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Abstract

Animal models play a central role in all areas of biomedical research. The process of animal model
building, development and evaluation has rarely been addressed systematically, despite the long
history of using animal models in the investigation of neuropsychiatric disorders and behavioral
dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their
quality is proposed. The process starts with defining the purpose(s) of the model, preferentially
based on hypotheses about brain-behavior relationships. Then, the model is developed and tested.
The evaluation of the model takes scientific and ethical criteria into consideration.

Model development requires a multidisciplinary approach. Preclinical and clinical experts should
establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of
assessing the replicability/reliability, predictive, construct and external validity/generalizability, and
relevance of the model. We emphasize the role of (systematic and extended) replications in the
course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate
the reliability/replicability, validity, and generalizability of result.

Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal
welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria.
Weighing the animal's welfare and considerations as to whether action is indicated to reduce the
discomfort must accompany the scientific evaluation at any stage of the model building and
evaluation process. Animal model building should be discontinued if the model does not meet the
preset scientific criteria, or when animal welfare is severely compromised. The application of the
evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed
model of schizophrenia.

In a manner congruent to that for improving animal models, guided by the procedure expounded
upon in this paper, the developmental and evaluation procedure itself may be improved by careful
definition of the purpose(s) of a model and by defining better evaluation criteria, based on the
proposed use of the model.
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Background

Animal models play a central role in the scientific investi-
gation of behavior and of the (patho)physiological mech-
anisms and processes that are involved in the control of
normal and abnormal behavior [1-7]. When talking about
animal models we almost always implicitly assume that
they are meant to model humans (or a species other than
the one investigated; [8]); i.e. that they focus on the
homology/analogy of the behavior and underlying sub-
strate in the model animal with that in humans. Despite
the long history of using animal models in the investiga-
tion of neuropsychiatric disorders (see [9]) and the central
role they play in biomedical research in general, the proc-
ess of model building, development and evaluation has
rarely been addressed systematically.

We define animal models in the behavioral neuro-
sciences, which include models of neurobehavioral disor-
ders, as follows:

An animal model with biological and/or clinical relevance
in the behavioral neurosciences is a living organism used to
study brain-behavior relations under controlled conditions,
with the final goal to gain insight into, and to enable pre-
dictions about, these relations in humans and/or a species
other than the one studied, or in the same species under
conditions different from those under which the study was
performed [10].

The model of a neurobehavioral disorder must be broken
down into elemental phenotypes that are observables (i.e.
elements that can be observed and measured directly),
measurables (i.e. elements that can be assigned a qualita-
tive or quantitative attribute) and testables (i.e. are meas-
urables that can be submitted to statistical evaluation in
order to test and confirm - or falsify - a hypothesis) [11],
which should preferentially be testable in both humans
and animals [12,13]. These testables need to be defined
operationally.

Recently, there is a strong focus on defining endopheno-
types, i.e. characteristics related to the phenotype of pri-
mary interest. Endophenotypes must first be detected and
validated using the data of patients and their (first degree)
relatives [14], although the search may be guided and
their validation supported by animal studies [15]. Then,
attempts can be made to translate these endophenotypes
to animal models. Endophenotypes may be behavioral,
i.e. cognitive, neuropsychological, (psycho)physiological
[16], biochemical, endocrinological, or neuroanatomical
[17,18]. Endophenotypes are hypothesized to mediate the
impact of gene products on the phenotype under study,
i.e. they are considered as symptoms (phenotypes) with a
clear genetic connection. Endophenoptypes may in some
sense be "closer to the genes" than the key symptom as
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described according to the psychiatric nosology [18,19].
Identifying endophenotypes and basing models on endo-
phenotypes may facilitate generalization of results from
the model species to other species, including humans.

In this paper we'll focus in particular on the model evalu-
ation stage that is part of an iterative process involved in
developing animal models [10]. The starting point of the
process of model building is the definition of the pur-
pose(s) of the model [10,20]. Then, the model is devel-
oped and tested. The evaluation of the model takes into
consideration the questions it is expected to answer, its
validity - in particular predictive, construct [21] - and
external validity or generalizability [22]. Simultaneously,
it takes animal welfare issues into account [23,24].

We will first review the purpose of animal models, and
will then introduce and explain the concepts reliability,
replicability, different forms of validity, and the concept
of animal welfare. They are all relevant in the model eval-
uation process, where they serve as evaluation criteria.
Next, we propose a workflow for model building and
model evaluation. The role of replications in this process
will be highlighted. Finally, we perform a model evalua-
tion of the neonatal hippocampal lesions as a model of
schizophrenia, that is guided by the described workflow
and we address some recent concerns about the transla-
tion of the results obtained in "standard" animal models
to humans. We suggest that systematic model building
and evaluation and the application of strict evaluation cri-
teria improves the translational properties of animal mod-
els.

Purpose of animal models

Animal models are developed and used for varying pur-
poses [1,25,26]. Explicit statements about the (expected)
purposes of a model are necessary to define criteria for
model building, model evaluation and model use
[1,20,27,28]. The explicit definition and designation of
the specific purposes that an animal model should fulfill
is basic as it allows to define a set of weighted criteria for
evaluating the model [26]. These criteria, combined with
criteria of reliability, replicability and validity are used in
the model evaluation stage. Of course it will not always be
possible to anticipate whether the model will accomplish
the intended purpose. Thus, one starts with assumptions
which should be tested in a continuous process. If evi-
dence accumulates that the intended goal/purpose cannot
be reached, then one should consider abandoning further
development of the model [29].

The purpose already determines the generality of the
answers a model can provide [26]. It is, for example, of
importance to define whether the 'full blown pathology"',
the syndrome, or 'specific aspect(s)' of neurobehavioral
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disorder, e.g. specific symptoms, are to be modeled [1,27].
However, trying to model the entire pathology is seen as
an unrealistic attempt (e.g. [30,31]). Simply abandoning
the term "model" because it is highly unlikely that it can
mimic the full blown pathology or syndrome, as sug-
gested by O'Neil and Moore [31], will not help to improve
animal experimentation. Unfortunately, we often do not
yet understand the full pathophysiology of a disease and
are therefore compelled to focus on specific aspects of the
neurobiological disorder [32]. In the long run, attention
should shift from modeling the symptomatology of a dis-
ease to unraveling the pathological mechanisms behind a
disease [6]. However, the best achievable quality of an
animal model of a neurobehavioral disease is delimited
by the state of knowledge about the disease.

An overview of different types of 'model animals' (part A),
the independent and dependent variables in animal mod-
els (part B), and the sources of criteria for developing and
evaluating the model (part C) is provided in Table
1[33,34]. An extended discussion of the different animal
models can be found in [10].

The purposes of animal models of neurobehavioral disor-
ders usually are:

@ first, to enhance our understanding of the underlying
substrates and mechanisms controlling normal and
abnormal behavior, i.e. the brain-behavior relation. This
is done experimentally by, for example, inducing dissoci-
ations between processes, sub processes and modulating
influences, either pharmacologically, through the destruc-
tion of neural tissue, or by using animals with naturally
occurring deficits [35]. Investigating the naturally occur-
ring or experimentally induced brain damage and its con-
sequences should help to elucidate the primary and
secondary sequelae and unravel their underlying deleteri-
ous molecular cascade [36] (see Table 1, part A).

@ second, to translate these insights from the preclinical
animal study to the clinic (and vice versa [37]), through

» identifying new targets, pathways and mechanisms of
drug action [38-40];

» assessing the effects of putative neuroprotective, anti-
degenerative, revalidation-supporting, mental health pro-
moting, and/or cognition-enhancing compounds or treat-
ments [27,41-44], and assessing risks (safety, teratology,
toxicology) associated with these treatments [45].

Validity of animal models

Validation of a model is a scientific method to improve
the confidence in a model, i.e. to evaluate its plausibility
and consistency. Validity is defined as , (..) the agreement
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between a test score or measure and the quality it is believed to
measure." [46], p. 131). It is not a demonstration of the
"truth" of a model. One validates, not an animal model,
but the interpretation of the data arising from this model.
Validity in that sense is a major criterion for evaluating
animal models [1]. No animal model can be valid in all
situations, for all purposes. Validity is restricted to a spe-
cific use of the model, and consequently, must always be
open for discussion and re-evaluation [47].

There is no general consent about how to weigh the differ-
ent categories of validity in the model evaluation process.
We hold that the validation process should consider the
reliability and replicability (internal validity), predictive
validity, construct validity, and external validity (i.e. gen-
eralizability) of a model. The concepts of internal validity,
face, predictive and construct validity have been eluci-
dated in a number of publications (e.g. [10,48,49]). Here,
we provide a short description of these concepts.

Reliability and replicability, internal validity

Reliability is primarily a quality of the assessment instru-
ment, whereas replicability or reproducibility is a quality
of the results obtained using a particular animal model.
Reliability thus indicates how consistent an assessment/
testing device/method is, i.e. it expresses the extent to
which a measurement instrument yields consistent results
each time that the measurements are performed under the
same experimental conditions. Replicability or reproduci-
bility is the degree of accordance between the results of
the same experiment performed independently in the
same or different laboratories [50,51].

Internal validity refers to the quality of the experimental
evaluation of the animal model, i.e. to how well a study
was performed, how strictly putative confounding varia-
bles were controlled, and how confident one can be that
the changes observed in the dependent variable(s) are
caused by experimentally manipulating the independent
variable(s), and not by confounds, i.e. factors that might
also affect the independent variable and may offer alterna-
tive explanations of the results obtained [22]. It does not
make sense to speculate about the external validity/gener-
alizability of experimental studies outside the laboratory,
in the 'Outside World' or "Real World", as long as it has
not been verified that the results are valid within the lab-
oratory (internal validity; [22,52]). High reliability and
replicability are the foundation of good internal validity.

Face validity

Face validity is the degree of descriptive similarity
between, for example, the behavioral dysfunction seen in
an animal model and in the human affected by a particu-
lar neurobehavioral disorder. Similarity of symptoms in
fact may be the starting point of indentifying a potential
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Table I: Overview of animal models.
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A: Types of 'model animals'

Normal animals

Animals with naturally occurring deficits

Animals with experimentally induced
deficits

Normal subjects, i.e. animals without any
observable behavioral deficit

Note: At first glance, normal animals are not
model animals for the study of neurobehavioral
disorders. However, they may be used for drug
screening, or as in vivo (behavioral) bioassay.
Normal animals are used to

* assess the safety/toxicology risk of a putative
therapeutic;

* obtain an estimate of the putative abuse
liability of a compound;

* explore the neurobiological specificity of
compounds and their molecular and cellular
mechanisms of action

In addition: studying behavior in normal animals
provides the baseline data for identifying
abnormal behavior

Spontaneously and endogenously occurring
psychiatric or neurological conditions;
spontaneously occurring mutations; aging
animals

Genetic lines: inbred strains and their crossings
Selection lines, established through artificial
selection favoring low and/or high values of a
particular trait within a given population for a
number a successive generations; preferentially
including an unselected control line for
comparison

Selected extremes from a particular animal
population, e.g. good vs. poor learners,
dominant vs. subordinate animals, non-
aggressive vs. aggressive animals

Transgenic and knockout animals;
Chromosomal substitution strains; animals
from mutagenesis screens

(after thorough phenotyping and validation)
Selection lines resulting from selective breeding
Environmental factors: e.g. animals
experiencing acute or chronic stress, pain, or
sleep deprivation

Animals with disruptions induced by dietary
composition (e.g. tryptophan depletion),
pharmacological compounds (e.g. scopolamine,
MK-801), or electrically, or by hypoxia or
anoxia

Animals with focal or global ischemic, embolic,
or hemorrhagic cerebral stroke

Animals with CNS-specific lesions: neuro- or
immunotoxic lesions; lesions induced by
aspiration, ablation (knife cuts); radio-frequency
lesions, cryogenic lesions

B: Independent and dependent variables

Independent variable
(the model animals listed in part A)

Dependent variables and/or (endo)phenotypes

Neuropathological changes

Behavioral changes

E.g. genetically modified animal, aged animal,
lesioned animal, ischemic animal, hypoxic
animal, aged and lesioned animal, i.e.
combination of deficits (see part A)

Damage or dysfunctions induced: site and size
of neuronal damage (neuropathology), effects
on specific neuronal circuits or
neurotransmitter systems, psychophysiological
and biological (endo)phenotypes

Homology of damaged area(s) or
neuropathological changes.

Operational definition(s) of the
neuropathological (endo)phenotype(s)

Behavioral dysfunction or malfunction:
impaired cognitive performance, impaired
sensorimotor functions, neuropsychiatric
symptoms, behavioral (endo)phenotypes

Homology of disrupted processes or impaired
functions

Operational definition(s) of the behavioral
(endo)phenotype(s)

C: Setting criteria for model building and model evaluation

Experts: clinicians, pathologists, molecular
biologists, etc., depending on which aspects of
the animal model are considered

Experts must:

* define as exactly as possible the
(neuro)pathological symptoms to be modeled;
* elaborate a set of model evaluation criteria

Experts: behavioral scientists such as
psychiatrist, (bio)psychologists, ethologists,
behavioral pharmacologists

Experts must:

* define the behavioral (dys)functions to be
modeled as precisely as possible, possibly
derived from clinical diagnostic criteria;

« elaborate a set of model evaluation criteria,
which may be derived from psychological test
theory for the tests applied to assess the
dysfunctions

Part A lists different types of 'model animals' for the study of behavioral dysfunctions (modified from [33]). It focuses on the type of subject
(independent variable) and is not concerned with the type of dependent variable measured
In part B, (modified from [10]), the independent and the dependent variables in deficiency models are tabulated.

In part C, the expertise needed to define criteria for building a 'good' animal model and for its evaluation is listed. The validity of a model should be
determined using multidisciplinary, interdisciplinary, or — preferentially — transdisciplinary approaches (the latter addressing a common problem
against the background of a shared conceptual framework by employing theories, concepts and scientific methods of the different disciplines
involved; [34]). No explicit set of rules exists for the mental, physical, and/or neuro(patho)logical changes (2" column) that are considered to cause

the behavioral dysfunctions (374 column).
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animal model of neurobehavioral disorders [53].
Although face validity has been proposed to constitute a
major (or even the most important; e.g., [1]) criterion for
model evaluation, the strong emphasis on this criterion
has been criticized (e.g., [21]). Natural selection may
operate on the consequences of behavior, not on the
behavior per se, and therefore, the consequences of the
behavioral pattern, not the behavior itself, may be iso-
morphic [54]. Moreover, it is conceivable that species-
dependently, similar behaviors could serve different func-
tions or that different behaviors serve the same function.
Consequently, the same behavioral dysfunctions may be
the expression of different underlying physiological or
psychological states [3]. Demanding face validity may
thus prove to be an unrealistic criterion [2]. It incorpo-
rates the risk of anthropomorphic reasoning, which may
retard or even prevent the development of relevant animal
models [1]. Too strong an emphasis on face validity may
also form an obstacle for developing animal models using
phylogenetically lower animal species [55], as the similar-
ity of symptoms [49] is generally higher in species that are
phylogenetically closer to humans (see comments by
[56]). In agreement with Sarter and Bruno [21], we con-
sider face validity as a criterion of less importance in
appraising an animal model of neurobehavioral disor-
ders. A lack of face validity does not per se invalidate a
model [3,10]. In any case, animal models with face valid-
ity have to go through the scientific process of establishing
their predictive and construct validity [53].

Predictive validity

An animal model with high predictive validity (also called
criterion validity; [57]) predicts behavior in the situation
it is supposed to model, i.e. it allows extrapolation of the
effect of a particular experimental manipulation from one
species to other species, including humans, and from one
condition (e.g. the laboratory) to the other (e.g. the 'Real
World'), or from one testing timepoint to another [57].
Predictive validity may share components of generaliza-
bility (or external validity; see below) of a model.

A narrower concept of predictive validity is used in psy-
chopharmacology (e.g. [58-62]) where it is considered to
be of particular importance in drug development pro-
grams [63]. In this context, predictive validity refers to the
ability of a drug screening or an animal model to correctly
identify the efficacy of a putative therapeutic [64]. How-
ever, in diseases with a poor therapeutic standard, only a
few weakly effective compounds may be available in the
clinic, which hardly can be used to determine the predic-
tive validity of animal models. A consequence of relying
too heavily on the predictive validity as most crucial crite-
rion is that these animal models may be unsuited to detect
novel therapeutic principles [21].
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Construct validity

According to Epstein [57] construct validity points to the
degree of similarity between the mechanisms underlying
behavior in the model and that underlying the behavior in
the condition, which is being modeled. Construct validity
thus is a theory-driven, experimental substantiation of the
behavioral, pathophysiological, and/or neuronal compo-
nents of the model [21], i.e. it reflects the degree of fitting
the theoretical rationale and of modeling the true nature
of the symptoms/syndrome to be mimicked by the animal
model [1]. Constructs define a framework of theoretically
relevant relations [46,47] that reflects the soundness of
the theoretical rationale [64]. Construct validity expresses
the goodness of fit between the relationship of the manip-
ulations (i.e. independent variables) and of the measure-
ments (dependent variables) with the theoretical
hypotheses to be tested [65]. In agreement with Sarter and
Bruno [21], we argue that construct validity is the most
important criterion for animal models because it
addresses the soundness of the theory underlying the
model, and because it provides the framework for inter-
preting data generated by the model.

External validity/Generalizability

Assessment of the generalizability (or "external validity")
of experimental findings should be integral part of the
model building process. External validity is the extent to
which the results obtained using a particular animal
model can be generalized/applied to and across popula-
tions (and eventually, species) [66] and environments, or
"the extent to which experimental findings make us better
able to predict real-world behavior" [67]. The assessment
of the external validity is an empirical process. This proc-
ess may be performed by systematic replications or differen-
tiated replications, i.e. replications of the original studies in
which a particular set of independent variables is varied
systematically in order to evaluate whether the results
obtained are robust across, for example, rearing and hous-
ing conditions, ages, gender, and test conditions or tests
used. Ideally, a replication study is not a mere repetition
of an earlier study, but should extend the scope of previ-
ously performed studies, allowing statements about the
generality of results [68].

It is generally accepted that the measures usually taken to
increase internal validity may compromise external valid-
ity/generalizability [51,69,70], simply because they
restrict the range of conditions under which the relation-
ship between dependent and independent variables is
being tested. On the other hand, higher internal validity
fosters higher explanatory power [71].

Whatever classification system is being used, determina-
tion of the generalizability/external validity should con-
stitute a key feature of the model building process. A

Page 5 of 23

(page number not for citation purposes)



Behavioral and Brain Functions 2009, 5:11

number of factors, such as rearing and housing environ-
ments, gender and age of the animal, and the exact testing
conditions, have an impact on the generalizability of find-
ings originating from an animal model.

Replications in model building and model validation
Replicability of results is fundamental in empirical
research and is one of the pillars of science [72-74]. Exper-
imental results are preliminary as long as they have not
been corroborated, preferably by investigators other than
those who originally performed the investigations
[10,75]. Replications are essential for determining the reli-
ability/replicability, and external validity/generalizability
of a model.

Often, the original study will suffer from poor statistical
power due to the small number of animals involved. Rea-
sons for underpowered studies may be the restricted avail-
ability of model animals, or the drive and objective of
ethical committees and regulatory authorities to mini-
mize the number of animals permitted in a study [76]. In
that case, successful replications will increase the confi-
dence in the results and implications of the study [77].

One may apply a "replication battery" to estimate the reli-
ability/replicability (internal validity) and generalizability
(external validity) of the results of the first, original study.
This replication battery can be conceived as a two-, or if
warranted multiple-tiered, experimental approach [72]
(see Figs. 1 and 2; [78-80]).

The first step consists of determining the replicability/relia-
bility, i.e. the internal validity of the original findings. To
this end, the replication study should as close as possible,
with high precision and accuracy, repeat the original study
[74]. These studies are called "close" [68], "exact" [72], or
'direct' [73] replications. Standardization, including the
specific strain/subline used [81] is a sound basis for
assessing the replicability/reliability of results. Even the
most accurate repetition of a study, however, will deviate
from the previous one to some degree, i.e. a close replica-
tion will already provide first estimates of the generaliza-
bility of a study. If a replication study fails to corroborate
the results of the original study, either the original study
or the replication study may reflect false findings [73,74].

The second step consists of determining the generalizability
or external validity of results. This is achieved through
extending the replication by varying the levels of relevant
factors in the repetition (called: "systematic replication”
[73] or "differentiated replication" [68]). In these replica-
tion approaches, major aspects of the experimental condi-
tions are (systematically) varied, such as rearing and
housing environments, gender and age of the animal, and
the exact testing conditions that may have an impact on

http://www.behavioralandbrainfunctions.com/content/5/1/11

Original study (first characterization of the
animal model)

First replication(s)
« Exact, close (“mere”), or direct replication:
in exact, close or direct replications, all aspects of
the replication must be as close as possible to
those in the original study. This type of replications
necessitates a high degree of standardization.
Even then, an identical replication may be nearly
impossible.

v

Subsequent extended replications
o Partial replication: some procedural
modifications, whereas all other aspects closely
follow the original study;

Systematic or differential replication:
variations in major independent variables (e.g.
rearing-, housing-, and test-conditions, gender);
Conceptual replication: investigation of same
relationships/constructs as in the original study,
but using different procedures.

v i}

Extended replications eventually originate new
insights that may initiate a new iterative cycle of
generating revised or new hypotheses and
hypthesis-testing studies.

Assessment of the
replicability/reliability of
the original findings;

[—1 verification or
disconfirmation; detection
of false positive results
and false hypotheses.

Assessment of
generalizabilty/ external
validity; identifying the
|| conditions under which
the generalization does
not hold; identification of
putative confounding
variables.

Figure |

Replication studies in the model validation process.
Replication studies can be used in a two-tiered approach to
assess the reliability/replicability and generalizability/external
validity of experimental findings.

the generalizability of findings originating from an ani-
mal model (see above). In "partial replication" studies
(slight) procedural modifications are introduced whereas
all other aspects closely mimic the original study (a "true"
replication according to [72]). Conceptual replications
investigate the same relationships/constructs as the origi-
nal study, using different procedures (a "true" replication
according to [72]). In quasireplications, species different
from the one used in the original study are tested ([77],
see Fig 2, last column). Quasireplications are a first step to
develop an animal model in a different species and may
initiate a new process of model building and model eval-
uation.

Some of the major factors that should be taken into
account for replications are the effects of the rearing and
housing conditions (e.g. [82-84]), gender differences [85,86],
and the age of the animals, such as ontogenetic aspects, [87-
91], and the effects of aging, [92,93] (see Fig. 2). Factors
that might affect the behavioral phenotype of an animal
model may in principle be investigated systematically
during the model validation process. A number of these
factors are depicted in Fig. 3[83]. Whereas the abovemen-
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Standard conditions of model development

http://www.behavioralandbrainfunctions.com/content/5/1/11

“Standard” laboratory
housing (usually small
same-sex groups, no
objects in cage, inci-
dentally nesting material)

One gender (usually
males; sometimes
females, or pooled data
of males and females
are used)

adults)

One age (usually young

A small number of tests One species, usually
rat, or
(genetically modified)

mouse

Extended model development: increasing generalizability (external validity)

Different housing Both sexes
conditions, such as
environmental

enrichment

3 months

12 months

Different ages
a) ontogeny, e.g.:
from birth to adulthood

Sel

b) aging, e.9.:

(young adult)

(middle-aged)

6 24 month
(old)

Additional tests
(incl. tests that are
believed to measure
the same tra|t)

Different species,
including non-rodents

e.g. rat

€.g. (mini)pig

Figure 2

Increasing the generalizability (or external validity) of a model. This can be achieved by assessing the effects of rearing
and housing conditions (first column) through partial, systematic, and conceptual replications (see Fig. 1). Gender effects (sec-
ond column), ontogenetic and aging effects (third column) should be an integral part of the model building process. In addition,
the battery of tests for assessing the dependent variables (see Table I, Part B, second and third column) should be extended
and should include tests that are believed to measures the same trait/construct (fourth column; e.g. the Barnes maze [78], the
T-maze [80], and the Morris maze [79] may be used to assess spatial working memory performance). Quasireplications are not
part of the model building process, but may be used for assessing the generalizability across species.

tioned factors (e.g. environment, gender, aged) can be var-
ied systematically in controlled experiments, others are
laboratory specific. These factors act as confounds and are
held responsible for poor replicability of results across
laboratories. (e.g. [84,94]). To complicate matters further,
these factors might interact in multiple ways [83].

Multiple behavioral tests (see Fig. 2, fourth column) should
be applied that approximate the range of symptoms char-
acterizing the disease/symptomatology to be modeled
(e.g. [95-97]), including different tests with different end-
points that are believed to tap the same underlying states
and traits [20,61,98-100]. Eventually, to assess the gener-
alizability of a model, the tests should be applied under a
range of testing conditions such as, for example, dietary
regimes [101], or behavior-modulating drugs [92], which
may challenge the system. The effects of these experimen-

tal manipulations should be investigated in a later stage of
the process of model building and development.

It has been questioned whether each successful replica-
tion must reject the null-hypothesis (H,: no effects of the
experimental manipulations) [72], and whether the fail-
ure to replicate may reflect a type II error [102]. In any
case, the direction and size of effects should be replicable
[68].

Extended replications allow identifying the conditions
under which the generalization does not hold, and they
contribute to detecting putative confounding variables
and assessing their effects [68]. These replications expose
the strength and weaknesses of findings and the limits of
their generality. Extended replications eventually generate
new insights that may initiate a new iterative cycle of gen-
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erating revised or new hypotheses and in its wake hypoth-
esis-testing studies [103].

Standardization of the breeding, housing and sampling/
testing conditions is crucial for ensuring consistency
among investigators and comparability of data across dif-
ferent laboratories [81,83,104-106] and over time [94].
They are needed to build up appropriate databases inte-
grating results from different laboratories with the aim to
characterize the phenotypes of the model animal (e.g.
[83,105,107,108]), and for establishing databases with
normative data of background and reference strains
[109,110]. Standardization of test conditions is also cru-
cial for test validation.

While it is possible that housing and testing animals
under standardized conditions may yield singular or "idi-
osyncratic" findings (e.g. [70,111]), this will be detected
as soon as one tries to replicate the study, or modifies
housing or testing conditions (see above) as part of the
refinement of the model or of determining the external
validity of a model. Some anticipate that strict standardi-

zation may reduce the odds of serendipitous or unex-
pected findings, in particular due to a diminished
diversity in the experimental approaches [112] and
because too rigid standardization bears the risk of over-
looking or missing interesting phenomena [113]. These
putative disadvantages, however, don't outweigh the sci-
entific benefits of standardization.

Summarizing, face validity is at the naive level, i.e. the test
looks like it is valid, because of the perceived resemblance
(isomorphy) between the model and the situation or
process to be modeled [64]. Predictive validity is at the
empirical level, i.e. data show that the outcome obtained
in the model has some predictive value for the situation or
process to be modeled. Construct validity is at the theoret-
ical level. Finally, generalizability/external validity is at the
empirical level, and comprises components of both predic-
tive and construct validity. One can also say that face
validity reflects the isomorphic aspect, predictive validity
the correlational aspect, construct validity the homolo-
gous aspect [114,115], and generalizability/external valid-
ity the relevance of a model (i.e. the ability to make
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scientifically sound and relevant predictions about the
"Real World").

Animal welfare and minimized discomfort: ethical criteria
for model evaluation

Most students of (ab)normal behavior and neurobehavio-
ral disorders will adhere to a utilitarian view on the use of
model animals [116-118], i.e. animal experimentation is
justified by the expected benefits for humans (and eventu-
ally other animals) [118]. This does not rule out the obli-
gation to take into consideration animal welfare, and to
take any action needed to reduce discomfort and pain
[119]. Only very few publications address welfare consid-
erations in the context of animal model building and eval-
uation (e.g. [120]). Animal welfare should be matter of
course in animal research [30,118] and should be an inte-
gral part of evaluating animal models [23,121].

The five freedoms

A complicating factor in safeguarding animal welfare is
that the concept itself is only poorly defined and conse-
quently, difficult to translate into measurables
[24,69,122,123]. It is predominantly based on the princi-
ple of the 'five freedoms’, i.e. 1) freedom from thirst, hun-
ger, and malnutrition; 2) suffering; 3) pain, injury, and
disease; 4) freedom to express normal behaviour, by pro-
viding sufficient space, proper facilities and company of
the animal's own kind; and 5) freedom from fear and dis-
tress [124]. The underlying idea is that animals should be
reared, housed, and tested under conditions that allow
maintaining or restoring homeostasis.

@ Unfortunately, measuring pain and its emotional com-
ponents in animals objectively is an underdeveloped field
of research. Scientists so far mainly depend on the pure
assumption that due to our evolutionary relatedness, eve-
rything that is perceived as painful in humans potentially
also causes pain in animals (see also [69]).

@ Stress is adaptive in nature but can in parallel comprise
negative consequences for health and welfare [125,126].
There is, however, no simple physiological or behavioral
criterion that marks the point at which stress turns into
distress [127]. Thus, one could argue that it is the ethical
obligation of science to develop methods which allow for
the objective measurement of (di)stress levels.

@ Sensorimotor impairments and disabilities might nega-
tively influence the welfare of animals being used. Conse-
quently, the application of tests for sensorimotor
functioning like those described in the Irwin [128] or
SHIRPA [93,129] protocols should be an integral part of
model development and evaluation. If sensorimotor dys-
functions are detected it is common practice to select test
systems that are not dependent upon the compromised
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sensory and/or motor function, at the risk of neglecting
possible discomfort of the animals. Although discomfort
may inevitably be part of animal models of neurobehav-
ioral disorders [130,131], a careful evaluation must ena-
ble us to decide whether the observed dysfunctions and
associated discomfort are part of the phenotype under
consideration, or whether action is indicated to reduce the
discomfort.

@ Anxiety is a biologically relevant adaptive behavioural
response and therefore not negative by nature. A clear dis-
tinction has to be made between "normal" and inappro-
priate anxiety-related responses. It is self-evident that
scientists must avoid procedures causing unnecessary anxi-
ety in animals. The challenge is to identify potential fac-
tors causing undesired inappropriate or prolonged (e.g.
pathological) anxiety [132] and to take measure to reduce
or remove them.

The principle of the 5 freedoms has recently been criti-
cized by Korte and colleagues [133], who direct attention
to allostasis, i.e. the capacity of the animal to change. In
this concept, the animals' welfare is not at stake if they are
able to meet environmental challenges, i.e. "when the reg-
ulatory range of allostatic mechanisms matches the envi-
ronmental demands" [133]. Barnard introduced the
concept of evolutionary salient welfare, in which welfare
is defined as adaptive self expenditure, i.e. the ability of an
animal to conduct itself in concordance with its adaptive
life history strategy. Welfare in this view is at stake if the
animal cannot fulfil its adaptive needs and is deterred
from making its own decisions [69]. However, irrespective
of which theoretical framework is favored, criteria of ani-
mal welfare based on sound scientific evidence are
urgently needed to guide the researcher's estimate of suf-
fering involved in animal experimentation.

Regulations and guidelines

In the evaluation process of models for neurobehavioral
disorders, special attention should be given to detecting,
and wherever possible minimizing pain, suffering, dis-
tress, sensorimotor disability and anxiety. Although most
people share similar ethical values, they can be specified
in different ways [134], and one may wonder how much
consensus can be reached concerning ethical criteria for
evaluating animal models [135]. Regulations have been
established and guiding questionnaires have been devel-
oped regarding the ethics of animal studies (e.g., Euro-
pean Union's Directive 86/609/EEC on the Protection of
Animals used for Experimental and other Scientific Pur-
poses; USA: Animal Welfare Act, [136]; Australia: Austral-
ian code and practice for the care and use of animals for
scientific purposes, Canberra: Australian Government
Publishing Service, 1990). Moreover, an evaluation sys-
tem proposed by Stafleu and colleagues [137] may help to
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decide on the ethical acceptability of intended animal
experimentation. This evaluation system takes the aim
and relevance of a study, human interests and the degree
of potential discomfort and harm of the animals into con-
sideration. Similarly, Broom and Johnson [138] listed
measures indicating good and poor welfare that were used
by Scharmann [139] for the development of humane end-
points in animal models.

At least a "silent" consensus exists in countries imple-
menting the above mentioned regulations and guidelines
that a minimum welfare of the animals being used, the
benefits for animals and humans, the statistical power of
the experimental approaches, and the availability of alter-
native in vitro or in silico (e.g. computer simulations)
methods must be considered (Ethical guidelines of the
international, professional society devoted to the scien-
tific study of applied animal behaviour ISAE [140]). Most,
if not all researchers involved in animal research will
strive to perform good science in accordance with ethical
criteria. Their own ethical values and definitions of
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humane endpoints will, however, set the limits of what
consequences of experimental manipulations are judged
as acceptable against the intended goals and expected gain
of knowledge [117]. In other words, benefits must out-
weigh the ethical costs of the animals. These costs include
pain and suffering, distress and death.

A formal ethical evaluation usually is performed by an
independent ethics committee based on a protocol of the
intended study and a thorough estimate of the adequacy
of the projected animal model, the intended experimental
manipulations, and in particular the choice of the model
animal species [141]. It is a difficult endeavour to extrap-
olate results, obtained using a simple system, to a more
complex system. The larger the distance between the
model animal and the species to be modelled (the extrap-
olation distance), the poorer the generalizability of a
study may be. However, a small phylogenetic or extrapo-
lation distance per se does not guarantee generalizability
[7,142]. The choice of a model species and ethical reserva-

logenetic distance
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validity of animal mo
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tions against using the model species are an area of poten-
tial conflict (see Fig. 4).

Welfare concerns with respect to genetically modified animals
Adherence to the principles of the 3 Rs (refinement,
reduction and replacement) is commonly accepted as an
ethical guideline in the conception and execution of ani-
mal experimental studies. The principles of the 3 Rs are an
attempt to promote and improve humanity in experi-
ments involving animals, and to increase the validity of
experimental results [116]. The implementation of one of
the principles may, however, conflict with (one of) the
other two when putting the principles into practice. This
might e.g. be the case when developing models based on
genetically modified animals (see [117]). This strategy is
considered as a refinement (i.e. certain aspects of a disease
may be mimicked more closely in these animals than in
animals that had undergone other experimental manipu-
lations), but might counteract the principle of reduction
(see [117]). Large numbers of animals may be needed to
establish and maintain a genetically modified line. Many
of the animals required are surplus animals that will never
be tested.

Moreover, the insertion or deletion of genes may interfere
with normal functioning in an unexpected way
[117,121,143]. Discomfort may interfere with the assess-
ment of experimentally induced specific dysfunctions, in
particular, if these dysfunctions are subtle [30]. Genetic
animal models of neurobehavioral disorders that are
based on conditional gene targeting techniques may not
only improve the specificity and validity through their
improved temporal and spatial control of the gene recom-
bination [144], but they may also contribute to reducing
discomfort.

Housing of animals

Housing animals in an enriched environment is one of
the measures believed to improve animal welfare [145].
In a number of mouse studies it has been shown that envi-
ronmental enrichment did not increase the variability and
did not compromise the reliability of results (e.g. [146-
148]). The authors conclude that there are no reasons why
model animals should not be kept in enriched environ-
ments as standard housing condition. However, it cannot
be taken for granted that different environmental condi-
tions will not affect the expression of (endo)phenotypes
differently (see for example [149,150]). This may even
apply to subtle variations of the cage environment [151].
Consequently, the role of the environment (including the
testing environment) must be addressed empirically as
part of the validation process of animal models (in sys-
tematic or differential replication studies; see Fig. 2);
investigation of the gene-environment interaction is cru-
cial for detecting the environmental triggers for these
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interactions [152] and for understanding their relevance
for the expression of a behavioural trait.

Within this context, the recent development of automated
"phenotyping" systems and enriched housing is of inter-
est. In an attempt to decrease the experimenter bias
(observer-dependent variability), automated home cage
based "phenotyping" systems (e.g. [153-157]) are being
developed that allow collecting data over a long period of
time simultaneously in many animals, without distur-
bance or interference by a human observer. While these
systems may help to increase comparability between stud-
ies both within and between laboratories, they will not
replace the human observer, owing to the fact that they
rely on a restricted set of observational categories, and that
they cannot judge whether animal welfare is at stake. A
close health and welfare monitoring routine by an experi-
enced stockman or veterinarian that parallels the auto-
matic registrations is therefore mandatory.

Power of the experimental approach

Another important aspect in the ethical evaluation of ani-
mal models concerns the number of individuals needed
for sound statistical analyses (e.g. [158-161]). An estimate
can be achieved by applying appropriate power-analysis
[162,163]. Unfortunately, sometimes the number of
available animals is restricted (e.g. due to poor breeding
success) and individual studies might therefore be under-
powered. In that case, successful replication studies can
help to increase the confidence in the results obtained in
small studies (see also "Replications in model building
and model validation").

Sustained awareness concerning animal welfare will
sharpen the attention of the researcher to detect compro-
mised welfare. Each ethical evaluation must include scien-
tific reasoning (e.g. [164]). In the evaluation of animal
models, assessment of the research hypothesis and the
experimental design is necessary since scientifically non-
valid approaches are unethical (e.g. [135]). Ethical con-
siderations should constitute a major element from the
first stage of the model building process onward. It is the
obligation of everyone involved in animal experimental
studies to assure the lowest possible impact of experimen-
tal manipulations on animal welfare.

Iterative model building

Model building can be considered as an iterative process
[10,51,165] (see Fig. 5). One can perceive abduction,
deduction and induction as the three elementary kinds of
reasoning steps in the formulation and testing of scientific
hypotheses or theories. Abduction is the process of form-
ing new ideas and explanatory hypotheses, based on eval-
uating a large base of facts; it can be considered as the path
from facts to theory, as a process of discovery. During the
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Flow diagram depicting model building as an iterative process (inspired by [165]; modified after: [10]). The model

evaluation stage is further elaborated in Fig. 6.

process of deduction, hypotheses based on the theory
become more focused. Induction is the experimental eval-
uation of the hypotheses; it can be considered as path
from theory to facts that ideally confirm the theory [166].
It is obvious that these steps are not independent from
one another; theories evolve from observations and are
supported by experimental data from experiments

designed for testing hypotheses. Models are deductive and
inductive tools that advance knowledge. Insight gained
from a relevant animal model may affect the perception of
disease symptoms and their underlying courses and proc-
esses in patients. This in turn may prompt preclinical
investigators to revise, refine or extend their animal model
[60] in the iterative process of model building.
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The starting point of model building may be a hypothesis
that has been derived via induction, i.e. the reasoning
from data to ideas (e.g. psychiatric and neurological
nosology, therapeutic criteria, identified endopheno-
types; (see [17,167]), or abduction or deduction, i.e. the
reasoning from ideas to data (e.g. observed behavioral
abnormalities; induced or naturally occurring mutations
[168]). The first phase of phenotyping of the animal
model should be complemented with systematic observa-
tions (and eventually, specific tests for detecting sensori-
motor dysfunctions) that allow monitoring and assessing
the welfare of the model animal [23,121]; see below).

The quality and interpretability of the hierarchy of tests
used to detect and characterize the phenotype is of crucial
relevance for the next steps in the model development. In
particular, data from a screen should already allow the for-
mulation of specific hypotheses. Alternatively, the hypoth-
esis-free identification of genes from in silico approaches
(e.g. [169]), or the detection of aberrant (behavioral) phe-
notypes in systematic screens (e.g. ENU-mutagenesis
approaches: [96,170-178]) and confirmation of these
phenotypes as inherited may serve as starting point of
model building. Moreover, many websites provide links
to a large number of relevant genotyping and phenotyp-
ing databases (e.g. [179-181]) that may serve as starting
point for identifying putative animal models. Recent bio-
and neuroinformatics approaches allow the in silico iden-
tification of QTLs and multiple (pleiotropic) effects of sin-
gle genes, without any a priori hypothesis [182]. In vivo
verification of the function of the identified gene(s) and
their hypothesized functions is required [183].

Irrespective of the starting point chosen for model build-
ing, it must become hypothesis driven to yield meaning-
ful and interpretable data [184]. As Massoud and
colleagues correctly state, "A model is an invention, not a
discovery" ([26], p- 277), and consequently, its validity and
relevance need scientific proof. The different stages of
model building are the selection stage, consensus stage,
deduction stage, model building stage, model testing
stage, the model evaluation stage, and the induction stage.
These stages have been elaborated and explained in [10]
and are depicted in Fig. 5. We shall further elaborate on
the model evaluation stage and apply the proposed proce-
dure, i.e. the workflow to evaluate models, in a worked
example on the rat with neonatal hippocampal lesions as
a model of schizophrenia.

Model evaluation

In the Model evaluation stage the results obtained in the
testing stage are critically discussed and evaluated. A pro-
posed modus operandi for evaluating an animal model is
elaborated below and depicted schematically in Fig. 6.
The relevance of the model should be a central point in the
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evaluation stage. Relevance of the selected model is an
explicit criterion in many guidelines for animal care and
use, although evaluation rules typically remain unde-
fined. The relevance criterion should extend to animal
model development and evaluation, with the constraint
that in an early stage of the model development, the antic-
ipated relevance serves as criterion. Making explicit the
steps of model building helps to identify the weaknesses
of an animal model and to address them systematically
using scientific methods. However, the purpose of a
model defines the criteria that an animal model must ful-
fill before it can be considered as valid [64]. Conse-
quently, any scheme for model evaluation must take into
account the purposes and needs that a model is supposed
to fulfill, and the questions it is expected to answer in
order to determine the weights assigned to the different
evaluation criteria.

Preceding the evaluation process according to scientific
criteria, one may ask the ethical question whether the
degree of discomfort shown by the model animal as con-
sequence of the experimental manipulations is accepta-
ble, considering the expected gain of knowledge [117]
(see Fig. 6).

The model evaluation stage continues with the question
whether the data obtained in the model are reliable and
replicable, i.e. deficits must be replicably inducible, and
the resulting behavioral dysfunctions must be measurable
using reliable methods [72,83,94]. If the criterion of rep-
licability is not met, then findings must be considered as
singular or 'idiosyncratic'. It is most appropriate to deter-
mine the replicability of results by performing a close rep-
lication in an early stage of the model building process.

Next, the face validity of the model is addressed. Face
validity is a criterion that some researchers believe to be of
major importance (e.g. [1,49]). However, it is of greater
importance that the model involves structures and proc-
esses homologous to those involved in the condition
being modeled. The model is judged as invalid if neither
face validity nor homologous structures and processes can
be demonstrated. In this case, further development of the
model should be abdicated. If the putative animal model
doesn't only exhibits characteristics of the neurobehavio-
ral disorder to be modeled, but also abnormalities that are
not symptomatic, then it needs to be viewed critically
[185] and one may even consider discontinuation of fur-
ther development.

Then, the question must be addressed whether the puta-
tive model possesses predictive validity, i.e. whether it
allows predictions to be made about what it is supposed
to model. Geyer and Markou [186] consider predictive
validity (and its reliability) as the only necessary criterion
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Evaluation of an animal model using ethical and scientific evaluation criteria.
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for the initial evaluation of any animal model for use in
research. A model must have predictive validity, irrespec-
tive of whether it is considered in the broad or narrow
sense (the latter being the case in most psychopharmaco-
logical studies). Enabling predictions is one of the basic
purposes of any animal model (see the definition). If the
model in development doesn't fulfill the criterion of pre-
dictive validity, then it doesn't meet an indispensable
basic condition, and consequently, one should deliberate
about abandoning further expenditures.

Construct validity, the question whether the model has a
sound theoretical base, is evaluated in the next step of the
validation process. Models of neurobehavioral disorders
must satisfy criteria developed by basic and clinical
experts [112], i.e. by scientists of diverse disciplines, such
as clinicians, pathologists, molecular biologists, and (ani-
mal) behavioral scientists, e.g. psychiatrists, (bio)psychol-
ogists, ethologists, or behavioral pharmacologists (see
also Table 1, Part C, second and third column). The devel-
opment of adequate animal models of neurobehavioral
disorders, unfortunately, is hampered by incomplete
knowledge about the nature of the disorders and the
resultant lack of clear diagnostic criteria. Typically, dis-
eases of the mind are diagnosed using subjective behavio-
ral tests. Specific psychiatric disorders cannot rigorously
be identified by means of these diagnostics, but can only
be categorized [187]. As a consequence, the translation to
testables in animal models may be flawed by gaps in our
knowledge of the disorder to be modeled.

The last step of the model evaluation stage deals with the
generalizability/external validity of the animal model.
Here, questions are addressed such as whether the model
possesses validity across different housing conditions and
laboratories [84,188], across different behavioral tests
that are believed to measure the same underlying traits or
states [54], and finally, whether it enables insight into,
and predictions about these traits or states and their
underlying processes in humans and/or other species than
the one studied [7,189]. The extent to which an animal
model possesses construct and external validity is a meas-
ure for its biological and/or clinical relevance [2]. Gener-
alizability/external validity contains also elements of
predictability.

If the putative animal model does not meet these criteria,
then it still may be used to answer specific purposes. If it
does not, it suffers from a lack of relevance. For example,
mice carrying a human disease mutation without develop-
ing a corresponding mouse phenotype invalidate the use
of that transgenic "model" to study potential therapeutics,
because there is no pathology that the therapeutics could
act upon. This mouse represents a "negative model" [7].
This observation, however, may raise a new question: why

http://www.behavioralandbrainfunctions.com/content/5/1/11

does the mutation cause a disease phenotype in humans
but not in mice? Answering this question may contribute
to understanding the pathophysiology of the disease.
Note, however, that the purpose of the model in this
example has changed, and that new evaluation criteria
must be established to judge its relevance.

It should be apparent that multiple iterations are eventu-
ally needed to evaluate all criteria that define a relevant
animal model and that it is unlikely that all questions
posed during the evaluation stage can be answered in one
'decisive’ study. When starting to develop an animal
model, not all information necessary to adjudicate on
whether the decision criteria are fulfilled may be availa-
ble. In that case, a "patchwork approach" may be neces-
sary. Similar to a jigsaw puzzle that usually will provide a
good impression of the full picture long before all pieces
are in place, the iterative model building procedure will
reach a stage where sufficient pieces of evidence are avail-
able to make a sound decision about the quality and rele-
vance of a model. One may decide to stop further
development of a model if severe shortcomings of a
model become obvious, even if complete information
about a model is not yet available.

Model evaluation in practice: rats with neonatal
hippocampal lesions as a model of schizophrenia

Despite the very large number of animal models of vari-
ous diseases that are currently used for researching funda-
mental disease processes and in drug development, very
few animal models have been systematically evaluated in
depth in terms of their validity and relevance (for a recent
exception, see the review by Sagvolden et al. covering the
spontaneous hypertension model of attention-deficit
hyperactivity disorder [190]). Reviews tend to cover a
group of models for a disease rather than focusing on one
model, providing good information on the breadth of the
field but not the information necessary to stringently eval-
uate a single animal model.

The rat with neonatal hippocampal lesion (NHL) is an
example that has been frequently discussed in reviews in
the context of schizophrenia models (e.g. [191-193]), but
for which no systematic assessment of validity has taken
place. In the NHL model, the hippocampus is lesioned,
normally by an injection of an excitotoxin, in rats a few
days after birth. The animals are then returned to their
mothers, weaned normally, and tested as adults. This pro-
cedure induces various behavioral deficits in tests used in
schizophrenia models, including deficient prepulse inhi-
bition and hyperresponsivity to amphetamine, as well as
neurodevelopmental alterations, as described below. Fol-
lowing the flow chart seen in Fig. 6, we can make a first
effort to answer some of the questions asked for this
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model, though the assessment below is by no means
exhaustive.

Ethical considerations of animal suffering will differ
between scientists and between governing bodies, but the
high prevalence of schizophrenia (approximately 1% of
the general population, [194]) and the debilitating effects
of the disease for patients are strong arguments for the
necessity of conducting animal model-based research. The
NHL model involves a number of stressors: maternal sep-
aration before surgery, placement under anesthesia, sur-
gery, postoperative recovery, and  presumably
postoperative discomfort and pain. Pain and stress are not
explicitly part of the NHL model, and should therefore be
eliminated where possible. An obvious area for reduction
of animal suffering is post-operative pain relief.

The reliability and replicability of the NHL model is seen
in the replication of certain deficits across multiple sites,
such as prepulse inhibition deficits and hypersensitivity to
dopamine agonist-induced attenuation of prepulse inhi-
bition [189,195-198]. Clearly this "portability" of the pro-
tocol is a crucial measure of replicability. The NHL model,
however, suffers from the same issue of underreporting of
negative results as many other current biomedical models:
it is unknown whether attempts were made to replicate
the results which failed but were not published.

Face validity of a model of schizophrenia in terms of
mimicking symptomatology is exceptionally difficult, as a
large portion of the hallmark symptoms of schizophrenia
in patients can only be ascertained by speaking with the
patient or by subjective reporting by the patient, for
instance hallucinations, delusions and flattened affect. It
has been argued that the NHL model has face validity
based on a number of characteristics seen in schizophren-
ics which are also seen in NHL model rats, such as deficits
in prepulse inhibition and latent inhibition, and cellular,
molecular and morphological changes in the brain [199].
While these alterations are indeed present in patients, they
are neither exclusive to schizophrenia nor are they key
symptoms of the disease. It may prove to be impossible to
produce an animal model with face validity for schizo-
phrenia, at least for the positive and negative symptoms.

The rationale for the use of the NHL model is anchored in
the idea of homologous brain structures being responsi-
ble for the disease and for NHL-induced deficits, the next
criterion in our evaluation. The hippocampus, which is
lesioned in the NHL model, has frequently been reported
to have a reduced volume in schizophrenic patients [200-
205]. Alterations in volume and neurotransmitter content
in the prefrontal cortex were also repeatedly found in
schizophrenic patients (reviewed in [206]. Similarly, rats
with NHLs show altered prefrontal cortical development,

http://www.behavioralandbrainfunctions.com/content/5/1/11

both in terms of structure [207,208], and function [207-
210]. Thus the model does seem to affect key brain areas
that are affected in schizophrenia.

The predictive validity for animal models of schizophre-
nia has also proven difficult, particularly as predictive
validity is understood in psychopharmacology - that is, a
model is considered predictive if it can predict which
drugs will be effective in treating the disease modeled. The
NHL model has been shown to be sensitive to a long list
of both typical and atypical antipsychotics which are in
clinical use today [197,211,212]. However, all antipsy-
chotics currently marketed are based on the same basic
pharmacological mechanisms: dopamine D, receptor
antagonism or partial agonism, in some cases coupled
with activity at various serotonin receptors. In all animal
models of schizophrenia, it is therefore difficult to con-
clude whether a model can predict effective treatment, or
if it simply relies on the same receptor set and spuriously
correlates with clinical efficacy. An intriguing recent devel-
opment in schizophrenia treatment is a clinical trial
showing efficacy of the metabotropic glutamate receptor 2
agonist LY404039 in symptom relief in schizophrenics
[213]. LY404039 relies on a different pharmacological
substrate than previous antipsychotics. It will be of inter-
est to see whether the NHL model would predict the clin-
ical efficacy that has been seen in clinical trials with this
drug.

As mentioned in the explanation of the workflow, evalua-
tion of construct validity of animal models of psychiatric
diseases (including schizophrenia) is exceptionally diffi-
cult, as the exact, most likely multifactorial, ethiology is
not known. The rooting of the NHL model in neurobio-
logical substrates that are known to be involved in schiz-
ophrenia contributes to it construct validity. However, a
major hurdle for the model is that, while it has been
hypothesized that neurodevelopmental processes play an
important role in schizophrenia [191], the appearance of
symptomatology in late adolescence in patients precludes
systematic studies of neurobiology of future schizophren-
ics during early development, thus we do not know if
schizophrenic patients show damage or alterations in the
hippocampus during this period. Furthermore, given the
strong genetic link found in family members of schizo-
phrenics [214], it is highly unlikely that a traumatic event
such as lesioning is responsible for hippocampal altera-
tions seen in later life in schizophrenic patients.

The generalizability of the NHL model appears to be
good, as it transfers across laboratories and species, as well
as producing effects in various tests frequently used in pre-
clinical testing of antipsychotics. As was briefly men-
tioned above in the assessment of replication and
reliability, effects on a number of tests have been repli-
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cated in several laboratories. Furthermore, the model pro-
duces behavioral effects in prepulse inhibition,
hyperreactivity to dopamine agonists, and deficits in
latent inhibition [191], all of which are frequently used
tests for assessing antipsychotic activity. Finally, the
model does seem to generalize to non-human primates,
where neonatal hippocampal lesions produce deficits in
adult animals similar to those seen in NHL rats (reviewed
in [215]).

To place the above initial evaluation of the NHL model in
the framework of the workflow proposed in Fig. 4, we
arrive at the following:

@ The discomfort produced by the model can be ethically
justified, though proper precautions to minimize discom-
fort must be taken.

® The model has been replicated and reproduced at mul-
tiple locations.

@ The face validity for key symptoms of schizophrenia is
lacking, because of the inherent inability for modeling
these symptoms in animals.

@ Brain structures damaged in the model, either by lesion
or by resultant developmental abnormalities, are homol-
ogous to areas which also show abnormalities in schizo-
phrenia.

@ The predictive validity of the model viewed in terms of
predicting drug efficacy is good for the classes which are
already in clinical use, but the model will need to prove
itself by predicting novel drug classes. This may, in fact, be
expected from a model with good construct validity [21].

@ The theoretical rationale (construct validity), however,
is unsatisfactory, as the lesioning method is likely to
induce structural/functional abnormalities of the hippoc-
ampus and its projections areas, but it most likely doesn't
mimic developmental abnormalities (which are as yet not
understood) in children who will later develop schizo-
phrenia.

@ The generalizability (external validity) of the model
across different laboratories, tests, and species is well
established, at least with respect to the classes of pre-
scribed antipsychotics.

Following the workflow, this leads us to the question
"does the model answer a specific purpose"? The NHL
model is one of several models currently in use for behav-
ioral pharmacological assessment of antipsychotic com-
pounds. The problems faced by this model in terms of
face validity and construct validity are likely to be faced by
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any behavioral pharmacological model, because we sim-
ply do not have the ability to test for key symptoms in ani-
mals, nor do we have the knowledge of the ethiology of
the disease to produce an animal model that fulfills all of
the criteria set forth in the workflow. Given its good pre-
dictive wvalidity with antipsychotic compounds with
proven therapeutic efficacy, the model's basis in homolo-
gous brain structures and its good generalizability, the
model can be used for the specific purpose of testing com-
pounds for their potential to alleviate symptoms of schiz-
ophrenia. However, the unascertained construct validity
means that care should be taken in using the model to
uncover fundamental disease processes and novel thera-
peutic approaches.

"Standard models"

Some of the (transgenic) animal models have gained the
status of "standard" animal model for a particular disease.
Recently, the transgenic SOD1G93A mice, considered as
"standard" mouse model for amyotrophic lateral sclerosis
(ALS), a paralytic neurodegenerative disorder in humans
(see [216,217]) has been up to debate. Doubts arose
about the relevance of this model for identifying putative
therapeutics for the treatment of ALS (commented by
[218]). The model is based 1) on a point mutation of the
human superoxide dismutase (SOD1) gene in the familial
ALS form, and 2) on experimental evidence that a number
of putative therapeutics appear to be able to prolong sur-
vival in transgenic mice carrying 23 copies of this human
gene mutation. However, to date, putative therapeutics
that were effective in this animal model have been ineffec-
tive in clinical trials in ALS patients, mooting the value of
the SOD1 mouse for identifying therapeutics for familial
and sporadic ALS. One may conclude that the relevance of
this animal model still needs to be shown [216], as nei-
ther the criterion of predictive validity nor the criterion of
generalizability of results has been met (e.g. does an ani-
mal of the familial form of ALS generalize to the sporadic
forms of the disease?). This example illustrates the need
for extended, multi-tiered and systematic validation of
animal models.

Similar doubts recently arose concerning the value of ani-
mal models in stroke research (e.g. [76,219]), mainly
because the majority of compounds with confirmed neu-
roprotective efficacy in these models appeared to be inef-
fective in human clinical trials. One of the factors might
be that the standard animal models, such as rodents with
focal or global ischemia induced by occlusions of brain
arteries do not mimic the pathology in humans with suf-
ficient fidelity, i.e. that they suffer from poor construct
validity.

If the scientific criteria of the model are not fulfilled, then

animals may still be used for in vivo screening of putative

Page 17 of 23

(page number not for citation purposes)



Behavioral and Brain Functions 2009, 5:11

therapeutics, based on the observation that correlated
responses have been found in animals and humans [27].
Such correlations can generate theories about the underly-
ing mechanisms of action and hence testable hypotheses.
Willner [49,220] contrasted the animal model with two
other, closely related, experimental methodologies. The
first one was drug screening, and the second was behavioral
bioassay. Drug screening tests are designed to distinguish
between potentially effective and ineffective drugs (e.g.
[221,222]) whereas behavioral bioassays are designed to
assess the functional state of, for example, a specific brain
system, or to explore the neurobiological specificity of
compounds and their molecular and cellular mechanism
of action (e.g. in drug discrimination paradigms [223]; see
also Table 1, Part A, first column). Drug screening and
behavioral bioassay are two experimental methodologies,
distinct from animal models, but they are not mutually
exclusive. There is a fluent transition from drug screening
and behavioral bioassay to animal models: the more pre-
cise the assumptions (and/or the knowledge) about
underlying relations and processes, the more the criteria
for an animal model may be fulfilled.

Conclusion

Unfortunately, no consensus exists about the order and
weight of the different steps that are necessary for develop-
ing an animal model, nor are there common, generally
accepted criteria for evaluating the resulting putative
model. Perceiving model building as an iterative multi-
stage process with an evaluation stage with predefined
appraisal criteria may guide the scientists through the
model building and model evaluation process. The sug-
gested workflow can also be used to develop and/or eval-
uate animal models in other areas of research. In almost
the same manner as animal models can be improved,
guided by the procedure outlined above, the developmen-
tal and evaluation procedure itself may be improved by
careful definition of the purpose(s) of a model and by
defining better evaluation criteria.
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