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Abstract

Background: The efficacy of highly active antiretroviral therapy (HAART) determined by
simultaneous monitoring over 100 cell-surface antigens overtime has not been attempted. We used
an antibody microarray to analyze changes in the expression of |35 different cell-surface antigens
overtime on PBMC from HIV+ patients on HAART. Two groups were chosen, one (n = 6) achieved
sustainable response by maintaining below detectable plasma viremia and the other (n = 6)
responded intermittently. Blood samples were collected over an average of 3 years and 5-8 time
points were selected for microarray assay and statistical analysis.

Results: Significant trends over time were observed for the expression of 7 cell surface antigens
(CD2, CD3epsilon, CD5, CD95, CD36, CD27 and CD28) for combined patient groups. Between
groups, expression levels of 10 cell surface antigens (CDIla, CD29, CD38, CD45R0O, CD52,
CD56, CD57, CD62E, CD64 and CD33) were found to be differential. Expression levels of CD9,
CDl la, CD27, CD28 and CD52, CD44, CD49d, CD49e, CD| | ¢ strongly correlated with CD4+
and CD8+ T cell counts, respectively.

Conclusion: Our findings not only detected markers that may have potential prognostic/
diagnostic values in evaluating HAART efficacy, but also showed how density of cell surface antigens
could be efficiently exploited in an array-like manner in relation to HAART and HIV-infection. The
antigens identified in this study should be further investigated by other methods such as flow
cytometry for confirmation as biological analysis of these antigens may help further clarify their role
during HAART and HIV infection.

Background markers expressed on CD4+ and CD8+ T cells between 3
In our recent study, we have used the DotScan antibody =~ HIV disease groups and uninfected controls [1]. Along
microarray technology to identify differential cell surface ~ with confirming the cell surface markers previously
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described in the context of HIV disease, we identified 5
novel markers that could segregate HIV disease stages.
This study together with the study by Woolfson et al., who
used a similar antibody microarray to show the conserva-
tion of unique cell surface antigen mosaics in cryopre-
served PBMCs from HIV+ individuals [2], demonstrated
the power of this technology as an adjunct to flow cytom-
etry in HIV research. Even though T cell subsets could pro-
vide more specific information, as evident from our
previous study [1], PBMCs have already been shown to be
acceptable as starting material for antibody microarray
analysis of HIV disease status as well as for classifying
leukemia types [2,3].

During the natural course of HIV infection, the major
determinant of the depletion of CD4+ T cells is immune
activation [4]. Several previously described surface mark-
ers are up-regulated on T cells during the activation proc-
ess, and are known to have a profound effect on the course
of HIV disease [4]. Importantly, progression of HIV infec-
tion correlates with increases in circulating markers of
immune activation such as soluble interleukin-2 receptors
(sIL-2R) [5], soluble tumor activation markers such as
necrosis factor receptor type II (sSTNF-RII) [6] and mono-
cyte activation markers such as neopterin [7]. Recently, a
few new cell surface markers involved in HIV pathogene-
sis and disease progression have been identified. These
include CD137L (4-1BBL), which was shown to be a crit-
ical component in the rescue of functionally impaired
HIV-specific CD8+ T cells [8]; CTLA-4, the inhibitory
immunoregulatory receptor, whose expression correlated
positively with disease progression and negatively with
the capacity of interleukin 2 production by CD4+ T cells
in response to viral antigen [9]; and PD-1 on HIV-specific
T cells, the inhibitory receptor programmed death 1,
whose expression was associated with T-cell exhaustion
and disease progression [10].

The advent of HAART has led to a dramatic decline in
AIDS-related morbidity and mortality by decreasing
plasma viremia and increasing CD4+ T cell counts
[11,12], normalizing the progenitor cell function [13] and
restoring CD4+T-cell functions [14,15]. In treatment-
naive individuals who initiate HAART and can attain com-
plete viral suppression, T cell activation declines as
plasma viremia decreases [16]. Treatment failure appears
to be associated with increases in T cell activation and
rapid decline in CD4+ T cell numbers. In contrast, T cell
activation appears to decrease in patients attaining good
control of viral replication while on HAART, and is main-
tained at low levels during the prolonged periods of com-
plete viral suppression [17]. In some patients achieving
suppression of viremia, T cell activation may still be evi-
dent. This may be attributable to residual viral replication,
and this may affect the extent of CD4+ T cell recovery dur-
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ing HAART. Although HAART's ability to reduce viral load
to below the detection levels has been well documented,
the mechanisms involved in the immune reconstitution
resulting from this treatment are still not fully under-
stood. A thorough characterization of changes induced by
HAART on the broad immunenophenotype of the
immune cells over time may facilitate the clarification of
these mechanisms.

Although a considerable amount of work has already
been done to elucidate surface marker modulation during
HIV disease and therapy by flow cytometry, this study is
the first to use a cell-based antibody microarray (135 anti-
gens) to retrospectively and longitudinally monitor the
effect of antiretroviral therapy on cell surface antigen
expression using frozen PBMC over time. Two HIV+
groups were studied: sustained responders (SR) who
achieved sustainable response by maintaining below
detectable plasma viremia on HAART and transient
responders (TR) who responded intermittently to HAART.
Our hypothesis is that modulation of cell surface markers
occurs during the course of HIV disease and following the
initiation of HAART and these cell surface markers may
indicate the outcome of antiretroviral therapy. Along with
confirming the cell surface markers previously described,
we aimed at identifying novel potential cell surface mark-
ers associated with HIV disease progression and HAART
efficacy.

Methods

Patient profiles

This study was approved by the Sydney West Area Health
Services Research Ethics Committee and all blood sam-
ples were obtained upon written informed consent from
each patient. Twelve HIV+ patients were enrolled from
Sydney, Australia and blood samples were collected over
an average of 3 years with 33 time points on average for
each patient. Five to eight time points were chosen accord-
ing to the duration of the therapy usage for microarray
assay and correlation analysis. The 4 time points that had
similar duration of therapy for each patient were further
selected for studying time related changes: (1) the initia-
tion date of the therapy; (2) during the first year of ther-
apy; (3) between 1 year and 1.5 years after therapy; (4) >
2 years after therapy. At each time point, the CD4+ and
CD8+ T cell counts as well as the plasma viral loads were
measured (Table 1). Based on the virological response to
HAART, the HIV+ patients were stratified into two groups:
sustained responders (SR; n = 6) and transient responders
(TR; n = 6). Within the sustained responder group, the
time points with detectable viral load for each patient
were 0-6% of the total points collected. One patient had
no detectable viral load throughout the therapy, 4 patients
achieved successful suppression of plasma viral load from
the baseline to below detection levels and maintained at
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all time points except one time point with viral load <
1000 copies/ml, and one patient had 2 time points with
low detectable viral load and this patient's viral load
kinetics is shown in Figure 1A as an example. In the case
of transient responders, plasma viral load was controlled
to below detectable levels only intermittently, each
patient had 30-70% time points showing variable plasma
viral loads. For illustration, one patient's viral load kinet-
ics is shown as a representative (Figure 1B). Patients
received combination antiretroviral therapy, which
included: zidovudine, didanosine, stavudine, lamivudine,
nevirapine, indinavir, ritonavir, nelfinavir and/or
saquinavir. All the patients received at least two reverse
transcriptase inhibitors in association with one protease
inhibitor except two patients who received combined
therapy of non-nucleoside reverse transcriptase inhibitors
and nucleoside analogs without protease inhibitor. For
comparison, control samples from 23 HIV-negative indi-
viduals were also analyzed.

Antibody microarray construction

Medsaic Pty. Ltd. (Eveleigh, NSW, Australia) provided the
DotScan™ microarrays, prepared as previously described
[3]. Monoclonal antibodies were purchased from the fol-
lowing companies: Coulter and Immunotech from Beck-
man Coulter (Gladesville, NSW, Australia), Pharmingen
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(BD Biosciences, North Ryde, NSW, Australia), Biosource
International (Applied Medical, Stafford City, QLD, Aus-
tralia), Serotec (Australian Laboratory Services, Sydney,
NSW, Australia), Sigma-Aldrich (Castle Hill, NSW, Aus-
tralia), Biotrend, Biodesign and MBL (Jomar Diagnostics,
Stepney, SA, Australia), Chemicon Australia (Boronia,
VIC, Australia), Leinco Technologies (St. Louis, MO, USA)
and Calbiochem (Merck, Kilsyth, VIC, Australia). Anti-
body solutions were reconstituted as recommended, and
stored in aliquots with 0.1% (w/v) BSA at -80°C;
Pharmingen antibodies were generally stored at 4°C.
Antibodies were used for making microarrays at concen-
trations ranging from 50-1000 pg protein/ml.

Immunophenotyping of PBMC

Mononuclear cells were purified by Ficoll density gradient
centrifugation and cryopreserved in fetal calf serum (FCS)
with 10% dimethylsulfoxide (Sigma, Poole, United King-
dom). The cryopreserved cells were rapidly thawed and
washed in PBS and the viability was examined using
trypan blue dye exclusion method. Cell populations were
then tested on antibody microarrays using DotScan tech-
nology as previously described [18]. Briefly, 4 x 10° cells
were suspended in 300 pl PBS with added heat-inacti-
vated human AB serum and the cell suspension was incu-
bated for 40 minutes on the microarray chip, after which

A 60
50

4.0

g
T 3.0

A
A

|
5 20
$10

/

\

0.0 :

1 1 1 I 1

1

16.9

216

266

31.4

g 50

4.0

-

3.0
2.0

AN
/
/

/

N
\ ]

Viral Load

1.0

0.0

/
AV OV A/

00 08 39 103 _16.

Figure |

1 204 244 293 327 383
Months

Representative viral load plots for (A) sustained responder and (B) transient responder. Log,, of HIV RNA copies/ml in plasma,
detected by quantitative reverse transcription-PCR, was plotted against time from the date of initiation of therapy. Values of

HIV RNA copies/ml below the detection level are shown as zero.

Page 3 of 12

(page number not for citation purposes)



Retrovirology 2008, 5:24

Table I: Patient characteristics
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Parameter Group Baseline Time point 2 Time point 3 Time point 4
CD4 counts® SRa 820 (800-1050) 880 (800-960) 1050 (978-1228) 1000 (825-1145)
TRP 560 (480-720) 705 (588-887) 673 (557-835) 782 (627-903)
CD8 counts¢ SRa 950 (780-1140) 1029 (828-1175) 824 (705-960) 890 (675-992)
TRb 1200 (1040-1300) 915 (819-979) 969 (880-1062) 918 (862-967)
Viral loadd SRa 3 BDL (169841-750000) 4 BDL (624, 931) 5 BDL (810) 6 BDL
TRP 3 BDL (2500-58292) 4 BDL (1340, 95280) 3 BDL (1300-8146) | BDL (390-180991)

a SR: sustained responder group.
b TR: transient responder group.

c CD4 and CD8 counts were median (first quartile-third quartile), expressed as cell numbers per pl blood.
d Viral load shows the number of patients with below detectable level (BDL) of virus; also shown, in brackets, are the HIV-I copy numbers/ml for
the viremic patients, with a range of the HIV-1 copy numbers shown for groups with more than 2 viremic patients.

unbound cells were removed by gentle immersion in PBS.
Captured cells were fixed in 3.7% (w/v) formaldehyde
and imaged using a Medsaic DotReader™. Dot intensities
were quantified for each antibody in duplicate using Dot
Scan data analysis software on an 8-bit pixel grey scale
from 0-255. The dot intensity reflects cell binding den-
sity, which depends on both the level of expression of a
particular antigen and the proportion of cells expressing
that antigen [18]. The dot pattern obtained is the immu-
nophenotype of that population of leukocytes (Figure 2).

Statistical derivations

Sustained and transient responder groups had been estab-
lished a priori. Data were log transformed before analysis
to stabilize variances and improve normality. Following
transformation, the distributional properties for individ-
ual antibodies were examined using box plots and kernel
density estimators.

Time related changes of antibody expression were ana-
lyzed using repeated measures mixed model analysis of
variance, with subject as a random effect. Time, group and
time by group interaction were treated as fixed effects.

The relationship between antibody expression and CD4+
or CD8+ T cell counts were evaluated using repeated
measures mixed model analysis of covariance. Subject was
regarded as a random factor. Group, CD4+ or CD8+ T cell
counts and group by CD4+ or CD8+ T cell counts interac-
tion were regarded as fixed effects.

Parameter estimates were obtained using the REML algo-
rithm [19]. Computations were performed using the tech-
niques of Pinheiro and Bates [20]. Each antibody was
analyzed separately, p values were adjusted using Holm's
method [21], a conservative approach to maintain strong
control of the family wise type I error rate.

Results

Antigens whose expression level showed a trend over time
common to both HIV+ groups

All 12 patients from both SR and TR groups were included
to derive common trends in surface marker expression
levels over time using repeated measures mixed model
analysis of variance. The trends from baseline (time point
1) to time point 4 were significant for 7 cell surface anti-
gens (Table 2). CD2 expression increased significantly
from a baseline median of 124 to 144 at time point4 (p =
0.047). Over the same time period, CD3epsilon (compo-
nent of T cell receptor) expression increased from a
median of 70 to 94 (p = 0.007), CD5 expression increased
from a median of 90 to 121 (p = 0.04), and CD95 expres-
sion increased from a median of 101 to 121 (p = 0.032).
A major change was noted in CD36 expression (p =
0.017) at time point 3 (1-1.5 years after therapy), whereas
the expression of CD27 (p =0.015) and CD28 (p = 0.007)
fluctuated during the treatment period. Trends over time
for the expression level of these antigens are shown in Fig-
ure 3. For reference, the average expression levels of the
above antigens from 23 HIV negative controls at a single
time point were also included in figure 3. The average val-
ues of dot intensity of CD2, CD3, CD5, CD95, CD27,
CD28 and CD36 were 96, 50, 76, 66, 69, 73 and 53,
respectively.

Antigens discriminating between sustained and transient
responders

The repeated measures mixed model analysis of variance
also identified antigens discriminating between sustained
and transient groups. The expression of CD11a, CD29,
CD38, CD45RO and CD52 was significantly higher at all
time points in the sustained responder group as compared
to the transient responder group, with p values ranging
from 0.001 to 0.048 (Table 3); results for CD11a and
CD29 are shown in Figure 4A and 4B, respectively. For ref-
erence, the average dot intensities of CD11a and CD29
(132 and 51, respectively) from negative controls were
also included in the figure. In contrast, the expression of
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Time related changes in the PBMC cell surface antigens in HIV patients on HAART: (A) CD2, CD3epsilon, CD5 and CD95; (B)
CD27, CD28 and CD36. Median cell binding values are linked by solid lines; bars indicate the 25t and 75t quartile values. The
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date of therapy; (2) within the first year of therapy; (3) at | to 1.5 years; and (4) at > 2 years. To avoid the overlapping, the bars

representing each antigen were staggered at each time point.

CD56, CD57, CD62E, CD64 and CD33 was significantly
lower at all time points in the sustained responder group
compared to the transient responder group, with p values
ranging from < 0.001 to 0.047 (Table 3). Figure 4C and
4D show the difference between the SR and TR groups on

the basis of CD62E and CD33 expression, respectively.
For reference, the average dot intensities of CD62E and
CD33 (5 and 15, respectively) from negative controls
were also included in the figure.
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Table 2: Changes over time in the expression of cell surface antigens (p < 0.05) on PBMC from HIV+ individuals treated with highly
active antiretroviral therapy

Antigen Baseline TimePoint2 TimePoint3 TimePoint4 P value2
CD2 124 (103-147) 126 (107-156) 130 (84-136) 144 (129-163) 0.047
CD3 70 (59-86) 70 (52-90) 69 (43-85) 94 (85-117) 0.007
CD5 90 (76—120) 89 (76—129) 88 (75-106) 121 (98-137) 0.040
CD36 44 (29-63) 43 (34-56) 61 (40-77) 62 (45-75) 0.017
CD9%5 101 (89-115) 100 (95-121) 99 (95-121) 121 (97-131) 0.032
CD27 30 (19-40) 37 (18-60) 20 (11-57) 47 (35-72) 0.015
CD28 61 (33-8l) 81 (55-92) 65 (47-80) 81 (71-95) 0.007

Data are presented as median dot intensities (i.e., cell binding densities) quantified using DotScan data analysis software on an 8-bit pixel grey scale
from 0-255. The 25t—75t quartile values are shown in brackets. The cut off value of 10 was used for the detectable expression levels.
a Level of significance of the time parameter in a repeated measure mixed model analysis of variance was used to assess the changes in cell binding
density values over time.
Antigen expression correlated with CD4+ or CD8+ T cell
counts
The correlation between CD4+ or CD8+ T cell counts and
the density of PBMC binding on antibodies specific to 135
cell surface antigens was evaluated using a repeated meas-

ure mixed model analysis of covariance. CD9, CD11a,
CD27 and CD28 showed a strong positive correlation
with CD4+ T cell counts (p <0.001), while CD52, CD44,
CD49d, CD49e and CD11c showed a strong negative cor-
relation with CD8+ T cell counts (p = 0.003). Figure 5A
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shows CD9 expression against CD4+ T cell counts, while
Figure 5B shows CD52 expression against CD8+ T cell
counts.

Discussion

Using DotScan technology, we have recently carried out a
cross-sectional study to demonstrate that HIV disease
stages can be segregated by cell surface antigens on CD4+
and CD8+ T cells [1]. The present study, to our knowl-
edge, is the first retrospective longitudinal study using
antibody microarray to monitor the effect of HAART
based on CD marker expression using frozen PBMC.
Simultaneous analysis of 135 cell surface antigens on
PBMC from 12 HIV+ patients on HAART was performed
over a two year period, and the patients were stratified
into sustained responders and transient responders. Our
study not only demonstrated potential associations
between modulations of cell surface antigens and activa-
tion or restoration of the immune system, but also identi-
fied markers segregating sustained and transient
responders to antiretroviral therapy, as well as markers
significantly correlating with CD4+ or CD8+ T cell counts.

The majority of antigens which showed a trend over time
for combined patient groups were associated with cell
activation, implicating a general immune activation status
of PBMC from patients on HAART. Notably, this activa-
tion was initially controlled during the first year, but was
ultimately elevated after two years of HAART therapy. For
instance, after 2 years of HAART, the CD3epsilon, and two
co-stimulatory molecules CD27 and CD28 were upregu-
lated relative to the baseline after an initial period of sta-

bility for the first 12-18 months. In HIV-infected
individuals, the primary signal through TCR/CD3 is
decreased, though response to costimulation through
CD27 and CD28 is relatively preserved [22]. These stimu-
latory signal receptors were all increased during HAART,
possibly as a consequence of the partial restoration of the
impaired T cell responses during HAART.

CD95, CD2 and CD5 also showed a pattern similar to
what was observed for CD3epsilon. The increase in CD95
expression over time was consistent with a previous study,
which showed lack of control of T cell apoptosis under
HAART [23]. CD2 mediates both cell-to-cell adhesion and
T cell activation; also the CD2/LFA3 pathway may cooper-
ate with signals from the TCR pathway to amplify HIV
expression in vivo [24]. The biological relevance of
increased CD5 expression is unclear though it has been
suggested that up-regulation of CD5 on T cells can be a
physiological event depending on protein kinase C activa-
tion [25]. Alternatively, the increase in CD5 binding may
reflect the restoration of CD5+ T cell numbers in HAART
treated individuals. Although HAART prolongs the period
of controlled T cell activation, the observed elevation of
activation markers over time indicates the eventual failure
of HAART to control the chronic immune activation
caused by HIV infection. It is thus plausible to hypothe-
size that during the initial stage of HAART therapy (up to
1.5 years in our study), substantial decreases in HIV anti-
gen lead to the transient lowering of immune activation.
However HAART eventually fails to control low level rep-
lication in HIV reservoirs, which is possibly responsible
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Table 3: Antigens discriminating between sustained and transient responders

Part A Antigens with significantly higher expression in SR compared to TR

Antigen Baseline TimePoint2 TimePoint3 TimePoint4 P value?
CDI laSRb 153 +28.1 152 + 19.2 141 +25 157 +24.4 0.002
CDllaTRe 130 £ 17.2 123 £ 17 124 + 14.7 136 £ 9.6

CD29SR 145 + 25.5 151 + 143 147 £20.3 160 £ 23.1 0.001
CD29TR 120 + 35.5 [13+10.5 129 + 12.8 129 + 16.2

CD38SR 119 + 324 123+ 13.7 131 £21.3 138+ 19 0.045
CD38TR 105+ 19.3 106 + 28.4 109 + 16.4 116 +20.1

CD45ROSR 107 + 388 107 £ 17.9 105 £ 24.2 108 + 19.2 0.003
CD45ROTR 72+ 187 75+ 175 64 £ 27.1 73 £305

CD52SR 127 + 40.5 136 £ 15.9 136 +22.5 139 +10.9 0.048
CD52TR 112 +25.1 I +19.6 114 +21.3 118193

Part B Antigens with significantly lower expression in SR compared to TR

Antigen Baseline TimePoint2 TimePoint3 TimePoint4 P value?
CD56SR®P 0 17 17 17 0.047
CD56TRe 17 33 33 83

CD57SR 33 50 17 50 0.022
CD57TR 83 67 83 83

CD62ESR 33 67 50 83 0.012
CD62ETR 83 83 100 100

CD64SR 67 83 83 67 0.012
CD64TR 100 100 83 100

CD33SR 17 17 50 50 <0.001
CD33TR 100 100 83 83

Part A: Data presented are dot intensities, shown by mean + standard deviation.
Part B: Data are presented as the percentage of patient samples showing detectable expression level of the corresponding antigens in each patient
group since some samples had below detection expression levels for some antigens. The cut off value of 10 was used to identify detectable

expression levels.

a Level of significance of the group parameter in a repeated measure mixed model analysis of variance was used to assess the difference in values

between groups.
b SR: sustained responder group.
c TR: transient responder group.

for continued cellular activation at the later stages of ther-
apy, even when the viral load remains below detection.

The demonstrated increases in CD36 expression over time
may be associated with the lipid metabolism derange-
ments caused by HAART. In support of our findings,
which showed increase in CD36 expression over time dur-
ing HAART, Dressman et al., [26] showed that CD36 plays
a crucial role in cellular uptake and accumulation of lip-
ids, and protease inhibitors induce a specific increase in
macrophage CD36 levels, which may promote accumula-
tion of sterol in macrophages, foam cell formation and
atherosclerosis [26]. Increased CD36 expression has also
been found on circulating monocytes during HIV infec-
tion, which could represent a proatherogenic condition in
HIV-infected patients [27]. Although the mechanisms reg-
ulating CD36 expression during HIV infection and
HAART remains to be elucidated, it is imperative to care-
fully evaluate the role of CD36 expression especially dur-

ing HAART as this treatment is known to be associated
with increased cardiovascular risk, hyeprlipidemia and
lipodystrophy in HIV patients. Surprisingly we didn't
observe any statistically significant trend over time for
CD4 and CD8 expression. But compared to the pre-ther-
apy time points, the median of CD4+ T cell counts
increased slightly while CD8+ T cell counts decreased
slightly (Table 1). The lack of significant trend may be due
to too many overlapping values in the cell counts between
the time points and this trend may be detected by enlarg-
ing the sample size and increasing the time points.

Our study also found that five cell adhesion molecules
(CD11a, CD11c, CD44, CD49d, CD49e) might serve as
surrogate markers for disease progression, since the
changes in expression levels of these molecules were
highly correlated with the changes of either CD4+ or
CD8+ T cell counts (p < 0.001). To our knowledge, this is
the first report of a clear correlation between adhesion
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molecules and CD4+ and CD8+ T cell counts, though
altered CD11a, CD44 and CD49e expression on cell sub-
sets during HIV infection or disease progression has previ-
ously been reported [28,29]. Although the biological
significance of the adhesion molecules remains largely
unknown, it has been suggested that the plasma levels of
several soluble adhesion molecules (CD11b and CD54)
may have a potential application in assessing prognosis
and efficacy of the HAART [30]. Therefore, the relation-
ship between patient response to HAART, cell surface
expression of adhesion molecules and levels of circulating
adhesion molecules requires further investigation.

Three cell surface antigens were associated with cell activa-
tion (CDY, CD27 and CD28) positively correlated with
the CD4+ T cell counts. Previous studies may provide
some clues to the mechanism underlying these correla-
tions: the overexpression of CD9 rendered cells less sus-
ceptible to HIV envelope-mediated syncytia formation
[31], the expression rate of CD28 on CD4+ T cells was
positively correlated with CD4+ T cell counts [32], while
plasma soluble CD27 was inversely correlated to CD4+ T
cell counts [33]. A negative correlation between CD52
expression level and CD8+ T cell counts was observed. It
has been shown that CD52 expression may be associated
with the resting state of T cells [34].

The reliability of the antibody microarray technology was
further confirmed by the observation that the CD4+ T cell
binding density measured by antibody microarray was
significantly correlated with both CD4+ and CD8+ T cell
counts measured by flow cytometry, with adjusted p <
0.001 and 0.042, respectively.

Our study is unique in identifying 10 cell surface antigens,
whose expression levels distinguished between sustained
and transient responder groups, which have implications
for the evaluation of HAART efficacy. The mean values for
CD11a, CD29, CD38, CD45RO and CD52 binding were
significantly higher in the SR group at all time points than
those in the TR group, while the mean values for CD56,
CD57, CD62E, CD64 and CD33 were significantly lower.
Although the biological relevance of the changes observed
in these antigens needs further investigation, many of
these molecules have already been implicated in HIV
infection. CD38 and CD45RO are well documented cell
activation markers. CD11a expression on lymphocytes
has been shown to be related to clinical stage of disease
[35], while CD29 (B-1 integrin chain) is involved in the
regulation of an inflammatory effector gene [36]. CD56 is
a NK-associated marker and its expression on CD8+ T cells
identifies the mature cytolytic effector cells [37,38]. CD57
expression on CD8+, CD4+ T cell and NK cells is a general
marker of cell proliferative inability and senescence [39].
CD64 (FcgammaRI) was involved in FcgammaR-medi-

http://www.retrovirology.com/content/5/1/24

ated phagocytosis, which is impaired by HIV-1 infection
in monocyte-derived macrophages [40]. Although the
biological roles of CD62E (E-selectin) and CD33 are
unknown in the context of HIV infection, the plasma lev-
els of CD62E has been proposed for monitoring disease
activity in patients with chronic inflammatory syndromes
[41,42] and CD33 expression was significantly increased
on alveolar macrophages of HIV+ patients compared with
healthy controls [43].

Interestingly, this longitudinal study and our recent cross-
sectional study [1] have detected 3 cell surface antigens in
common (CD3epsilon, CD9 and CD57). This coinci-
dence may imply that these markers have some crucial
roles in HIV disease and HAART. Another notable feature
is that both studies have pointed to the importance of cell
adhesion molecules in disease progression. Although
adhesion molecules have been reported in HIV disease,
the biological relevance of most of these molecules is not
well understood. Our study provides a strong foundation
for understanding biological relevance of most of these
molecules through further investigation.

Conclusion

Our findings not only have implications for the evalua-
tion and future direction of HAART, but also show how in
an array-like manner the density of cell surface antigens
could be efficiently exploited in studying cell-surface
modulation during HAART and HIV-infection. Such
investigations would be labor-intensive, time-consuming
and expensive if done by flow cytometry. Secondly, the
detections of cell surface antigens in our study lay a solid
foundation for future functional assessment of these
markers. The differential antigens identified in this study
should be further investigated by other methods such as
flow cytometry for confirmation since DotScan technol-
ogy does not distinguish between modulation of antigen
expression and changes in the proportion of cell popula-
tion expressing the antigen. A biological analysis of these
markers may also help to clarify their role and may lead to
the discovery of new biomarkers for HIV prognosis/diag-
nosis. Further investigation on detailed subset composi-
tion of CD4+ and CD8+ T cells should be able to provide
more specific information related to immunoreconstitu-
tion under therapy since this study cannot differentiate
the changes of CD4+ or CD8+ T cell subsets, which may
have direct impact on the cell immunophenotype.
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