic morphology [32-35], lack of pri-
mary afferent inputs [36-39] and absence of C-terminals
contacting their somata [40-43].

To confirm the vy identity of Gfra.1-TLZ+/Hb9::GFP- MNs,
we first compared their dendritic arborization with that of
Hb9:GFP+ MNs (Figure 4A). At P20, Gfral-TLZ+/

http://www.neuraldevelopment.com/content/4/1/42

Hb9::GFP- neurons (n = 37) had significantly fewer pri-
mary and secondary dendrites (Figure 4B) than Gfrol-
TLZ-/Hb9::GFP+ MNs (n = 39) and these were always
thinner at their origin (Figure 4C), a characteristic of y-
MNs [34]. In addition, Sholl analysis of Hb9::GFP+ MNs
showed a rapid increase in dendritic surface in proximal
dendritic segments followed by a slow decline as den-
drites taper, a pattern that is characteristic of a-MNs
[34,35] and distinct from that observed for Gfra.1-TLZ+/
Hb9::GFP- MNs (Figure 4D). These results indicate that
the dendritic arbor of Gfral-TLZ+/Hb9::GFP- MNs dis-
plays a y-MN type of branching.

Second, using VGIuT1 as a marker of primary afferent con-
tacts [44-46] and VAChT to identify cholinergic terminals,
we compared the synaptic inputs on these distinct MN
populations. Gfral-TLZ+/Hb9::GFP- MNs had few
VGIuT1 contacts on their dendrites or somata in marked
contrast to Gfra1-TLZ-/Hb9::GFP+ MNs (Figure 4E, G; P <
0.001, t-tests). The somatic density of VAChT-IR contacts
on Gfral-TLZ+/Hb9::GFP- MNs (Figure 4F) was only
slightly less than that on Hb9::GFP+ MNs (difference in
contact density was 27%, P < 0.01, t-test; Figure 4G); how-
ever, VAChT-IR contacts on Gfra1-TLZ+/Hb9::GFP- MNs
were much smaller in size. The average apposition lengths
between VAChT-IR contacts and MNs was 2.45 + 0.05 um
( = SEM) for Gfra1l-TLZ+/Hb9::GFP+ and 1.40 + 0.06 pm
for Gfra1-TLZ+/Hb9::GFP- MNs (n = 291 and 137
VAChHT-IR clusters counted on 10 MNs of each respective
class; P < 0,001, t-test). These data describe a cholinergic
input to Gfra1-TLZ+/Hb9::GFP- MNss that is distinct from
the large C-type cholinergic inputs previously identified
by electron microscopy only on a-MNs. The dendritic
morphology and synaptic input of the Gfral-TLZ+/
Hb9::GFP- neurons are therefore consistent with their
identification as y-MNss.

Gamma fusimotor axons are Hb9::GFP negative

In the rat, the incidence of y and B efferents differ from
muscle to muscle, but the large majority of motor inputs
on intrafusal fibers in hindlimb muscles are y motor axons
[47]. Our findings in the Gfral-TLZ/Hb9::GFP mouse
predict that these y fusimotor endings should be TLZ+ and
GFP-. Though we were unable to detect lacZ immunos-
taining in distal motor axons in the Gfra.1-TLZ animals,
we could easily visualize GFP in muscle nerve by GFP
immunostaining in Hb9::GFP+ animals and follow this
marker to the neuromuscular junction. Neuromuscular
junctions were visualized with a fluorescent a-bungaro-
toxin, and annulospiral primary sensory endings and
motor axons were labeled with antibodies against
PGP9.5. PGP9.5 is also weakly expressed in intrafusal
muscle fibers, which made it possible to identify
intrafusal motor endings in the juxtaequatorial and polar
regions of the spindle (Figure 4H-K).
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Figure 2 (see previous page)

Developmental downregulation of Gfro|-TLZ and HB9::GFP expression. (A) Single optical plane confocal image
through lamina IX at P5 showing Gfra.l-TLZ expression (A, Cy3, red), Hb9:GFP (A,, green), ChAT-immunoreactivity (A;,
Cy5, blue) and merged images (A;). Most ChAT+ MNs express both markers at P5, but some express strong Gfrol-TLZ and
no Hb9::GFP (white arrowheads). A few large MNs express Gfra.l-TLZ weakly (orange arrowheads), while small Hb9::GFP
interneurons (ChAT-, asterisks in A | 4) do not express Gfro|-TLZ. (B) Size distribution of P5 ChAT+ (gray bars) and Gfral-
TLZ+ MNs (white bars); 83.6% of ChAT+ MNs express Gfral-TLZ. P5 ChAT+ MNs have small/medium sizes that can be fit-
ted by two overlapping distributions (solid lines) suggesting initial differentiation of small (red line) and large (blue line) popula-
tions. Gfra.l + MNs (dashed lines) are fitted by a similar bimodal distribution. (C) Size distribution of P5 Gfro.|-TLZ+ and
Hb9::GFP- MNs (white bars). These cells represent 28.2% of all ChAT+ MNs (gray bars) and are concentrated in small size
bins. (D) Similar image series as in A, but at P60 (images are at lower magnification and four optical planes were superimposed
to adjust for neuropil spread with age). Gfro.|-TLZ+/Hb9::GFP- MNs (white arrowheads) are quite distinct at this age. Gfro | -
TLZ is largely absent from large MNs and Hb9::GFP+ MNs (orange arrowheads) and many large MNs also lack Hb9::GFP (blue
arrowheads). (E) P60 size distributions (as in B). Only 54.1% of ChAT+ cells express Gfral-TLZ, with the strongest reduction
in the large population. No significant downregulation of Gfral-TLZ expression occurs in small ChAT+ cells. (F) At P60,
43.9% of ChAT+ MNis are Gfro|-TLZ+ and Hb9::GFP-. Their size distribution suggests many large Gfro.l-TLZ+ MNs have lost
HB9::GFP. Error bars indicate SEM; 50 um?2 bin size. At P5 average histograms from three animals, while at P60 two animals
were averaged (six ventral horns analyzed per animal; 608 + 7 and 337 + 7 MNs analyzed per animal at P5 and P60 respec-

tively). Scale bars: (A, B) 100 um.

Using these markers, we analyzed extrafusal motor end-
ings (n = 105) in the tibialis anterior muscle of a P30 dou-
ble heterozygous Gfra.1-TLZ/Hb9::GFP mouse and found
that all were GFP+. In contrast, 91% (30 of 33) of
intrafusal neuromuscular junctions identified in 12 indi-
vidual tibialis anterior muscle spindles were innervated by
motor axons that were Hb9::GFP-. Since all motor axons
that innervate extrafusal tibialis anterior muscle are
Hb9::GFP+, so too must be any B-skeletofusimotor collat-
eral. Hb9::GFP- fusimotor axons must therefore originate
from y-MNs, providing further evidence that postnatal y-
MNs do not express Hb9::GFP.

Gamma motor neuron survival depends on target muscle
spindles

In Egr3 mutant (Egr3XO) mice, early muscle spindle devel-
opment is abnormal, and muscle spindles degenerate in
the postnatal period [17,48]. This is accompanied by a
loss of y-axons in ventral roots and peripheral nerves. To
determine whether there is a corresponding loss of y-MN
cell bodies, we generated Egr3KO mice that were hetero-
zygous for Gfra.1-TLZ*/- (n = 3 animals) or double hetero-
zygous for Gfral-TLZ+- and Hb9::GFP+- (n = 3) and
analyzed the size distributions of L4-5 lumbar MNs
expressing the different genetic markers. These were com-

Table 3: Percentage of neurons in each category that are NeuN
positive.

PO P5 P10 P20

Hb9:GFP+ 100 100 100 96 + 1.7
Gfrol+/Hb9:GFP- 18.7+48 277+26 13.6%+13 30555

Units are percentages + standard error of the mean. P, postnatal day.

pared to Egr3 wild-type (Egr3WT) controls (n = 3) (Figure
5A-H). In Egr3XO animals there was a selective loss of
small ChAT+ neurons with strong Gfra1-TLZ expression
(Figures 5A-C). In equivalent sections of L4-5 spinal cord,
the total number of ChAT+ MNs was reduced by 27% in
Egr3KO Gfra1-TLZ+/-animals compared to controls (Figure
5D; P < 0.001, t-test). This loss could be accounted for by
89% loss of small diameter, Gfra.1-TLZ+ MNs (Figure 5E,
G). Moreover, in double heterozygous Egr3XO animals the
population of Gfral-TLZ+ and HB9::GFP- MNs was
decreased by 74% (Figure 5G), and the few small Gfro1-
TLZ+ MNs surviving in these P20 animals showed signifi-
cant somatic shrinkage, morphological evidence of degen-
eration (arrowheads in Figure 5B;). There was no
significant decrease in the number of large diameter MNs
in the Egr3KO animals. Therefore, the proportion of small
MNs (<485 um?) that were Gfra1-TLZ+ decreased from
31%+ 1 (+SEM) to 5 + 1% of all ChAT+ MNs (Figure 5E).
As a consequence, in the Egr3KO mutants ChAT+ MNs
comprise a single population best fit by a single Gaussian
(correlation = 0.88; Figure 5C, F) with a mean average
cross-sectional area of 754 + 6 um? ( + SEM), identical to
the large MN population observed in wild-type controls.

In Egr3KO mutants double-labeled with Gfra1-TLZ and
HB9::GFP (Figure 5F, G), there was no significant deple-
tion of large ChAT+ MNss expressing Hb9::GFP (36.4 + 1.3
GFP+ MNs per ventral horn in control compared to 31.3
+ 2.7 in Egr3XO mutants; P = 0.154, t-tests). In contrast, the
number of large MNs that were Gfral-TLZ+ and
HB9::GFP+ declined by 78%. Since the total number of
large ChAT+ and Hb9::GFP+ MNss is unchanged in Egr3XKo
mutants, the decrease in the number of dual-labeled
Gfra1-TLZ+/and HB9::GFP+ MNs is best explained by
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Gfra1(TLZ) Hb9::GFP

Figure 3

NeuN is expressed at low levels or not at all in postnatal Gfro.l-TLZ+/Hb9::GFP- motor neurons. (A) Confocal
image of a P5 ventral horn showing Gfra.l-TLZ expression (Cy3, red), Hb9::GFP (green) and NeuN immunoreactive neurons
(Cy5, white). All confocal planes through the 70 um thick section and all fluorescent signals are superimposed. The lamina IX
region enclosed by the dotted yellow box is shown in (A, ;) with Gfra.l-TLZ expression superimposed on Hb9:GFP (A)),
Gfral-TLZ expression on NeuN (A,) and Hb9::GFP on NeuN (Aj;). (B,C) Similar image series for P10 (B,B,_;) and P20 (C,C,.
3). At all ages, NeuN immunoreactivity is very low or not present at all in small MNs that are Gfro.l-TLZ+ and Hb9::GFP-

(white arrows). In contrast, large Hb9::GFP+ MNs (yellow arrows) almost always express high levels of NeuN immunoreactiv-
ity. Scale bars: (A,B,C) 100 um.

Page 10 of 21

(page number not for citation purposes)



Neural Development 2009, 4:42 http://www.neuraldevelopment.com/content/4/1/42

A

GFRa1-TLZ (-) HB9::GFP (+) J00um_ GFRa1-TLZ (+) HB9:GFP (-)

B Number of dendrites C Average thickness D Sholl analysis
according to branch order of primary dendrites

. Gfrod-TLZ(- ) Hb9:GFP(+
:IGfra1-TLZE+g Hb9::GFP£ %

Frequency

Average number of dendrites
o~

Tolat dendritic surface (um?)

0 50 100 150 200 250 300 350 400

Sholl bin from center of soma (um)

0
primary  2nd order 3rd order  4th order  5th order 15 2.0 25 3.0 3.5 40 45 5.0 55

Primary dendrite average thickness (um)

| Hb9:GFP VGIUT1 || Hb9:GFP VAChT | G
VGLUTA VAChT
£ dendrites @ somata somata
S 6 - & 12 -
& S 0.14 1
5 5 0.12 1 10
8 £ s
S 4 {MER T B 010, +Z o0s
k] - TN} £ e N ~F
N o s 0.08 [Nl — NG
ESR Ry o N o RO ™ o
o Qo] — = 2 006 |marl < 5 o)
o 1= & g% 5 el = O 0.4 {fele
e 5% O 2 0.04 E% (O E%
£ 1] %% ';5‘: 0.02 {CEH %+ 02 |SES
2 = £ 000 = 50 |
3 3]
[&]

| PGP9.5 |[Hb9-GFP [ Hb9:GFP___|[Hb9:GFP PGPI5|

Figure 4 (see legend on next page)

Page 11 of 21

(page number not for citation purposes)



Neural Development 2009, 4:42 http://www.neuraldevelopment.com/content/4/1/42

Figure 4 (see previous page)

Gfrol-TLZ+/Hb9::GFP- motor neurons display structural and synaptic characteristics of gamma motor neu-
rons. (A) Neurolucida tracings of P20 large Gfro.|-TLZ-/Hb9::GFP+ (black) and small strongly Gfra.I-TLZ+/Hb9::GFP- MNs
(gray). (B-D) Quantitative analyses of dendritic arbors. Gfra.|-TLZ-/Hb9::GFP+ MN primary dendrites are more numerous,
more highly branched (B) and thicker (C), than those of Gfro.l+/Hb9::GFP- MNs. Sholl analysis (D) of Gfrol-TLZ-/Hb9::GFP+
(black line) and Gfro|-TLZ+/Hb9::GFP- (gray line) MNs also reveals differences in the distribution of membrane surface at dif-
ferent distances from soma that are characteristic of a.- vs. -MNs. (E) VGIuT | + contacts (red) are present on P20 Hb9::GFP+
(green) MNis, but absent on Gfrol-TLZ+ (blue)/Hb9::GFP- neurons. (F) VAChT+ contacts (red) are present on both
Hb9::GFP+ (green) and Gfral-TLZ+ (blue)/Hb9::GFP- MNs (E and F, regions in white boxes are magnified in insets). (G)
Quantification of dendritic and somatic VGIuT | and VAChT positive contacts on Hb9::GFP+ (black bars) and Gfra|-TLZ+/
Hb9::GFP- (gray bars) MNs (error bars indicate SEMs; triple and double asterisks indicate significance levels of P < 0.001 and P
< 0.0l in t-test comparisons, respectively). (H-K) Tibialis anterior muscle in a Hb9::GFP mouse showing Cy5-bungarotoxin
(Cy5-Bgtx, blue) labeled intra- and extrafusal neuromuscular junctions (NMJ) and PGP9.5 immunolabeled sensory and motor
axons (red). Hb9::GFP+ motor axons are in green (H). Spindle afferent annulospiral endings (dual asterisks; also shown in the
inset in a serial section) and intrafusal muscle fibers are labeled with PGP9.5. Extrafusal NMJs are innervated by PGP9.5+ and
Hb9::GFP+ motor axons (K, high magnification of boxed area). Most motor end-plates on intrafusal fibers lacked GFP.
Intrafusal Cy5-Bgtx NMJs (white arrowheads) are innervated by PGP9.5-IR axons that are HB9::GFP- (1, high magnification of
boxed area). Yellow arrowheads indicate a few intrafusal NMJs innervated by PGP9.5+ and Hb9::GFP+ motor axons (example

boxed and shown at higher magnification in J). Scale bars: (E,F) 20 um; (H) 200 um (100 um in inset); (1)) 25 um.

downregulation of Gfral expression in surviving MNs.
This spindle dependence of Gfral expression in large
MNs together with our finding that all motor axons inner-
vating extrafusal tibialis anterior muscle fibers are
Hb9::GFP+ suggest that large Gfra.1-TLZ/Hb9::GFP MNs
may be the source of B-skeletofusimotor axons.

To confirm the dependence of y-MNs on muscle spindles,
we analyzed a second mutant in which muscle spindle
induction is inhibited by the conditional elimination of
ErbB2 from embryonic muscle [22]. In these ErbB2NULL/
FLOX /myf5CRE spindle mutants (ErbB2A in future text and
figures), we also observed a marked 34% loss of ChAT+
MNs (P < 0.001, t-test), and a decrease of small (<485
pm?2) Gfral-TLZ+ MNs to 15 + 2% of the total. When
expressed as a percentage of all ChAT+ MNs, there appears
to be an intermediate loss of y-MNs in the ErbB2A spindle
mutant that is significantly different from that found in
control and Egr3KO animals (P < 0.001, one-way ANOVA).
This difference can be explained by a significant decrease
in the total number of large diameter MNs and the sur-
vival of some small MNs in the EtbB2A mutant (see inset
in Figure 5E), suggesting broader effects of the ErbB2A
mutation on MNs compared to Egr3 knockout. Neverthe-
less, together with data from the Egr3KO animals, the loss
of small Gfra1+ MNs in the ErtbB2A mutant confirms the
target dependence of y-MNs.

To determine the time course of y-MN cell loss in the
absence of normal spindle development, we analyzed the
number and size distribution of ChAT+ MNs in neonatal
(P0), P5 and P10 spinal cords from Egr3XO mice. At birth,
when size differences between ChAT+ MNs are not appar-
ent (Figure 5H), there is a modest 8.0% loss of ChAT+

MNs in Egr3XOanimals (n = 2 mutant animals compared
to three controls) and this cell loss is distributed over all
size bins. At P5, when a bimodal distribution of MN cell
bodies is first evident, MN loss increases to 16% (P <
0.001, t-test; n = 4 mutants compared to 6 wild types at
P5) mainly because of the selective loss of 65% (P < 0.001,
t-test) of small diameter y-MNs (<400 pm?; p + 20 of the
estimated P5 small population) (Figure 5H). The loss of y-
MNs is more complete by P10, at which point 25% of all
ChAT+ MNs are lost (n = 4 mutants compared to six wild-
type animals at P10; P < 0.001, t-test), roughly equivalent
to the loss observed at P20 (Figure 5H). These data suggest
that y-MNs begin to differentiate in Egr3kO animals
despite abnormal spindle development, but are progres-
sively lost in the first postnatal week as spindles degener-
ate.

Spindle-derived GDNF regulates the survival of y motor
neurons

To test whether the loss of spindle-derived GDNF could
account for the selective loss of y-MNs we observed in the
muscle spindle mutants, we first analyzed GDNF expres-
sion in muscle spindles in Egr3KO and ErbB2A animals
using a targeted allele of GDNF (GDNFLZ) in which B-
galactosidase (lacZ) expression replaces GDNF [21].
GDNFLacZ was crossed into the Egr3XO background, and
hindlimb muscles analyzed at P5 for GDNF (lacZ) expres-
sion. Histochemical staining for pB-galactosidase activity
revealed an absence of GDNF in postnatal Egr3XO mutant
spindles (Figure 6A, B), demonstrating that GDNF expres-
sion is dependent on Egr3 function in the program of
muscle spindle differentiation. Similar results were found
in the rudimentary spindles of ErtbB2A mutants at P5.
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Figure 5 (see previous page)

Small diameter Gfrol+ motor neurons are selectively lost in the muscle spindle mutant Egr3K© and
ErbB2FLOXI-myf5Cre/+ animals. (A,B) Lamina IX confocal images from a P20 Egr3 wild type (A) and Egr3KO mutant (B). (A,,
B,) Gfra.l-TLZ (red) and (A,,B,) superimposed with ChAT (blue). Small MNs intensely labeled with Gfro.|-TLZ are frequent in
wild type but mostly absent in Egr3KC mutants. Somatic shrinkage is apparent in the few small Gfro.l-TLZ MNs found in Egr3K©
mutants (arrowheads in B|). (C) Average size distribution of ChAT+ (gray bars) and Gfral-TLZ (white bars) MNs in P20
Egr3KO animals (n = 3 animals; error bars indicate SEM). Superimposed curves represent the wild-type distributions of small
and large MNs. ChAT+ and Gfro.l-TLZ+ populations in Egr3KO mutants are both unimodal corresponding with large MNs.
Small MNs are mostly absent (arrow). (D) Number of ChAT+ neurons sampled per ventral horn in 70-um thick sections of
P20 animals. Egr3X© (n = 3 animals) and Erb2A animals (n = 5) show significant depletions compared to controls (asterisks indi-
cate P < 0.001, one-way ANOVA; P < 0.01 post-hoc Tukey-tests). (E) Percentages of the total ChAT+ population represented
by 'small' (<485 um2) MNs labeled with ChAT (gray bars) or Gfra.l-TLZ (white bars) in Egr3K©and Erb2A mutants. Both ani-
mals show a large depletion of small MNs compared to control (asterisks indicate P < 0.001, one-way ANOVA; P < 0.0] when
compared to control using post-hoc Tukey-tests). In ErbA2 animals the reduction is not as pronounced as in Egr3KO animals
despite a larger depletion in total ChAT+ MNs (D). Inset shows the average size distribution histogram in ErbA2 animals (gray
bars, ChAT+; white bars, Gfral+) suggesting partial depletion of both large and small MNs. (F) Average size distribution of
MNs in Egr3K© animals with different combinations of markers: ChAT+ (gray bars), Hb9::GFP+ (green bars), Gfra.|-TLZ+/
Hb9::GFP- (dark blue bars) and Gfro.l-TLZ+/Hb9::GFP+ (light blue bars). Superimposed are the fitted distributions for differ-
ent types of MNs in the wild-type. (G) Average number of MNs per ventral horn in each category. Asterisks denote significant
differences (P < 0.001, t-test) between wild-type (gray bars) and Egr3KO mutants (white bars). Significant differences were
observed in all MNs and in small MNs (<485 um?) labeled with either ChAT or Gfra|-TLZ. Hb9:GFP+ MNs are not signifi-
cantly depleted in Egr3KO mutants, though Gfro.|-TLZ expression is downregulated in surviving large diameter MNs (F). (H)
Time course of size differentiation and depletion of small MNs in Egr3KO animals. Gray bars indicate size distribution in wild
type (WT; n = 3 animals for each age) and black bars in age matched Egr3XC animals (n = 2 at PO, n = 4 at P5 and P10). At PO,
MN sizes are unimodal and there is a small depletion in ChAT+ neurons distributed in all size bins. At P5 there is initial differ-
entiation of small vs. large MNs and in the Egr3KO mutant there is a larger depletion of ChAT+ MNs concentrated in the small
bins. At P10 the size distribution in the wild type resolves into two discrete peaks for the small and large population and in the
Egr3KO mutant the depleted neurons are clearly in the small size bins. Histogram at the right show the percentage depletions

calculated in Egr3KO mutants of different ages. Scale bars: (A, B;) 100 um.

These findings provide indirect evidence that spindle-
derived GDNF is required for y-MN survival.

To address the question of whether spindle-derived
GDNF is required for y-MN survival, we generated a con-
ditional allele of GDNF (GDNFLOX; Figure 6C-E) and
crossed the GDNFLOX mouse to the Egr3-IRES-Cre
(Egr3C€RE) line [22] to selectively eliminate GDNF expres-
sion from muscle spindles. GDNFFLOX/FLOX/Eqy3CRE/CRE
mutant animals had no apparent phenotype at birth and
are viable and mature into adulthood.

To determine whether Egr3CRE could effectively eliminate
GDNF expression in the GDNFFLOX/FLOX [Egr3CRE/CRE mjce,
we used in situ hybridization analysis to examine the
expression of GDNF and the transcription factor Egr3,
expressed in nascent intrafusal fibers upon muscle spindle
induction at E15.5 [24]. In GDNFFLOX/FLOX (no CRE) con-
trols, in situ hybridization analysis performed on contigu-
ous sections of P5 hindlimb muscle revealed the co-
expression of Egr3 and GDNF in muscle spindles (Figure
6F, top panels). In contrast, spindles identified by the
expression of Egr3 in the GDNFFLOX/FLOX/Egr3CRE/CRE
mutant did not co-express GDNF (Figure 6F, bottom pan-
els).

Despite the loss of spindle-derived GDNF, the overall
structure of muscle spindles was normal in these animals.
Analysis of serial semithin sections through polar and
equatorial regions of individual muscle spindles (n = 10
control, n = 6 mutant) revealed that mutant muscle spin-
dles each contain four intrafusal fibers (Figure 6G, H), two
chain and two bag cells, identical to controls. Immunos-
taining for PGP9.5 also showed that intrafusal fibers in
mutant spindles are innervated by annulospiral afferent
terminals similar in overall morphology to controls (Fig-
ure 6], J). Therefore, at the light microscopy level, there
were no obvious alterations in intrafusal or sensory affer-
ent fiber composition and morphology.

Size histograms of ChAT+ MNs revealed a normal bimo-
dal distribution in P20 GDNFFLOX/FLOX controls (n = 3)
and no significant difference in the calculated size average
or SD of the small and large populations in these animals
compared to the fitted distributions of age-matched wild-
type animals analyzed previously (Figure 7A). In contrast,
GDNFFLOX/FLOX [Egr3CRE/CRE animals (n = 5) showed a sig-
nificant (approximately 50%; P < 0.001, t-test) decrease in
the number of small (<485 pm?2) ChAT+ MNs (Figure 7B,
E). This reduction was smaller than, but statistically not
different from, that observed in Egr3XO mutants (Figure
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Figure 6 (see previous page)

Loss of muscle spindle-derived GDNF in the Egr3X© and GDNFFLOX/Egr3CRE conditional mutant mouse. (A,B)
GDNEF (lacZ) is expressed in muscle spindles (black arrowheads) in P5 control gluteus maximus (GDNFla<Z-/Egr3*/-) but absent
in mutants (GDNFa<Z-/Egr3K0). (C) Conditional gene targeting; loxP sites were introduced in the targeting construct around the
GDNF gene coding sequence (CDS) before exon 3. An FRT-flanked neomycin-resistance (Neo) expression cassette was
inserted upstream of the 5' JoxP site and excised by crossing to ACTB-FLPe mice [14] to generate the GDNFLOX allele. (D)
Southern blot analysis of genomic DNA from mouse tails. Wild-type (+/+) and GDNFFLOX alleles are represented by 16 and 7.2
kb bands, respectively. (E) GDNFFLOXIFLOX and GDNFFLOX/* mice were identified by PCR using primers P| and P2 (shown as
arrowheads) that flank the 3' JoxP inserted in the 3' untranslated region of the GDNF gene. (F) In situ hybridization of P5 GDNF
FLOXIFLOX/F gr3CRE/CRE mutant and GDNFFLOXIFLOX/Egr3WT control hindlimb muscle spindles with probes for Egr3 and GDNF. Analy-
sis was performed on |10 um-thick contiguous cryosections to demonstrate co-expression of Egr3 and GDNF in control and
lack of GDNF expression in mutant muscle spindles after Cre recombination. (G,H) Semithin (I um) sections showing that
control (G) and mutant spindles (H) have the same number of intrafusal muscle fibers (indicated by numbered arrows). (1))

PGP9.5-immunoreactive annulospiral endings are similar in P20 GDNFFLOX/FLOX (no Cre) control (G) and in GDNFFLOX/FLOX/
Egr3CRE/CRE animals (H). Scale bars: (B) 200 um; (F), 50 um; (H) 10 pum; (J) 50 um.

7E). Moreover, -MN depletion occurred with a similar
time course in GDNFFLOX/FLOX/Egr3CRE/CRE animals (see
inset in Figure 7B) compared to Egr3XO animals (Figure
5H). As a result, ChAT+ MNs in the GDNFFLOX/FLOX/
Egr3CRE/CRE mutant comprise a single population well-fit
by a single Gaussian (correlation = 0.86) with a mean
average cross-sectional area of 708 um? + 200 ( + SD),
which is similar to that estimated for the large MN popu-
lation in GDNFFLOX/FLOX controls (758 + 201 pm?2). Simi-
larly, selective loss of -MNs was also observed in mutants
carrying a conditional (GDNFFLOX) and null (GDNFLacZ)
allele of GDNF and a single copy of Egr3¢RE (Figure 7C, E).

Finally, to demonstrate that the selective loss of fusimotor
neurons was due to the targeted elimination of GDNF
from intrafusal muscle and not Schwann cells where
GDNF [49] and Egr3CRE [22] are also expressed, we
repeated this experiment with the muscle-specific Cre
line, myf5CRE[20], and again consistently found a selective
loss of small diameter (<485 pm2) MNs (n = 3; Figure 7D)
that was not significantly different from that observed
with Egr3CRE (Figure 7E).

Discussion

The study of muscle spindle function in motor control
dates back to the first description of small diameter 'y '
motor fibers in 1930 [50], but important questions
remain about the development and significance of a sys-
tem capable of controlling muscle spindle sensitivity
independent of muscle contraction. In molecular terms,
little is known about the mechanisms that control the dif-
ferentiation of y-MNs and determine their unique iden-
tity. To begin to address these questions, we have
characterized several molecular genetic markers of y-MN
identity - high expression of Gfra.l and low expression of
the Hb9::GFP transgene and NeuN - and demonstrate the
selective dependence of fusimotor neuron survival on tar-
get muscle spindle-derived GDNF in the early postnatal

period. With these markers we also show that MNs from
which B-skeletofusimotor axons originate survive in the
absence of muscle spindles but downregulate Gfral
expression as they become pure a-MNs, innervating only
extrafusal muscle. Finally, we take advantage of the selec-
tive trophic dependence of y-MNs to establish a mouse
model with which we can begin to explore the role of y
fusimotor activity in motor behaviors.

GDNF dependence of y motor neuron survival

MN identity is established during development by segre-
gation into columns, divisions and ultimately pools of
neurons that innervate individual target muscles (for a
review, see [51]). Even within a motor pool, MNs can be
further divided into those that innervate extrafusal mus-
cle, and those that only innervate the intrafusal fibers of
the muscle spindle, the y-MNs. Though often not distin-
guished, y-MNs differ from o-MNs in several fundamental
ways, such as size, dendrite morphology, target choice,
electrophysiological properties and synaptic organization.
Yet we know little about the mechanisms that control y-
MN differentiation. One recent study demonstrates that
the acquisition of GDNF dependence is a very early step in
the functional differentiation of fusimotor neurons [12].
When GDNF signaling is disrupted in all MN precursors,
differentiating y-MNs are selectively lost during the period
of programmed cell death by a mechanism that is likely
mediated by the anti-apoptotic protein bcl-2 [52]. This
occurs before the induction of muscle spindles at E15.5,
which indicates that embryonic neurons committed to a
v-MN fate depend on early source(s) of GDNF other than
the muscle spindle. In the study by Gould et al. [12] it was
also concluded that the dependence of y-MNs on GDNF
signaling does not extend beyond P5 because no MNs are
lost when the GDNF co-receptor gene Ret is conditionally
deleted between P5 and 10. However, our data demon-
strate that muscle spindles are a critical source of GDNF
required for the survival of y-MNs in this same postnatal
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Figure 7 (see previous page)

Genetic elimination of muscle spindle-derived GDNF results in selective loss of gamma motor neurons. (A)
Size distributions of ChAT+ MNs in GDNFFLOXIFLOX[Egr3WT (no Cre) controls at P20 are comparable to wild types (lines). (B)
ChAT+ MNs losses in the absence of spindle-derived GDNF (GDNFFLOX/FLOX[Egr3CRE/CRE mytants). Small ChAT+ MNs represent
32+ 1% (£ SEM) of all MNs in GDNFFLOXIFLOX [Egr3+/+ and 16.8 £ |.1% in GDNFFLOXIFLOX/Egr3CREICRE animals. Inset shows a deple-
tion at P5 comparable to Egr3KO animals (see Figure 5F). (C) Similar loses in compound heterozygotes with one conditional
and one null GDNF allele and a single copy of Egr3¢RE (GDNFFLOXILACZ[Egr3CREI*) |nset shows a normal size distribution in one
animal carrying one wild type and one floxed GDNF allele and a single Egr3<RE copy. (D) GDNF elimination from all muscle pre-
cursors using myf5CRE/* results in similar losses of small ChAT+ MNs. Large MN numbers are unaffected in conditional mutants
by targeted removal of GDNF from spindles. (E) Comparison of the percentage of small MNs (<480 um2) in different geno-
types. No differences were detected between wild-type and homozygous GDNFLOX (no Cre) controls. Egr3KC mutants and sev-
eral conditional/floxed GDNF mutants crossed to Egr3°RE or myf5RE showed significant depletions compared to wild-types and
GDNFFLOX (no Cre) controls (asterisks indicate P < 0.001 one-way ANOVA followed by P < 0.0 post-hoc Tukey comparisons).
Depletion of small MNs in Egr3KO animals were more pronounced than in other genotypes, but differences were not statisti-

cally significant. N's, number of animals analyzed in each genotype.

period. Our conclusion is based on genetic studies in
which we selectively deleted GDNF from muscle spindles
using a novel conditional (floxed) GDNF allele and both
muscle- and spindle-specific Cre drivers (Figure 7). The
results were highly consistent in all 12 P20 animals in
which GDNF was deleted from muscle spindles. The
explanation for the contrasting conclusions with Gould
and colleagues' study is unclear, but may relate to the tim-
ing and efficiency of Cre-mediated genetic deletion. That
is, functional deletion of Ret by the inducible B-actin-Cre
used by Gould and colleagues may not occur in y-MNs or
occur at a time when spindle-derived GDNF is no longer
required for survival. Alternatively, spindle-derived GDNF
may be required well in advance of the observed postnatal
7-MN degeneration, though we find no precedent for such
a delayed response to the removal of trophic support.

Molecular development of ymotor neurons and the role of
spindle-derived factors

In the absence of GDNF signaling, y-MNs degenerate
selectively and no loss of a-MNs is observed [12]. Yet,
Gfral is expressed in many postnatal large diameter MNss,
albeit at lower levels, which may reflect the differential
dependence of some a-MNs on GDNF signaling [12,53]
or the role of GDNF in other aspects of MN development
- for example, cell body position, dendrite patterning and
connectivity, motor axon projection and target innerva-
tion [25,53-55].

An additional role for GDNF signaling in MNs is sug-
gested by our analysis of large Gfra.1+ MNs in the Egr3Ko
mutant, which supports a role for GDNF in the specifica-
tion of B-skeletofusimotor neurons. In Egr3X0O animals, all
large MNs survive, but downregulate Gfral, perhaps
because of the loss of spindle-derived GDNF. This spin-
dle-dependence of Gfral expression argues that large
Gfral+ MNs interact directly with muscle spindles and
therefore must represent those MNs that send a B-skeleto-

fusimotor collateral to intrafusal muscle fibers. Our anal-
ysis also shows that B efferents are Hb9::GFP+, and
together these findings argue that the subpopulation of
MNs that co-express Gfro.1-TLZ and Hb9::GFP are (3-skel-
etofusimotor neurons that innervate both intra- and
extrafusal muscle. The variable numbers of mature Gfro1-
TLZ+/Hb9::GFP+ MNs we observed in different pools may
then reflect differences in the amount of B-innervation in
different muscles. Spindle-derived factors may maintain
B-skeletofusimotor collaterals and regulate aspects of y-
MN differentiation - for example, strong Gfral expres-
sion, Err3 expression or downregulation of NeuN - but the
degeneration of muscle spindles and the selective loss of
y-MNss in the Egr3XO mutant precludes this analysis.

The differential expression of the Hb9::GFP transgene in
large diameter MNs is regulated independently of Gfral
expression and is not influenced by spindle-derived fac-
tors. Moreover, Hb9::GFP transgene expression does not
faithfully reflect the expression of the endogenous Hb9
gene, which analysis of the Hb9-NLS-LacZ knock-in mice
demonstrates is expressed in both o- and y-MNs [6].
Extensive ectopic expression of the Hb9::GFP transgene
has been reported in non-Hb9 interneurons in lumbar
segments [29,30], suggesting that regulatory elements of
the Hb9 gene are missing in the transgene that could also
account for its consistent, selective downregulation in
postnatal y-MNs.

Our data provide further evidence that reciprocal interac-
tions between the muscle spindle and the sensory and
MNs that innervate it are critical to establish and maintain
the circuits that provide proprioceptive sensory feedback
during motor behaviors. Primary afferents induce muscle
spindles through a mechanism dependent on neuronal
Neuregulin 1 (Nrgl) [24]. In response to Nrgl signaling,
early myocytes differentiate into intrafusal muscle by a
program that is dependent in part on the activity of the
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transcription factor Egr3 [17]. In the absence of Egr3, mus-
cle spindles fail to express Neurotrophin 3 (NT-3) [56],
which muscle spindle afferents require to maintain func-
tional monosynaptic connections with MNs in the post-
natal period [22,56]. In a similar way, muscle spindles
also serve as a late source of GDNF, which is required for
the survival of y-MNs and may regulate some properties of
B-skeletofusimotor axons as well.

Transcriptional profile of ¥y motor neurons

Some GDNF actions on MN development are mediated
by induction of the ETS transcription factor Pea3
[54,55,57]. In the mouse embryo, Pea3 is localized only
to certain motor pools [58] in a pattern that is not consist-
ent with the widespread distribution of fusimotor neu-
rons in most motor pools; this is also the case in the
postnatal spinal cord (NAS, unpublished observation). In
its role in fusimotor neuron development, GDNF appar-
ently functions through alternative transcriptional path-
ways independent of Pea3. The recent report that Err3 is
restricted to postnatal y-MNs [6] suggests a role for this
transcription factor in y-MN differentiation. But like
Gfra1 and Hb9::GFP, the differential regulation of Err3 in
7-MNs occurs in the first weeks after birth so it does not
appear to function in the earliest specification steps.

The transcriptional profile of y-MNs may also be reflected
in the selective downregulation of NeuN, a predomi-
nantly nuclear protein that is able to bind DNA and is
expressed exclusively in postmitotic neurons [31]. The
recent report that NeuN is not expressed in postnatal y-
MNs [6] conflicts somewhat with our finding of low
NeuN levels relative to a-MNs. This may be a question of
sensitivity of detection, but nevertheless both studies are
in agreement in that NeuN immunoreactivity is signifi-
cantly weaker in y-MNs compared to a-MNs. The mecha-
nisms regulating the expression of NeuN in y-MNs are not
understood, but other specific neuronal populations,
including Purkinje cells, mitral cells and most retinal cells,
in the inner granular layer also lack NeuN immunoreac-
tivity [31]. NeuN immunodetection is also reduced or
abolished after neuronal injury [59] and significantly
decreased in MNs after axotomy [60]. Though its exact
nature and function are unknown, NeuN is found in areas
of low chromatin density [61] and may directly or indi-
rectly relate to the state of chromatin, which controls dis-
tinct patterns of gene expression involved in neural
development [62]. It is therefore tempting to suggest that
NeuN-related epigenetic mechanisms are part of a pro-
gram that regulates y-MN differentiation and several
molecular genetic aspects of fusimotor identity.

Functional implications
In contrast to Egr3XO animals [17] and mutants lacking
spindle-derived Neurotrophin 3 [22], mice without spin-

http://www.neuraldevelopment.com/content/4/1/42

dle-derived GDNF have no apparent defects during nor-
mal, unchallenged locomotion. This is consistent with
our demonstration that muscle spindles and their afferent
terminals are structurally normal in GDNFFLOX/FLOX/
Egr3CRE/CRE mice. The absence of an obvious motor phe-
notype in animals in which y-MNs are significantly
depleted could reflect residual y-fusimotor activity or
functional compensation by B-skeletofusimotor inputs to
muscle spindles. However, the lack of an overt phenotype
during normal locomotion on level ground, as observed,
for example, during slow speed treadmill locomotion,
may reflect low level recruitment of y-control during this
type of locomotion. Further study of these mutants using
locomotor and other behavioral tasks that require
dynamic regulation of muscle spindle sensitivity [5] are
needed to demonstrate the specific role of the y-fusimotor
system in motor control.

Conclusion

Atbirth, y-MNs express high levels of Gfra.1 and low levels
of NeuN and the Hb9::GFP transgene. Together, these
define a unique molecular criterion for y-MN identity. The
strong expression of Gfral in postnatal y-MNs correlates
with our finding that y-fusimotor neurons depend selec-
tively on muscle spindle-derived GDNF for their survival.
In demonstrating this trophic dependence in mice, we cre-
ated a novel animal model in which y-MNs are selectively
lost. Unlike other animals with muscle spindle or propri-
oceptor defects, this mutant preserves muscle spindle
structure, sensory afferent innervation, and functional
sensorimotor connectivity with no a-MN loss and so pro-
vides a genetic model to study the specific role of y-MNs
in motor control.
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