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Abstract

Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in
modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant
bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages
are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display
system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated
and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article
is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to
accelerate the progress and development in the field of biotechnology.
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Introduction

Bacteriophages are the most abundant entities on earth.
These bacterial viruses have genetic material in the form
of either DNA or RNA, encapsidated by a protein coat
[1]. The capsid is attached to a tail which has fibers,
used for attachments to receptors on bacterial cell sur-
face. Most of the phages have polyhedral capsid except
filamentous phages [2]. Phages infect bacteria and can
propagate in two possible ways; lytic life cycle and lyso-
genic life cycle. When phages multiply vegetatively they
kill their hosts and the life cycle is referred to as lytic
life cycle. On the other hand some phages known as
temperate phages can grow vegetatively and can inte-
grate their genome into host chromosome replicating
with the host for many generations [3]. If induction to
some harsh conditions like ultraviolet (UV) radiations
occurs then the prophage will escape via lysis of bacteria
[3]. After the discovery of bacteriophages in early 20
century many researchers thought about their (phages)
potential of killing bacteria, which could undoubtedly
make them possible therapeutic agents. But after World
War II when antibiotics were discovered, this natural
potential therapeutic agent got little attention and was
only considered as a research tool for many years [1].
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Bacteriophages have contributed a lot to the field of
molecular biology and biotechnology and are still play-
ing its part. Many mysteries of molecular biology are
solved by bacteriophages. Today when everything is
much more advanced than ever before, bacteriophages
are getting enormous amount of attention due to their
potential to be used as antibacterials, phage display sys-
tems, and vehicles for vaccines delivery [1]. They have
also been used for diagnostic purposes (phage typing) as
well [1]. In this review article all these applications have
been summarized.

Phage therapy

Phages as therapeutic agents in humans were first used
in 1919 just when they were discovered [4]. Phage ther-
apy started back in 1896 when Ernest Hankin first
reported the existence of antibacterial activity against
Vibrio cholera the causative agent of cholera which was
considered one of the deadliest peril humans had faced
[5]. In 1915, Frederick Twort hypothesized that antibac-
terial activity could be due to the virus (phage), but he
did not pursue his discovery, therefore bacteriophages
were discovered by Fe'lix d’'He'relle in 1917 [5]. In 1925
d’He'relle reported treatment of plague (four types) by
antiplague phages which drew attention towards phage
therapy. Later on he visited India and worked on phage
therapy of plague at the Haffkine Institute, Bombay
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(Mumbeai) [6]. In west the concept of phage therapy died
out in 1940 due to the emergence of antibiotics, but in
former Soviet Union it was used and is still in practice.
The Eliava institute in Tbilisi Georgia is considered the
pioneer in this regard where phage therapy is extensively
studied and applied [7].

West has remained reluctant to use phage therapy due
to the unreliable early trials of phage therapy. But still
phage therapy got attention in USA. William smith and
his fellows reported the successful use of phages against
E.coli in mice [8].

One of the reasons of the avoidance of the phage ther-
apy in most of the western countries was unreliable and
inconsistent results of many phage therapy trials. But
today it is accepted that the main reason behind the fail-
ure was poor understanding of phage biology and some
other issues like quality control during preparation of
therapeutic stocks [9]. Phage therapy has been used in
animals, plants, and humans with different degree of
success. Phages have several potential advantages over
antibiotics but at the same time it does have disadvan-
tages as well.

The main advantage of phages is their specificity for
target bacteria which reduces the damage to normal
flora of the host greatly. The bacteria to be targeted
must be identified first or otherwise a cocktail of phages
should be used. Bacteriophages are self-limiting i.e. they
require their hosts to be constantly growing; if the bac-
terial pathogens they are specific for are absent they will
not persist for long enough [1]. Replication at the site of
infection is another advantage of phages. They are safe
with no or less side effects [10,11]. If bacteria become
resistant to phages then phages do evolve naturally to
infect the aforementioned resistant bacteria, hence mini-
mizing the chances of bacterial escape, which scores
another advantage of phage over antibiotics [10].

After their administration phages can dissipate very
quickly throughout the body reaching almost every
organ; but the immune system swiftly clears systemic
phages which pose yet another problem to their accep-
tance as therapeutic agent [12,13].

One of the serious concerns about the use of phage
therapy in vivo is a strong antibody response which
would clear the phages more quickly and thus the use
of phages for extended period of time would not be pos-
sible [1]. Other drawbacks of phages as therapeutic
agents are their narrow host ranges, and the fact that
phages are not always lytic under certain physiological
conditions. During the preparation of phage stocks it
must be ensured that phage preparations are free of bac-
teria and bacterial toxins in order to avoid secondary
infections. But sterilizing phages could inactivate them.
Phages may impart toxic properties to the bacteria
resulting in virulence [5].
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One way around is the use of phage lytic enzyme
endolysin, rather than administering the whole virion
[14-16]. Similarly genetically modified phages can be
used, which will only deliver the DNA essential for mak-
ing antibacterials that would be specific for the target
bacteria [17].

At the moment it seems a bit far that phage therapy
will replace antibiotics exclusively, but there is the hope
that it will be used complementary to antibiotics espe-
cially for antibiotic resistant strains [1]. Phages will be
much more reliable when used externally and where the
immune system gives it a chance by favoring it to per-
sist within the body for a little while [1].

Phage display

The concept of phage display was first introduced in
1985 [18] (Figure 1). Phage display is a molecular tech-
nique used for synthesizing polypeptides with novel
characteristics. The DNA that encodes the polypeptide
is fused with phage coat protein genes, and the desired
protein is expressed on the surface of the phage particle
[18,19]. For phage display filamentous phage M13 of E.
coli is extensively used, other phages like lambda and
T7 are also used in phage display system [20,21]. Phage
display libraries can be used for the screening and isola-
tion of peptides that are highly specific and which have
affinity for target proteins. These peptides can be used
in drug design as reagents for understanding molecular
recognition and it also minimize mimics for receptors
[19]. These peptides can be used as therapeutic agents
by inhibiting receptor-ligand interaction or acting as
agonist.

Moreover these proteins can be used for the detection
of pathogens and agents that are considered to be a
potential threat to the environment [22]. Directed evolu-
tion of proteins can be used to enhance the enzymatic
activity and binding properties [23]. The active site of
the enzyme is randomly altered and the activity of the
enzyme is increased [1]. Phage display can also be varied
by using phages to display the Fab antibody fragments
library mostly on filamentous phage surfaces [24]. These
libraries have many uses in research but one of the
most important uses of it is in the treatment against
cocaine addiction where phages are administered nasally
and then ultimately they make their way to central ner-
vous system (CNS). In central nervous system the dis-
played antibody binds to cocaine molecule and inhibits
its action on brain [25]. Intensive and state of the art
work done by many researchers have made phage dis-
play a phenomenal part of biotechnology. Amongst
other applications phage antibodies have revolutionized
the concept of therapeutic drugs and drug design [19].
Molecular evolution and protein-ligand interaction has
been explained by phage display unambiguously [21].
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Figure 1 Some methods that are used to fuse foreign peptides to the surface of phage. Foreign peptides can be displayed on more than
one phage coat proteins. Smaller foreign peptides are displayed in more numbers but it also depends on the type of antigen, coat protein and
the phage. (a) The gene for a foreign peptide is directly fused to the minor coat-protein gene. The foreign antigen is displayed by all minor coat
proteins. (b) Foreign peptide gene is attached to major coat protein gene while another copy of the gene (major coat proteins) is also present.
Foreign protein is displayed on some major coat proteins. (c) Cells containing a phagemid (plasmid that have both plasmid and bacteriophage
origin of replication) are infected with unchanged helper phage which then expresses the foreign peptide or protein. Foreign antigens are
displayed by some coat proteins.
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Phage typing

The specificity of phages for bacterial cells enables them
to be used for the typing of bacterial strains and the
detection of pathogenic bacteria [1]. Phage typing is also
known as the use of sensitivity patterns to specific
phages for precisely identifying the microbial strains.
The sensitivity of the detection would be increased if
the phages bound to bacteria are detected by specific
antibodies [26]. For the detection of unknown bacterial
strain its lawn is provided with different phages, and if
the plaque (clear zones) appears then it means that the
phage has grown and lysed the bacterial cell, making it
easy to identify the specific bacterial strain [1]. There
are certain other methods which can be employed to
detect pathogenic bacteria such as the use of phages
that can deliver reporter genes {e.g. lux} specifically [27]
or using green fluorescent protein, [28] that would
express after infection of bacteria. Similarly phages hav-
ing a fluorescent dye covalently attached to their coats
can be used to detect specific adsorption [29,30]. The
detection of some of the released components such as
adenylate kinase [31] after the specific lysis of bacteria
and the use of antibodies and peptides that are displayed
by phages can also be used, that will bind to toxins and
bacterial pathogens specifically [22]. Dual phage technol-
ogy is another application of phages in detection of bac-
teria, in which phages are used to detect the binding of
antibodies to specific antigens [7]. Phage amplification
assay can also be used to detect pathogenic bacteria
[32]. The technique has most extensively been used for
the detection of Mycobacterium tuberculosis, E.coli,
Pseudomonas, Salmonella, Listeria, and Campylobacter
species [33].

Targeted gene delivery through Phages

Phages are the potential therapeutic gene delivery vehi-
cles [33,34]. The rationale of using phages for targeted
gene delivery is similar to that of using phages for DNA
vaccines delivery in which the phage coat protects the
DNA inside from degradation after it has been injected.
But conceptually both are different. Phages ability to
display foreign proteins on their surfaces enable them to
target specific cell types which is a prerequisite for suc-
cessful gene therapy [1]. Phage display and artificial
covalent conjugation are used to display targeting and
processing molecules on the surfaces of phages [35,36].
For the delivery of phages, targeting sequences such as
fibroblast growth factor have been used to the cells hav-
ing the appropriate receptors [37,38]. Enhancing the
uptake and endosomal release of phages, proteins
sequences such as penton base of adenovirus which
mediates entry, attachment and endosomal release are
used [39]. The protein transduction domain of human
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immunodeficiency virus (HIV) tat protein and the
simian virus 40 (SV40) T antigen nuclear localization
signal have also been used to enhance the uptake and
nuclear targeting of phages like lambda that have been
modified [40]. Other displayed peptides that can facili-
tate gene delivery via phages include integrin binding
peptides which enhance binding and uptake [37] and
DNA degradation reducing DNase II inhibitor [38]. To
screen the ability of phages for targeting specific cells
and tissues, phage display libraries have been used in
mice many times and every time phages were found in
specific tissues [41]. For instance isolating phages that
target liver, mice were inoculated with phage display
libraries and phages were isolated after extracting the
livers [1]. Similar in vitro strategy is used for the isola-
tion of phage displayed peptides that enhanced cytoplas-
mic uptake into mammalian cells [42]. So again phages
proved themselves to be versatile by making it possible
to target specific tissues either by screening phage dis-
play libraries randomly or by rational design [1].

Phages as vehicles for vaccines delivery

Phages have been used as vehicles for the delivery of
vaccines (Figure 2). Phage particles can be used directly
carrying the vaccine antigens expressed on their sur-
faces. But in case of DNA vaccines the sequences that
are essential for the vaccine antigen synthesis are incor-
porated into the phage genome and the phage would
then act as vehicle for the delivery of DNA vaccine [13].
Phage display can be used to construct phages that
would display the specific antigenic peptide on their sur-
faces [1]. Phage display libraries can be screened with
specific antiserum to detect novel antigens and mime-
topes. Mimetopes are the peptides that mimic the anti-
genic properties and secondary structures of protective
protein, lipid or carbohydrate, although having different
primary structure [43,44]. Phage display libraries can
also be screened against the serum of convalescents for
the identification of potential vaccines against specific
diseases [45]. There are some cases in which whole
phage particles that displayed antigenic peptides have
been used as vaccines in animal models [46,47].

Rather than transcriptional fusion to a coat protein,
some substances can be artificially conjugated to the
phage surface after growth, which will increase the
range of displayed antigens [48]. Phages are considered
to be natural immunostimulators [13,49] therefore an
antigen that is presented on the phage coat protein
would come ‘ready conjugated’ with a natural adjuvant
activity, needing no separate protein purification and
subsequent conjugation to a carrier protein before
immunization. Recently it has been shown that
unchanged phages can be used to deliver DNA vaccines
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Figure 2 Some examples of methods for vaccines delivery via phages. (a) Host could be inoculated for phage-delivered protein vaccine. (b)
As in (a) host is inoculated for phage-delivered protein vaccine but the protective antigen is expressed as prokaryotic coat protein fusion. (c)
Inoculation of host for phage mediated DNA vaccination. (d) Host can be inoculated for hybrid phage vaccination, where in one construct
protein and DNA vaccines are delivered through phage. (e) Host inoculation for standard DNA vaccination.
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more efficiently than standard plasmid DNA vaccination
[13,50-52]. The gene for vaccine is cloned under the
control of eukaryotic expression cassette in a lambda
bacteriophage and purified phage particles are injected
into the host. The coat protects DNA from degradation
and as it acts as a virus-like particle it would target the
vaccine to the antigen presenting cells [1]. When it was
compared with the standard DNA vaccination, the anti-
body response was very much superior in mice [52] and
rabbits [50]. Recently the possibility of producing a
hybrid phage has been proposed, a DNA vaccine con-
tained in phage particle under the eukaryotic promoter
and a phage display variant of the same antigen is pre-
sent on the phage surface [1]. Such a vaccine would effi-
ciently target both humoral and cellular immune
systems [13]. It can also be extended to the modification
of surface of the phage vaccine by incorporating specific
protein sequences to target particular immune cells
types like galactose residues that will target galactose
recognizing hepatic receptors in the liver [48]. Similarly
dendritic [53] and langerhans cells could be targeted by
isolating peptide from the phage display libraries [54].

Phages as biocontrol and bacteriophage
bioprocessing

Phages could be used as predators of pests (bacteria)
found in association with plants, fungi or their products
[55,56]. Phage mediated biocontrol of plant pathogens
has successfully been attempted against Xanthomonas
pruni associated bacterial spot of peaches to control
infections of peaches, cabbage and peppers. Phages have
also been used to control Ralstonia solanacearum of
tobacco. They have been successfully employed against
Xanthomonas campestris which cause spots on tomatoes.
Similarly bacterial blotch of mushrooms caused by Pseu-
domonas tolaasii can be treated with phages [57]. Phages
have also been considered as a means of controlling the
bio fouling of thermal power plants condenser tubes [58].
Bacteriophages in bioprocessing are used to reduce the
bacterial load in foods usually in the minimally processed
foods to avoid cooking associated flavor or texture [59].
Controlling pathogens of fruits and vegetables is of much
concern as these foods cannot be further processed that
would kill any pathogen present. Control of pathogens
via phages is a non-thermal intervention by which growth
of Salmonella and Campylobacter on chicken skin [60]
Salmonella enteritidis in cheese [61]Listeria monocyto-
genes on meat [62] and fresh cut fruit [63] is reduced.
Extending the shelf life of animal products, phage biopro-
cessing could be used [64].

Conclusion
Details given above give a glimpse of the large range of
applications of phages in the field of biotechnology and
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medical science. The applications of phages range from
the diagnosis of the disease, through phage typing, and
its prevention (phage vaccine), to the treatment (phage
therapy). There is the hope that phages could be useful
to humans in many ways. By making a cock tail of
phages it would become easy to treat a wide variety of
bacterial infections that are otherwise resistant to the
latest generations of antibiotics. A phage can be used
individually to treat a bacterial infection by lysing the
bacterial cell as it is having the lytic potential. At the
same time the versatility of phages would allow us to
use the antibodies against the bacteria that have been
displayed on the phage surface. Similarly a protective
antigen could be delivered as a DNA or phage display
vaccine. So a mixture of phages that are modified
genetically would be more helpful in addressing all these
problems. Phages have also been good to cope with the
food spoilage problem, and to treat the bacterial infec-
tion of plants and fruits.

There are some concerns about the use of phages. It
includes the safety and efficacy issues, as well as
immune response to the administered phages. Growth
optimization and purification strategies of phages are
also some issues needed to be addressed. Due to the
rapid progress in the fields of biotechnology and mole-
cular biology it is hoped that these entities (phages)
which are present abundantly in the biosphere could
answer many questions human beings are having.
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