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FTIR-ATR-based prediction and modelling of
lignin and energy contents reveals independent
intra-specific variation of these traits in bioenergy
poplars
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Abstract

Background: There is an increasing demand for renewable resources to replace fossil fuels. However, different
applications such as the production of secondary biofuels or combustion for energy production require different
wood properties. Therefore, high-throughput methods are needed for rapid screening of wood in large scale
samples, e.g., to evaluate the outcome of tree breeding or genetic engineering. In this study, we investigated the
intra-specific variability of lignin and energy contents in extractive-free wood of hybrid poplar progenies (Populus
trichocarpa × deltoides) and tested if the range was sufficient for the development of quantitative prediction
models based on Fourier transform infrared spectroscopy (FTIR). Since lignin is a major energy-bearing compound,
we expected that the energy content of wood would be positively correlated with the lignin content.

Results: Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method
ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260
to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was
applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR) unit to measured values of
lignin or energy contents. The best models with high coefficients of determination (R2 (calibration) = 0.91 and 0.90;
R2 (cross-validation) = 0.81 and 0.79) and low root mean square errors of cross validation (RMSECV = 0.77% and 62
J g-1) for lignin and energy determination, respectively, were obtained after data pre-processing and automatic
wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples
yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively.

Conclusions: These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin
and energy estimations in large data sets. Our study revealed that the intra-specific variations in lignin and energy
contents were unrelated to each other and that the lignin content, therefore, was no predictor of the energy
content. Employing principle component analyses we showed that factor loadings for the energy content were
mainly associated with carbohydrate ring vibrations, whereas those for lignin were mainly related to aromatic
compounds. Therefore, our analysis suggests that it may be possible to optimize the energy content of trees
without concomitant increase in lignin.
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Background
There is an increasing demand for the production of
fast-growing woody plants such as poplars as a sustain-
able resource for the production of biofuels, heat or
electricity as well as for pulp and paper production.
However, efficient wood utilization is strongly affected
by the lignification of the cell wall. Lignin is an intensely
cross-linked heteropolymer that renders plant cell walls
rigid, hydrophobic and chemically stable; in angiosperms
lignin is mainly composed of guaiacyl and syringyl units
[1]. Wood processing requiring delignification is often
an expensive bottleneck for its utilization. The lignin
content is, therefore, a key target for breeding or genetic
engineering to enhance wood properties [2]. The energy
content of wood is another important breeding target
because renewable biomass feedstock is increasingly
used to replace fossil fuels in modern heating systems
operated with wood pellets.
Attempts to improve wood properties have mainly

focused on poplars (Populus spp.) because these tree
species display fast growth rates, can be grown in coppi-
cing systems and are amenable to genetic modification
[3,4]. The direct determination of lignin content by wet
chemical methods and the measurement of energy con-
tents are laborious and time-consuming. Hence reliable,
high-throughput methods for the determination of lig-
nin and the energy content are in great demand to iden-
tify valuable germplasm for specific applications such as
bioenergy poplars for the conversion into bioethanol or
for the production of heat and electricity.
Several spectroscopic techniques have been employed

to analyze wood. For example, the chemical composition
[5-8], basic density [9], and physical properties [10] of
wood samples have been predicted by near infrared
reflectance spectroscopy (NIRS) and multivariate statisti-
cal analyses. Furthermore, Fourier transform infrared
(FTIR) spectroscopy has been applied for determination
of wood density [11], chemical composition [12-14], lig-
nin distribution [15], discrimination of wood from var-
ious tree species [16,17], and changes in wood
properties during wood composites manufacture [18,19].
NIRS uses infrared light to detect overtones and combi-
national vibrations, whereas FTIR employs mid infrared
regions of the radiation to detect primarily functional
and fundamental vibrations of the molecular constitu-
ents of the irradiated matter. The FTIR absorption
bands are often overlapping and make direct assignment
of peaks to chemical constituents difficult [20]. Never-
theless, selection of wavenumbers related to lignin was
successfully applied to predict lignin in eucalypt and
spruce wood [21,22].
In the past decade, FTIR spectroscopy was improved

by the development of an attenuated total reflectance

(ATR) unit. Earlier measurements required preparation
of samples in transparent KBr pellets whose absorbance
was measured by the FTIR spectrometer [20]. In mod-
ern FTIR instruments an ATR crystal, which is pressed
onto the untreated sample, enables direct interaction of
the measuring beam with the sample and reflection of
the attenuated radiation to the spectrometer. This tech-
nological advance increases the sensitivity of FTIR-based
analyses and has, e.g., been used to determine the S/G
ratio of poplar wood [7]. Calibrations to determine the
lignin content of wood without preparation of KBr pel-
lets have not yet been published. Furthermore, it may be
possible to use the same spectra for the prediction of
other wood properties. Here, we tested if FTIR-based
models can be developed as tools for rapid prediction of
the energy content.
The goal of the present study was to investigate the

natural variability of lignin and energy contents in wood
of field-grown poplar progenies of Populus trichocarpa
× P. deltoides and to develop FTIR-based calibration
models for high-throughput measurements of these
traits. For this purpose the lignin and energy contents
were determined in coppiced wood of the hybrid
poplars with a modified acetyl bromide lignin assay and
a calorimeter combustion test, respectively. FTIR-ATR
spectra were recorded for extractive-free wood powder.
Multivariate statistical analyses, in particular partial least
square regression (PLSR) modelling, were applied to
calibrating the FTIR spectra against the primary wet
laboratory chemical data and the measured energy con-
tents. Data pre-processing methods and automated
selection of wavenumber ranges resulted in a high pre-
dictability and precise estimation of lignin contents and
the calorific values of poplar wood from short-rotation
forestry.

Results and Discussion
Natural variability in lignin and energy contents of poplar
wood samples
The lignin contents of extractive-free wood samples of
P. trichocarpa × deltoides ranged from 23.4% to 32.1%
(w/w) with a mean of 27.0% (Figure 1A). The natural
variation in lignin contents within this poplar plantation
was comparable to that found for Eucalyptus globulus
wood (23.4% - 34.5%, [21]) or for juvenile wood of Sitka
spruce [22]. The different wood samples analysed here
also broadly cover the variability observed for the lignin
contents of different poplar species [23,24]. The natural
variability in lignin in our sample set was an important
precondition for the development of calibration models
(see below), because if the range was too narrow, i.e.,
within one order of magnitude of the measurement
error, it would be impossible to determine correlations
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between the FTIR-ATR measurements and the lignin
contents.
The energy content in the extractive-free poplar wood

samples ranged from 17260 to 19767 J g-1 with a mean
of 18514 J g-1 (Figure 1B). Similar calorific values have
previously been found in P. × euramericana wood from
a short rotation plantation (average calorific value: 19.3
MJ kg-1; [15]), whereas straw of agricultural crops gener-
ally contains lower energy contents (Glycine max (L.)

Merr.: 17.0 MJ kg-1, Sorghum bicolor (L.) Moench: 17.2
MJ kg-1, [25]).
Since lignin has about twice the energy content of cel-

lulose [26], we wondered if the lignin content of the
samples would correlate with their energy content.
However, we obtained no significant linear correlation
between the calorific values and lignin contents (R2 =
0.0973, P-value = 0.1344). This contrasts previous
reports in which strong correlations were obtained for
these traits [27-29]. In contrast to our study, the pre-
vious analyses were conducted across different plant
species, thus, encompassing a broader range of lignin
and calorific values. Furthermore, untreated samples
were used and therefore, additional constituents such as
wood extractives may have affected the calorific values
of biomass. Our study shows that the intra-specific var-
iations in lignin and energy contents were unrelated in
poplar.

Analyses of FTIR-ATR spectra for the identification of
chemical components contributing to the lignin and
energy content of wood
Figure 2 illustrates FTIR-ATR spectra of hybrid poplar
coppice wood for the fingerprint region between 1800
cm-1 and 800 cm-1. The absorption peaks were assigned
tentatively to chemical components according to litera-
ture data [30-39]. The positions of the most characteris-
tic bands for lignin in the fingerprint region are 1593
and 1506 cm-1 for aromatic skeletal vibrations, 1458 and

Figure 1 Frequency distribution of lignin (A) and energy (B)
content in extractive-free wood samples of hybrid poplar.

Figure 2 FTIR-ATR spectra of wood samples with low (L), medium (M) and high (H) lignin contents in the finger-print region. Each
spectrum is the mean of three replicate samples. ATR-FTIR spectra were converted to transmission spectra by automatic correction for the
wavenumber-dependent influence on the penetration depth on the radiation, then base-line corrected (Rubberband method) and pre-processed
with the method of vector normalization. The lignin contents determined with the acetyl bromide method of the wood samples were L: 23.4%,
M: 27.5% and H: 31.5%, respectively.
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1420 cm-1 for C-H deformation, 1328 cm-1 for syringyl
ring plus guaiacyl ring, 1234 cm-1 for syringyl ring and
C = O stretch, and 1120 cm-1 for aromatic skeletal
vibrations (Figure 2). As shown in the inset a closer
examination of the region from 1650 cm-1 to 1380 cm-1

indicated a clear association between absorbance
changes in this region and differences in chemically
determined lignin contents (Figure 2 inset). Therefore,
this region was used for manual wavenumber selection
during the cross validation phase (see below).
In contrast to lignin, nothing is known about wave-

number regions related to differences in wood energy
contents. A direct comparison of FTIR spectra of wood
samples with low, medium and high calorific values did
not reveal any conspicuous absorption bands (not
shown). To obtain evidence for the wood constituents
that might be responsible for differences in energy con-
tent and those important for differences in lignin con-
tents, we conducted principle component analyses
(PCA) on two sets of selected samples: one consisting of
spectra of samples with the lowest (10 samples), med-
ium (10 samples) and highest energy contents (10 sam-
ples) according to their calorific values and the other of
spectra of samples with lowest (10 samples), medium
(10 samples) and highest (10 samples) lignin contents as
determined by wet chemical analyses. Factor loadings of
the two spectral sample sets were calculated in the
wavenumber region from 1800 cm-1 to 900 cm-1 to
identify the most divergent wavenumbers (Additional
file 1, Figure S1, Additional file 2 Table S1). PC1, PC2,
PC3 and PC4 of the “energy set” explained 73.3%,
20.1%, 5.5%, and 1.1% of the variation, respectively. In
the “lignin sample set”, the factor loadings of the first,
second, third, and fourth PC explained 68.7%, 22.2%,
6.8%, and 2.3% of the variation respectively. The first
three peaks in PC1 in the two data sets for energy and
lignin samples were overlapping encompassing the car-
bohydrate region and a wavenumber for guaiacyl lignin
(Additional file 1, Figure S1, Additional file 2, Table S1
and Additional file 3, Table S2). All other major peaks
of the first four PCs diverged between the energy and
lignin sets, respectively. Influential wavenumbers for
wood energy content were identified mainly as peaks in
the factor loadings for ring vibrations of carbohydrates
(Additional file 2, Table S1). As expected, wavenumbers
typical for aromatic compounds were prevalent in PCs
for lignin (Additional file 3, Table S2: 14 out of 32 most
divergent wavenumbers) but not in those for energy
content (Additional file 2, Table S1: 7 out of 32). In
conclusion, this analysis shows that the lack of correla-
tion between lignin and energy content was the result of
different constituents contributing either to energy con-
tent (mainly certain properties of the carbohydrates) or
lignin (aromatic compounds), respectively.

Predictive models for the estimation of lignin and energy
content with FTIR-ATR spectroscopy
Quality spectra with high peak resolution and smooth-
ness of baseline are a prerequisite for further quantita-
tive analysis. As demonstrated by Faix and Böttcher
[40], the traditional KBr pellet method suffers from poor
spectral reproducibility caused by various factors includ-
ing, among others, moisture content in the pellets, room
humidity, sample inhomogeneity in the pellet, and vari-
able pellet thickness. In contrast, wood powder can
directly be used for FTIR-ATR spectroscopy. For our
wood samples the reproducibility of the FTIR-ATR
spectra was high (SD = 0.23%), which is a precondition
for PLS prediction model building. Furthermore, ana-
lyses of the score plots of the PCA up to four factors
did not reveal obvious patterns between the wavenum-
ber range (2000 - 800 cm-1) of the calibration FTIR
spectra (not shown). Outliers identified by the Mahala-
nobis distance test (8%) were removed prior to calibra-
tion and cross validation.
The FTIR spectra were, thus, suitable to construct

predictive models for lignin and the energy contents,
respectively. To optimize the model, several data pre-
processing methods were examined for the wavenumber
range from 2000 - 700 cm-1 and for selected wavenum-
bers, respectively. With respect to lignin, vector normal-
ization improved the calibration model [R2 = 0.782 and
a low number of PLS factors (4)] in comparison with
the utilization of raw spectra when the spectral range
between 2000 and 700 cm-1 was included (Table 1).
Application of this spectral range implies that the exclu-
sion of wavenumbers unrelated to functional groups
within the lignin molecules would not reduce the pre-
dictive ability of the PLS models. To test this assump-
tion, the wavenumber range between 1650 cm-1 and
1380 cm-1, which exhibited the largest differences for
samples differing in lignin (Figure 2), was selected for
model construction. The resultant predictive calibration
was significantly improved because the R2 values for the
model statistics increased from 0.782 to 0.823 for cali-
bration, and from 0.666 to 0.734 for cross validation
(Table 1). Correspondingly, root mean square errors
also decreased for both calibration and cross validation
(Table 1). This supports that the observed differences in
the FTIR-ATR spectra of different trees were associated
with changes in the lignin contents and indicates that
inclusion of unrelated wavenumbers in the model con-
struction decreases the predictive power. We, therefore,
also tested automatic wavenumber selection for the pre-
diction of lignin content applying a set of pre-defined
frequency regions and combinations of subregions. This
method achieved the best test statistics based on high
R2 and low values for RMSEC and RMSEP; automatic
wavenumber selection yielded the following reduced
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wavenumber ranges: 1802 - 1690 cm-1, 1362 - 1250 cm-

1, and 1140 - 1028 cm-1. The predictive model for lignin
content constructed on this basis including the first 12
of the total of 16 calculated PLS factors and accounted
for 90.6% of the variance in the predicted lignin content
values. The inclusion of the subsequent 4 PLS factors
caused merely marginal increases (92.4%) and was there-
fore, not taken into account. The FTIR-ATR prediction
model resulting from internal cross validation for lignin
was highly acceptable as shown by the plot of the mea-
sured versus the predicted lignin contents (Figure 3A).
This prediction model did not include wavenumber
ranges typical for lignin, and the number of PLS factors
used in the model is relatively high compared to the
other models.
Concerning the estimation of energy content, data

pre-processing (i.e., first derivative and baseline correc-
tion with Rubberband method) also led to an improved
calibration model with a high R2 (0.865) but a relatively
high number of PLS factors (10) (Table 2). The model
was slightly improved by automatic wavenumber selec-
tion with pre-defined frequency regions and combina-
tions of subregions, which reduced the range from 2000
to 700 cm-1 to the finger print region of 1770 - 990 cm-

1. The predictive model for energy content with auto-
matic wavenumber selection including the first 11 of 16
total calculated PLS factors was considered most appro-
priate, as this model accounted for 87.6% of variance in
the predicted calorific values (Table 2, Figure 3B).
The performances of the FTIR-based predictive mod-

els for the lignin content were comparable to other stu-
dies employing NIRS or FTIR spectroscopy
[5,8,11,21,22,41,42]. In those previous studies R2 values
for the lignin models ranged from 0.74 to 0.98 and for
the independent validation from 0.57 to 0.97,

respectively and the corresponding errors RMSEC and
RMSECV were 0.58 to 1.0% and 0.36 to 1.6%, respec-
tively. However, caution must be exercised when com-
paring the regression coefficients because many
variables such as the spectral range [5,8], utilization of
raw spectra [22] or smoothing, offset and normalization
[21], and tree species [41,42] used for the predictive
models may all have significant effects on this para-
meter. Although some previous studies obtained slightly
stronger correlations and lower errors our predictive
models are still sufficiently strong to cope with the rela-
tively limited ranges of lignin and energy contents aris-
ing from natural intra-specific variability.

External validation of the optimized calibration model for
the estimation of lignin and energy content
External validation was performed using the best predic-
tive model obtained after internal cross validation. For this
purpose an additional set of independent wood samples
was scanned and the FTIR-ATR spectra were used to pre-
dict the amount of lignin and energy contents, respec-
tively. Samples whose predicted values exceeded the
calibration range were counted as outliers and excluded
from the evaluation procedure. The samples were also
used for the determination of lignin and energy contents
in the evaluation step. The predicted values were plotted
as dependent and the measured values as independent
variables. The regression models for the validation of lig-
nin and energy content gave high R2 values and low root
mean square errors of prediction (RMSEP = 0.75% and 69
J g-1 respectively, Figures 4A and 4B). In general, the pre-
dicted values for independent validation samples were in
good agreement with experimental data, even though for
the validation of energy content wood material from dif-
ferent growth conditions was used.

Table 1 Performance indicators of Fourier transform infrared spectroscopy with attenuated total reflection-based
partial least squares regression model for prediction of acetyl bromide lignin content within lignin ranges from 23.4%
to 32.1% for calibration and from 23.6% to 29.9% for independent validation, with various preprocessing methods as
well as manual and automatic restriction of the wavenumber range

Mid-infrared region b Automatic restriction c Manual restriction d

Descriptor a No preprocessing 1st derivative VN 1st derivative + VN VN VN

R2 (calibration) 0.770 0.742 0.782 0.778 0.906 0.823

R2 (cross-validation) 0.614 0.638 0.666 0.651 0.806 0.734

RMSEC (%) 0.894 0.940 0.864 0.876 0.584 0.770

RMSECV (%) 0.937 0.978 0.940 0.952 0.743 0.860

RMSEP (%) 1.13 1.09 1.05 1.07 0.80 0.91

No. of PLS factors 6 4 4 5 12 3
a Descriptor explanations are as follows: R2 = coefficient of determination (a measure of the degree of fit of the regression); RMSEC = root mean square error of
the calibration samples; RMSECV = root mean square error of the cross validation samples; RMSEP = root mean square error of the prediction samples; VN =
vector normalization.
b Wavenumber range for the mid-infrared region is 2000 - 700 cm-1.
c The wavenumber ranges resulting from automatic restriction are 1802 - 1690 cm-1, 1362 - 1250 cm-1, and 1140 - 1028 cm-1.
d The wavenumbers resulting from manual restriction are 1650 - 1380 cm-1.
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Conclusions
In this study we have shown that the natural variation of
wood components in extractive-free samples of hybrid
poplar wood was sufficient for the construction of cali-
bration models for lignin and the energy contents. This

required the determination of lignin via wet chemical
methods and the measurement of calorific values
through calorimetry, acquisition of high quality FTIR
spectra achieved by the application of an ATR unit and
the building PLS model by means of a chemometric
software. Once established, data acquisition time for the
analysis of extracted wood materials is reduced to min-
utes and permits large numbers of samples to be pro-
cessed. The optimized and externally validated
calibrations are of sufficient quality to efficiently assess
lignin and energy content of poplar wood in large-scale
breeding or genetic engineering programmes. FTIR-ATR
spectroscopy in combination with partial least squares
regression modelling may also be useful for the optimi-
zation of wood utilization in the pulping industry or for
biofuel or heat production purposes. Furthermore, our
study documents for the first time that the intra-specific
variability of lignin and energy contents are unrelated to
each other. Using principle component analyses we
identified influential wavenumbers for lignin and energy
contents. While the factor loadings for lignin identified
as expected aromatic compounds, carbohydrate ring
vibrations were prevalent for the energy content. As
both traits are apparently associated with different che-
mical constituents, we suggest that it will be possible to
improve the energy content of wood without a concomi-
tant increase in lignin.

Methods
Plant material and sample preparation
Single stem hybrid poplars (Populus trichocarpa × del-
toides) were coppiced and plant material was harvested
in the fourth year of the second coppice cycle (n = 95
individuals) on the field site at Headley (U.K.). Further
details of the plantation have been described elsewhere
[4]. The stems were stripped of bark and pith. Wood

Table 2 Performance indicators of Fourier transform infrared spectroscopy with attenuated total reflection-based
partial least squares regression model for predication of gross calorific values within a range from 19767 to 17260 J
g-1 for the calibration set and from 18255 to 17345 J g-1 for the external validation set with various preprocessing
methods as well as automatic restriction of the wavenumber range

Descriptor a Mid-infrared region b Automatic restriction c

No preprocessing 1st derivative BLC 1st derivative + BLC BLC

R2 (calibration) 0.856 0.873 0.869 0.874 0.904

R2 (cross-validation) 0.646 0.662 0.697 0.686 0.787

RMSEC (J g-1) 67.5 66.1 66.4 65.7 62.1

RMSECV (J g-1) 99.8 92.0 86.2 84.1 76.7

RMSEP (J g-1) 104 103 99 94 87.3

No. of PLS factors 12 10 11 10 11
a Descriptor explanations are as follows: R2 = coefficient of determination (a measure of the degree of fit of the regression); RMSEC = root mean square error of
the calibration samples; RMSECV = root mean square error of the cross validation samples; RMSEP = root mean square error of the prediction samples; BLC =
Baseline correction, Rubberband method.
b The wavenumbers for the mid-infrared region are 2000 - 700 cm-1.
c The wavenumber range resulting from automatic restriction is 1770 - 990 cm-1.

Figure 3 Partial least square regression (PLSR) models for the
prediction of lignin (A) and energy (B) content in extractive-
free poplar wood exhibiting a natural range of variability.
Lignin was measured with the acetyl bromide method. The energy
content was determined with a combustion calorimeter. Plots of
measured versus predicted values for lignin (A) and energy (B)
content were calculated with the best models with cross-validation
results after data preprocessing and automatic wavenumber
selection (Table 1 and Table 2). Solid lines represent regression line
of best fit between measured and predicted values.
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blocks were oven-dried (60 °C) for 2 days. For some
validation experiments one-year-old poplar wood (P. ×
canescens), grown in Göttingen (Germany), was used (n
= 15 individuals). Dry wood was cut into small pieces
with secateurs and ground to a flour in a ball mill
(MM2000, Retsch, Haan, Germany) at an amplitude of
90 min-1 for approximately 4 min in liquid nitrogen to
prevent heating and to accelerate the milling process. A
fine powder with a particle size less than 20 μm was
achieved to avoid disturbance originating from the influ-
ence of particle size on FTIR spectra [40].
Interfering extraneous substances (e.g., soluble fats,

waxes, simple sugars, and low-molecular soluble pheno-
lics) were removed by extraction with acetone. For this

purpose the wood mill was successively extracted 4-
times for 2-days in 100% acetone at room temperature
[43]. The resulting extractive-free wood, also known as
structural biomass or plant cell walls, was used for all
further analyses.

Wet chemical analysis of lignin content
The lignin content of wood powder was determined
using a modified acetyl bromide method [44]. One mL
of freshly prepared 25% (w/w) acetyl bromide/glacial
acetic acid solution was added to 1 mg air-dry, extrac-
tive-free wood powder in a 2-mL polypropylene safe-
seal micro-tube (Sarstedt, Nümbrecht, Germany). The
micro-tube was sealed, placed in a water bath and main-
tained for 30 min with repeated mixing at 70 °C. Subse-
quently, the reaction was stopped by cooling the micro-
tube in an ice-water bath. The reaction mixture was
mixed and 100 μL of the mixture was transferred into a
2 mL safe-seal micro-tube containing 200 μL of 2.0 M
sodium hydroxide. The volume was made up to 2 mL
with 1.7 mL of glacial acetic acid. The UV absorbance
of the solution was determined at 280 nm against a
blank solution which was run in conjunction with the
sample. The extinction coefficient of lignin extracted by
acetyl bromide of ε = 20.09 L·g-1·cm-1 was used to cal-
culate the lignin contents of the samples [44]. All ana-
lyses were conducted in triplicate and means were
calculated for each of the 95 wood samples from Head-
ley. The pooled standard deviation obtained by the assay
was 0.042%. The lignin content was expressed as per-
centage of oven-dry extractive-free wood. Moisture con-
tent of the wood powder was determined before and
after drying at 60 °C.

Determination of the calorific value of wood
The calorific value of the extractive-free wood was
analyzed with a bomb calorimeter (IKA® C200 Calori-
meter System; IKA® Werke GmbH & Co. KG, Staufen,
Germany). About 100 mg extractive-free wood was
weighed and pressed into a pellet using a press
attached to the calorimeter. The resultant pellet placed
inside a combustible crucible was then combusted with
O2 (ca. 30 mbar) in a decomposition bomb. The calori-
fic value was determined as the increase in the tem-
perature of the water as a direct measure for the
internal energy of the burning reaction in the decom-
position vessel via an isoperibolic automatic procedure.
Benzoic acid tablets were used as the standard (net
calorific value: 26457 ± 20 J g-1) to calculate the calori-
fic values of the samples. All tests were performed in
duplicate and means were calculated for 61 samples
from Headley and 15 samples from Göttingen. It was
not possible to use all 95 Headley samples because we
did not have sufficient material.

Figure 4 External validation of the PLSR models for lignin (A)
and energy contents (B) prediction. FTIR-ATR spectra were
produced for an independent set of wood samples and used to
predict the lignin or energy contents using the best models from
table 1 and 2, respectively. Lignin and energy contents were
determined by the acetyl bromide method and a combustion
calorimeter, respectively. The predicted values were plotted against
the measured values. Solid line represents regression line of best fit
between measured and predicted values.
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FTIR-ATR spectroscopy
The FTIR-ATR spectra of extractive-free wood powder
were measured with the FTIR spectrometer Equinox 55
(Bruker Optics, Ettlingen, Germany), equipped with a
deuterium triglycine sulfate detector and an attached
ATR unit (DuraSamplIR, SensIR Europe, Warrington,
UK). The scanning range was from 600 to 4000 cm-1

with a resolution of 4 cm-1.
The wood powder was pressed against the diamond

crystal of the ATR device. A pressure applicator with a
torque knob ensured that the same pressure was applied
for all measurements. For each wood sample, 32 scans
were acquired and averaged. Background scanning and
correction was carried out regularly at 15-20 min inter-
vals. For each sample, three different subsamples were
measured and the resultant mean spectra were used for
further analyses. The standard deviation of spectra of
the subsamples was obtained by the OPUS 5.5 software
(Bruker Optics, http://www.brukeroptics.com/). The
standard deviations of the different biological samples
were used to create an overall standard deviation using
the multi-evaluation tool in the OPUS software. All
samples were included.

Principal component analysis (PCA) of selected FTIR
spectra
For PCA we identified two sample sets, each consisting
of 30 spectra. One contained 10 wood samples with
lowest, 10 with medium and 10 with the highest lignin
content measured with the acetyl bromide method in 95
Headley samples. The second set consisted of 10 wood
samples with the lowest, 10 with medium and 10 with
the highest calorific values determined with the bomb
calorimeter in 61 Headley samples. For data analysis,
the region of 1800-900 cm-1 of the FTIR spectra was
baseline-corrected via the Rubberband method, vector-
normalized, and mean-centred. Then the data were used
for PCA. PCA removes the redundancy of having many
data points varying in a correlated way by transforming
the original data into a set of new and uncorrelated
PCs. The first four factor loadings were plotted to
gather information about the major components respon-
sible for variability in the fingerprint region of the IR
spectrum. All mathematical operations were carried out
with OPUS version 5.5 software (Bruker Optics, http://
www.brukeroptics.com/).

Calibration development and statistical analysis
The calibration models were developed using the
QUANT 2 chemometric software package provided in
the OPUS 5.5 software (Bruker Optics, http://www.bru-
keroptics.com/). For calibration and internal validation
of lignin contents, the 95 Headley samples were split
into two groups, a first group of 61 samples for internal

validation (calibration and cross validation) and a sec-
ond group of 34 samples for external validation of
lignin.
For the calibration and validation of calorific values,

aliquots of the same group of 61 samples from Headley
employed for lignin analyses and additionally 15 samples
from Göttingen were used. Of this set 15 samples (some
from Göttingen and some from Headley) were removed
as independent validation set. The remaining samples
were used for calibration and cross validation. Subse-
quently, the model was validated by testing the
validation.
For all calibrations, the following data pre-processing

algorithms were tested prior to model construction: first
derivative, vector normalization, baseline correction
(Rubberband method), and first derivative + vector nor-
malization. Subsequent to pre-processing, wavenumber
selection was executed either by iteratively combining
and restricting wavenumber ranges or by automatically
choosing wavenumber ranges via a set of pre-defined
frequency regions and combinations of subregions.
The QUANT software package can be used for princi-

pal component analysis (PCA) and for developing partial
square models (PLS modelling). The FTIR-ATR spectra
for all wood samples were combined into a single data
matrix (X-matrix) and the values obtained by chemical
lignin analyses or by bomb calorimetry were combined
into a response matrix (Y-matrix). The calibration spec-
tra were mean centred by subtracting the mean spec-
trum from each sample spectrum prior to PLS
modelling. Wood component concentrations and energy
contents were also mean centred. The PLS algorithm
available in the QUANT software package simulta-
neously decomposes both absorbance spectra and con-
stituent (or calorific value) matrices. The number of
principal components (or factors) used for PLS predic-
tion model was determined by observing the response of
the residual Y-variance with added factors. When addi-
tional factors did not substantially reduce the residual
Y-variance, the model constructing process was
completed.
All PLS models were constructed with cross valida-

tion. The cross validation process was performed as fol-
lows: One sample was removed systematically from the
data set, then a PLS mode was constructed with the
remaining samples to predict the value of the Y-variable
for the removed sample. This process continued until
each sample had been excluded from the data set and
used for validation.

External validation
External validation of the PLS model for the estimation
of lignin content was performed with an independent
sample set consisting of 34 hybrid poplar coppice wood
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samples that were not included in the development of
the calibration model. External validation of the PLS
model for the prediction of calorific energy value was
carried out with another sample set consisting of 15
samples of stem wood from poplars that had been
grown in Göttingen (Germany) or Headley (U.K.) not
included in model development or cross-calibration.

Outlier detection
Spectral outliers during multivariate calibration and vali-
dation phase were detected trough Mahalanobis distance
calculations. The Mahalanobis distance is a measure of
the similarity of the analyzed spectrum and the mean
value of all others [45]. A spectrum with a Mahalanobis
distance larger than the limit [Limit = (Factor × Rank)/
M; M is the number of samples in the calibration data-
set] can be recognized as an outlier and removed from
the list of standards.
The factor ranged between 2 and 10. To calculate the

limit of the Mahalanobis distance, a factor of two was
too restrictive for the prediction of unknown natural
samples. As a consequence, too many samples were
marked as outliers. A factor of five was used in this
study. 8% of the calibration samples were detected as
outliers in calibration and cross validation stages.

Additional material

Additional file 1: Figure S1 - Factor loadings of base-line corrected
and normalized mean spectra of poplar wood samples exhibiting
natural variability in energy and lignin contents. (a) first, (b) second,
(c) third, and (d) fourth factor loadings for lignin (black line) and energy
content (red line), respectively. The different numbers in the figures refer
to absorption peaks described in Additional file 2, Table S1 and
Additional file 3, Table S2. According to the approach of Tillmann [46],
Rana et al. [47] and Nuopponen et al. [41] the first eight highest peaks
were assigned in the factor loading for PC1 (a), PC2 (b), PC3 (c), and PC4
(d), respectively. PC1, PC2, PC3, and PC4 of the “lignin set” (black line)
explained 68.7%, 22.2%, 6.8%, and 2.3% of the variation respectively. PC1,
PC2, PC3, and PC4 in the “energy sample set” (red line) explained 73.3%,
20.1%, 5.5%, and 1.1% of the variation, respectively.

Additional file 2: Table S1 - Absorption band assignments of the
first (PC1), second (PC2), third (PC3) and fourth (PC4) factor
loadings obtained by principal component analysis for the energy
content. The eight highest peaks are indicated for each factor loading.
The numbers in parentheses indicate the position according to peak
height (see Additional file 1, Figure S1).

Additional file 3: Table S2 - Absorption band assignments of the
first (PC1), second (PC2), third (PC3) and fourth (PC4) factor
loadings obtained by principal component analysis for lignin
content. The eight highest peaks are indicated for each factor loading
(Additional file 1, Figure S1). The numbers in parentheses indicate the
position according to peak height.
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