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Abstract

Truth claims in the medical literature rely heavily on
statistical significance testing. Unfortunately, most
physicians misunderstand the underlying probabilistic
logic of significance tests and consequently often
misinterpret their results. This near-universal
misunderstanding is highlighted by means of a simple
quiz which we administered to 246 physicians at two
major academic hospitals, on which the proportion of
incorrect responses exceeded 90%. A solid
understanding of the fundamental concepts of
probability theory is becoming essential to the rational
interpretation of medical information. This essay
provides a technically sound review of these concepts
that is accessible to a medical audience. We also briefly
review the debate in the cognitive sciences regarding
physicians’ aptitude for probabilistic inference.

Background
Medicine is a science of uncertainty and an art of
probability. - Sir William Osler [1]

While probabilistic considerations have always been
fundamental to medical reasoning, formal probabilistic
arguments have only become ubiquitous in the medical
literature in recent decades [2,3]. Meanwhile, many have
voiced concerns that physicians generally misunderstand
probabilistic concepts, with potential serious negative
implications for the quality of medical science and ulti-
mately public health [3-12]. This problem has been
demonstrated previously by surveys similar to the fol-
lowing quiz [13], which we administered to a group of
246 physicians at three major US teaching hospitals
(Barnes Jewish Hospital, Brigham and Women’s Hospi-
tal, and Massachusetts General Hospital). The reader is

likewise invited to answer before proceeding.

Consider a typical medical research study, for exam-
ple designed to test the efficacy of a drug, in which a
null hypothesis H0 (’no effect’) is tested against an
alternative hypothesis H1 (’some effect’). Suppose
that the study results pass a test of statistical signifi-
cance (that is P-value <0.05) in favor of H1. What
has been shown?
1. H0 is false.
2. H1 is true.
3. H0 is probably false.
4. H1 is probably true.
5. Both (1) and (2).
6. Both (3) and (4).
7. None of the above.

The answer profile for our participants is shown in
Table 1. This essay is for readers who, like 93% of our
respondents, did not confidently select the correct
answer, (7), ‘None of the above’. We hasten to assure
the reader that this is not a trick question. Rather, it is a
matter of elementary probabilistic logic. As will be clear
by the end of this essay answers (1) to (6) involve ‘leap-
ing to conclusions’, in violation of the basic law of prob-
abilistic inference, Bayes’ rule. We will see that Bayes’
rule is an essential principle governing all reasoning in
the face of uncertainty. Moreover, understanding Bayes’
rule serves as a potent prophylaxis against statistical fal-
lacies such as those underlying the apparent plausibility
of the six erroneous answers in this little quiz.
Despite its central place in the theory of probabilistic

inference, Bayes’ rule has been largely displaced in the
practice of quantitative medical reasoning (and indeed in
the biological and social sciences generally) by a statisti-
cal procedure known as ‘significance testing’. While sig-
nificance testing can, when properly understood, be seen
as an internally coherent aid to scientific data analysis
[14], it is usually misunderstood as a way to bypass Bayes’
rule, which we shall see is a perversion of probabilistic
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reasoning. Embarrassingly, fallacious uses of significance
testing continue to flourish despite being under constant
criticism in the statistical literature since its inception in
the 1960 s [5,13,15-17]. The reasons for this state of affairs
derive from a complex web of social and philosophical fac-
tors. However, we believe a more immediate barrier to
physicians understanding probability theory is the lack of
adequate literature explaining the subject in a way that
physicians can relate to. Therefore, we have written this
essay with three aims in mind. The first aim, addressed in
‘Discussion, Part I’, is to explain the basic concepts of
probability theory to physicians, and in particular to pro-
vide a detailed account of the ‘origin’, mechanics, and
meaning of Bayes’ rule. The second aim, covered in ‘Dis-
cussion, Part II’, is to provide an accurate technical expla-
nation of the two ingredients of significance testing: binary
hypothesis testing and P-values. Finally, we aim to show
how understanding Bayes’ rule protects against common
errors of statistical reasoning, such as those involved in
choosing the wrong answers to our introductory quiz.

Discussion, Part I: probability in medicine
Reasoning under uncertainty

They say that Understanding ought to work by the
rules of right reason. These rules are, or ought to be,
contained in Logic; but the actual science of logic is
conversant at present only with things either certain,
impossible, or entirely doubtful, none of which (for-
tunately) we have to reason on. Therefore the true
logic for this world is the calculus of Probabilities,
which takes account of the magnitude of the prob-
ability which is, or ought to be, in a reasonable
man’s mind. - James Clerk Maxwell [18]

The inadequacy of deductive logic
Since Aristotle the mainstream Western view has been
that rationality means reasoning according to the rules
of deductive logic [19,20]. The basic building block of
deductive logic is the syllogism, for example:

if is true, then is true.

is true.

is true.

A B

A

B∴

Or, similarly:

if is true, then is true.

is false.

is false.

A B

B

A∴

These logical forms play a role in straightforward
medical diagnostic scenarios like the following:

• 75 year old man with fever, productive cough,
chest x-ray showing consolidation of the right upper
lobe, sputum culture positive for gram positive cocci
in clusters.
Diagnosis: Pneumonia.
• 50 year old previously healthy man with sudden
onset painful arthritis of the MTP joint of his right
great toe, arthrocentesis positive for needle-shaped,
negatively birefringent crystals.
Diagnosis: Gout.

The reasoning required to make these diagnoses is
essentially syllogistic, that is a matter of checking that
the definitions of the disorders are satisfied, then draw-
ing the inevitable conclusion.
However, medical reasoning frequently requires going

beyond syllogistic reasoning. For example, consider the
following argument type:

if is true, then is true.

is true.

becomes more plausible.

A B

B

A∴

Of course, given the premise (A ⇒ B), the truth of B
does not, strictly speaking, imply the truth of A, hence
the use of the term ‘plausible’ to denote an implication
that falls short of certitude. Arguments of this kind,
which have been aptly called ‘weak syllogisms’ [21], are
indispensable in everyday medical reasoning. For exam-
ple, it is reasonable to assert that patients with appendi-
citis will have abdominal pain, and we accept abdominal
pain as grounds for suspecting appendicitis, though logi-
cally there are numerous other possible explanations for
abdominal pain. In a similar vein, consider these addi-
tional typical case vignettes and possible diagnoses:

• 45 year old homeless alcoholic man brought in by
police with confusion, disorderly behavior, and
breath smelling of alcohol. Diagnosis: Ethanol
intoxication.
• 75 year old nursing home resident with known
heart failure presents with confusion and shortness
of breath. Physical examination reveals rales, 3+
lower extremity pitting edema, labored breathing.
Diagnosis: CHF exacerbation.
• 55 year old male presents to ED with acute onset
substernal chest pain. Diagnosis: Gastric reflux.

Most physicians quickly assign rough degrees of plausi-
bility to these diagnoses. However, in these cases it is rea-
sonable to entertain alternative diagnoses, for example in

Table 1 Quiz answer profile

Answer (1) (2) (3) (4) (5) (6) (7)

Number 8 0 58 37 6 69 12

Percent 4.2 0 30.5 19.5 3.2 36.3 6.3
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the first case other intoxicants, or meningitis; and in the
second case pulmonary embolus, pneumonia, or myocar-
dial infarction. In the third case the stated diagnosis is
only weakly plausible, and most physicians would doubt
it at least until other possibilities (for example myocardial
ischemia) are ruled out. In each case, there is insufficient
information to make a certain (that is logically deductive)
diagnosis; nevertheless, we are accustomed to making
judgements of plausibility.
Stepping back once more, we can add to the list of

argument types frequently needed in medical reasoning
the following additional examples of even weaker ‘weak
syllogisms’:

If is true, then becomes more plausible.

is true.

becomes more p

A B

B

A∴ llaussible.

and

If is true, then becomes more plausible.

is plausible.

becomes

A B

B

A∴ mmore plaussible.

As in syllogistic reasoning, weak syllogistic reasoning
combines prior knowledge (for example knowledge of
medicine and clinical experience) with new data (for
example from seeing patients, lab tests, or new litera-
ture), but the knowledge, data, and conclusions involved
lack the certainty required for deductive logical reason-
ing. The practice of formulating differential diagnoses,
and the fact that physicians do not routinely test for
every possibility in the differential, shows that physicians
do in fact routinely assign degrees of plausibility. The
same can be said of most situations in everyday life, in
which the ability to judge which possibilities to ignore,
which to entertain, and how much plausibility to assign
to each constitute ‘common sense’. We now explore the
rules that govern quantitative reasoning under
uncertainty.

Cox’s theorem and the laws of plausible reasoning
There is only one consistent model of common
sense. - ET Jaynes [21]

How might one go about making the ‘weak syllo-
gisms’, introduced above, into precise quantitative state-
ments? Let us attempt to replace the loose statement
that ‘A becomes more plausible in light of B’, with a for-
mula telling us how plausible A has become. For this
purpose, let us denote by A and B the propositions ‘A is
true’ and ‘B is true’. We assume that we have already
assigned an ‘a priori’ value to the plausibility of A,

denoted ( )A . We wish to quantify how much more

plausible A becomes once we learn the additional infor-
mation given in the premises, comprising the plausibility

of B, denoted ( )B , and the plausibility of B when A is

true, ( | )B A . We focus on the third and ‘weakest’ syl-

logism, of which the other weak syllogisms are special
cases. A quantitative re-writing of this statement takes
the following form:

The plausibility of without regard to is equal to

The plaus

A B A( ) ( ).

iibility of without regard to is equal to

The plausibility

B A B( ) ( ).

oof when is true is equal to

The plausibility of when is

B A B A

A B

( | ).

∴ ttrue is equal to( | ).A B

From this it is apparent that what we are seeking is a
formula that gives the strength of the conclusion as a
function, f, of the quantities involved in the premises,
that is an equation of the form:

   ( | ) ( ( ), ( ), ( | )).A B f A B B A=

RT Cox (1898-1991) [22] and ET Jaynes (1922-1998)
[23] were able to prove mathematically that the only
possible formula of this form suitable for measuring
plausibilities was in fact:

Pr A B
Pr B A Pr A

Pr B
( | )

( | ) ( )
( )

,=

where the numbers denoted by Pr represent probabil-
ities, subject to the basic laws of probability theory,
which are:

• 0 ≤ Pr(A) ≤ 1,
• Pr(A) = 0 when A is known to be false,
• Pr(A) = 1 when A is known to be true,

• Pr A Pr A( ) ( )+ = 1 ,

• Pr B Pr B A Pr B A( ) ( , ) ( , )= +

where Pr(A, B) represents the probability that proposi-
tions A and B are both true. In other words, this result,
known as ‘Cox’s theorem’, proved that the only accepta-
ble way to quantify plausibilities  is to use probabil-
ities, Pr, and that the central rule involved in
considerations of plausibility is the formula for comput-
ing conditional probabilities, Bayes’ rule. Readers inter-
ested in a more complete account of Cox’s theorem are
referred the excellent discussions by Jaynes [23] and
more recently by Van Horn [24]. A brief review of the
interpretation of each of the basic laws of probability
theory, using Venn diagrams, can be found in the
Additional file 1.
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In the rest of the paper, we will use the more com-
mon form for Bayes’ rule, which is derived from the
form given above by simple substitutions using the basic
relations of probability just cited:

Pr A B
Pr B A Pr A

Pr A Pr B A Pr A Pr B A
( | )

( | ) ( )
( ) ( | ) ( ) ( | )

.=
+

This form is useful in that it makes explicit the fact that
Bayes’ rule involves three distinct ingredients, namely Pr

(A), (and its converse Pr A Pr A( ) ( ))= −1 , Pr(B|A), and

Pr B A( | ) . The meanings of these ingredients will

become clear in the next section.
We pause before proceeding to comment on our focus

in this essay on simple applications of Bayes’ rule. Our
aim is to explain the basic concepts governing probabilis-
tic inference, a goal we believe is best served by using
very simple applications of Bayes’ rule to evaluating
mutually exclusive truth claims (that is ‘binary hypoth-
eses’). We hasten to add that binary hypothesis compari-
son is not necessarily always the best approach. For
instance, in the quiz beginning this essay, rather than pit-
ting H0 (’no effect’) against hypothesis H1 (’some effect’),
it may be more informative to consider a range of possi-
ble value for the strength of the effect, and to compute a
probability distribution over this range of possible effect
sizes, from which we could also ‘read off’ the credibility
of the hypothesis that the effect size is equal to or close
to zero. The perils of inappropriate uses of binary
hypothesis testing, and alternative Bayesian methods for
assessing hypotheses, are discussed at length in several
good books and articles, for example [25,26].
Indeed, much real-world medical reasoning cannot be

naturally reduced to evaluating simple ‘true/false’ judge-
ments, but requires instead the simultaneous analysis of
multiple data variables, which often take on multiple or
a continuous range of values (not just binary). There are
frequently not just two but many competing interpreta-
tions of medical data. Moreover, we are often more
interested in inferring the magnitude of a quantity or
strength of an effect rather than simply whether a state-
ment is true or false. Similarly, evaluating medical
research typically involves reasoning too rich to be natu-
rally modeled as binary hypothesis testing (contrary to
the spirit of Fisher’s famous pronouncement that ‘every
experiment may be said to exist only in order to give
the facts a chance of disproving the null hypothesis’
[27]). Similar points can be made about the richness of
the inference characteristically required in much of
everyday life. In principle, and increasingly in practice,
these complex situations in fact can be given an appro-
priate quantitative probabilistic (that is ‘Bayesian’) analy-
sis. Accordingly, we wish to make the reader aware that

there exists large and expanding literature, built upon
the foundation of Bayes’ rule, which goes far beyond the
simple considerations of binary hypothesis testing dis-
cussed here. To give just a few examples, Bayes’ rule is
the basis for: sophisticated methods for the rational ana-
lysis of complex data [26,28,29], especially data from
medical clinical trials [30-36]; probabilistic models in
cognitive science of sensory perception, learning, and
cognition [20,37-42]; and increasingly successful
approaches to real-world problems in artificial intelli-
gence including search engine technology, general pat-
tern recognition in rich data sets, computer vision and
speech recognition, terrorist threat surveillance, and
early detection of disease outbreaks [19,43-56].
Nevertheless, understanding the ongoing work at the

frontiers of modern probability theory requires first a
sound understanding of Bayes’ rule in its most elemen-
tary form, the focus of this essay.

The ‘subjective’ interpretation of probability
It is important to appreciate that the interpretation of
mathematical probability as a measure of plausibility,
that is as a ‘degree of belief’, is not the only way of con-
ceptualizing probability. Indeed, in mathematics prob-
ability theory is usually developed axiomatically, starting
with the rules of probability as ‘given’ [57]. Probability
theory can also be developed from a ‘frequentist’ point of
view, with probabilities interpreted as the fraction of
events for which a particular proposition is true in series
of cases over time, or within a collection or population of
cases. The frequentist view has some obvious limitations
in that it does not strictly allow one to talk about the
probability of particular events, for example the probabil-
ity that Mr. Jones has pneumonia. However, in practice
the views are not incompatible: If we know nothing else
about Mr. Jones, it may be reasonable to set one’s initial
assignment of the probability that Mr. Jones has pneu-
monia equal to the fraction of persons in similar circum-
stances who were ultimately found to have pneumonia.
The interpretation of probabilities as degrees of belief is

often called the ‘subjective interpretation of probability,’
or more succinctly, ‘Bayesian probability,’ because Tho-
mas Bayes is credited as the first to develop a coherent
way to estimate probabilities of single events [58]. There
is a long history of tension between the frequentist and
Bayesian interpretations of probability. However, this
controversy has waned, in part because of Cox’s theorem,
but also because of the explosion in the number of prac-
tical applications of Bayes’ rule that have become possible
since the computer revolution [19,20,53,59,60].

The three ingredients of Bayes’ rule
An intuition for why Bayes’ rule has the form that it does
can be gained by observing the effects produced by
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changing the values of each of its three variables. For
concreteness, we frame our discussion in terms of the pro-
blem of distinguishing appendicitis from other causes of
abdominal pain in a pediatric emergency department on
the basis of the presence or absence of fever. In this exam-
ple, fever is taken as evidence of appendicitis, so we have
the following labels for the four possible combinations of
fever (F) and appendicitis (A): (F, A) = ‘true positives’,
( , ) ’ ’F A = false positives , ( , ) ’ ’F A = false positives , and
( , ) ’ ’F A = false negatives . We note that Bayes’ rule com-
bines three essential ingredients: the prior probability of
appendicitis Pr(A) (and its converse Pr A Pr A( ) ( ))= −1
and the two conditional probabilities Pr(F|A) and
Pr F A( | ) , which we will call the true positive and false
positive rates, respectively.

Anatomy of Bayes’ rule
The importance of each of the ingredients of Bayes’ rule,
the three arguments Pr(A|F) = f(a, b, c), where a = Pr(A),
b = Pr(F|A), and c Pr F A= ( | ) , is most easily grasped by
considering extreme cases. We invite the reader to con-
sider the arguments first from the standpoint of ‘com-
mon sense’ before checking that the conclusion is indeed
borne out mathematically by Bayes’ rule.

1. Suppose that somehow we know, independent of
fever status, that 100% of the patients have appendi-
citis, Pr(A) = 1. In this case, fever can have no effect
on the probability of appendicitis, that is Pr(A|F)
must be equal to Pr(A), regardless of the other two
factors Pr(F|A) and Pr F A( | ) . Thus Pr(A|F) must
depend on the prior probability, Pr(A).
2. Next, suppose every child with appendicitis has a
fever, Pr(F|A) = 1, and every child without appendi-
citis is afebrile, Pr F A( | ) = 0 . Then knowing the
child’s temperature would be equivalent to knowing
the diagnosis. Thus, Pr(A|F) must be equal to one,
and Pr A F( )| must equal zero, regardless of Pr(A).
Thus, Pr(A|F) must depend on some combination of
the true positive rate, Pr(F|A), and false positive rate,
Pr F A( | ) respectively.
3. To see that Pr(F|A) and Pr F A( | ) can in fact act as
independent variables in affecting Pr(A|F), for the next
two cases, let our uncertainty before taking the child’s
temperature be maximal, Pr A Pr A( ) ( ) /= = 1 2 . Now
suppose that all patients with appendicitis have fever,
Pr(F|A) = 1. Then the predictive value of fever as a
marker of appendicitis must vary inversely with the
frequency of fever in patients without appendicitis,
Pr F A( | ) (or equivalently, monotonically with the
specificity Pr F A( | ) ). Thus, Pr(A|F) must depend on
the true positive rate, Pr(F|A).
4. Suppose that no one with appendicitis gets fevers,
Pr(F|A) = 0. Then the presence of fever automatically

rules out appendicitis, regardless of any other infor-
mation. Thus, Pr(A|F) must depend on the false posi-
tive rate, Pr F A( | ) .

These arguments show that the formula for the ‘pos-
terior probability’, that is the probability of appendicitis
given fever, Pr(A\F), must take into account all three
quantities, Pr(A), Pr(F|A), and Pr F A( | ) , as indeed
Bayes’ rule does.

Physiology of Bayes’ rule
We now explore how the output of Bayes’ rule varies
with its three inputs. Interactive online computer pro-
grams may also be helpful for gaining intuition, and can
be found using the following references: [61,62].
Consider a hypothetical population of 1,000 patients

evaluated for abdominal pain in the pediatric emergency
room, some with fever, some with appendicitis, some
with both, and some with neither. We will systematically
vary the proportions of each subpopulation and observe
the output of Bayes’ rule. The numbers used in these
examples are summarized in Table 2.
Initially, suppose that among our 1,000 patients, 121

are ultimately found to have appendicitis. Fever was pre-
sent on initial presentation in 174 patients, of which 62
are found to have appendicitis. The number of true
positives, false positives, false negatives, and true nega-
tives calculated from these numbers are listed in the
first row of Table 2. In turn, we estimate the sensitivity
(also known as true positive rate) of fever as a sign for
appendicitis as:

Pr F A TP TP FN= = + = =( | ) / ( ) / ( ) %,62 111 56

the false positive rate (also known as 1-specificity) as:

Pr F A FP FP TN( | ) / ( ) / %,= + = =112 889 13

and the prior probability (also known as prevalence)
as:

Pr A TP FN TP FP FN TN( ) ( ) / ( ) / , %.= + + + + = =112 1 000 11

This situation is shown schematically in Figure 1 in
which the area enclosed by the outer circle represents
the entire patient population; the larger internal shaded
region represents the number of patients with fever; the
smaller internal shaded region represents the number of
patients with appendicitis; and the area of overlap repre-
sents the number of patients with both appendicitis and
fever.
So, in a febrile child complaining of abdominal pain,

what is the probability of appendicitis? Based on the
information above, most physicians give an answer close
to 56%, a conclusion reached apparently by mentally
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replacing the prior probability Pr(A) with the true posi-
tive rate Pr(F|A), thus confusing the latter with the cor-
rect quantity, Pr(A|F) [11,12,61]. The correct answer is
computed by taking the fraction of patients with appen-
dicitis among those with fever, Pr(A|F) = TP/(TP +
FP) = 62/174 = 36%. Figure 1 illustrates this calculation
graphically, where the act of taking fever as ‘given’ is
depicted as collapsing the population to just those
patients who have fever. As expected, finding that a
patient with abdominal pain has fever increases the
probability of appendicitis - in fact, the probability more
than triples (from 11% to 36%) - but, critically, the prob-
ability increases from the prior probability Pr(A). One
needs to know the prior probability Pr(A) to calculate
the posterior probability Pr(A|F).
Varying Pr(F|A)",1,0,2,0,0pc,0pc,0pc,0pc>>Varying Pr(F|A)
Suppose we increase the true positive rate Pr(F|A) from
56% to 71% (Figure 2). This increases the posterior
probability of appendicitis from 36% to 41%. These
increases correspond to an increase in the number of

appendicitis patients who have fever from 62 to 79, or
graphically to a 15% expansion of the part of the fever
region that is within the appendicitis region, with the
result that a 5% larger fraction of the fever region con-
tains appendicitis. Conversely, a decrease in the true
positive rate Pr(F|A) from 56% to 40% decreases the
posterior probability Pr(A|F) from 36% to 29%. These
changes correspond numerically to a decrease in the
number of patients with fever and appendicitis from 62
to 45.
Varying Pr F A( | )
Next let us slightly increase the false positive rate

Pr F A( | ) from 13% to 15% (Figure 3). This pushes the

posterior probability Pr(A|F) down from 36% to 31%,
and corresponds numerically to increasing the number
of febrile patients without appendicitis from 112 to 136,
or graphically to a 2% growth of the part of the fever
region that is outside the appendicitis region, with the
result that the fractional area of the fever region covered
by appendicitis shrinks by 5%.
Conversely, a decrease in the false positive rate

Pr F A( | ) from 13% to 10% pushes the posterior prob-

ability Pr(A|F) up from 36% to 41%. This corresponds
numerically to decreasing the number of febrile patients
without appendicitis from 112 to 88, or graphically to a

Table 2 Hypothetical statistics for fever and appendicitis

TP | FP Pr(F|A) | Pr(A)

FN | TN Pr F A( | ) | Pr(A|F)

62 | 112 56% | 11%

49 | 777 13% | 36%

79 | 112 71% | 11%

32 | 777 13% | 41%

45 | 112 40% | 11%

66 | 777 13% | 29%

62 | 136 56% | 11%

49 | 753 15% | 31%

62 | 88 56% | 11%

49 | 801 10% | 41%

139 | 192 56% | 45%

111 | 558 26% | 42%

22 | 121 56% | 4%

18 | 839 13% | 6%

Figure 1 Reference population of patients with appendicitis
and fever, showing the result of conditioning on the presence
of fever.
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shrinkage of the part of the fever region that is outside
the appendicitis region by 3%, with the result that the
fractional area of the fever region covered by appendici-
tis expands by 5%.
Varying Pr(A)
Finally, consider increasing the prior probability of appen-
dicitis Pr(A) from 11% to 25% while holding the true and
false positive rates fixed at Pr(F|A) = 56% and
Pr F A( | ) %= 26 . This change raises the posterior prob-
ability Pr(A|F) from 36% to 42%. In the corresponding
Venn diagram shown in Figure 4 increasing P(A) corre-
sponds to simply increasing the area of A; Pr(F|A) is held
fixed by increasing the area of F within A proportionately,
whereas keeping the same value for Pr F A( | ) requires a
compensatory shrinkage of the shape for F. Likewise,
decreasing the prior probability from 11% to 4% lowers
the posterior probability from 36% to 16%, which in the
accompanying Venn diagram requires shrinking A, shrink-
ing the part of F within A proportionately to hold Pr(F|A)
fixed, and stretching the shape of F outside of A to main-
tain the fixed value of Pr F A( | ) . The numbers for this
example are shown in Table 2 and Figure 4.

Summary of the general rules
These examples illustrate the following general princi-
ples (assuming a ‘positive’ test result):

• Increasing the true positive rate (sensitivity) pushes
the posterior probability upward, whereas decreasing
the true positive rate pushes the posterior probability
downward.
• Increasing the false positive rate (1-specificity)
pushes the posterior probability downward, whereas

decreasing the false positive rate pushes the poster-
ior probability upward.
• Increasing the prior probability pushes the posterior
probability upward, whereas decreasing the prior prob-
ability pushes the posterior probability downward.

We emphasize again that in every case the posterior
probability goes up or down from the prior probability,
rather than being replaced by any of the three quantities.
These general rules are illustrated in the graphs in Figure 5.

End of Part I
Uncertainty suffuses every aspect of the practice of medi-
cine, hence any adequate model of medical reasoning, nor-
mative or descriptive, must extend beyond deductive logic.
As was believed for many decades, and recently proven by
Cox and Jaynes, the proper extension of logic is in fact
probability theory, with Bayes’ rule as the central rule of
inference. We have attempted to explain in an accessible
way why Bayes’ rule has its particular form, and how its
behaves when its parameters vary. In the Part II, we inves-
tigate ways in which probability theory is commonly mis-
understood and abused in medical reasoning, especially in
interpreting the results of medical research.

Discussion, Part II: significance testing
Every experiment may be said to exist only in order
to give the facts a chance of disproving the null
hypothesis. - RA Fisher [27]

Figure 2 Effects on posterior probability of changes in
sensitivity, while holding prior probability and false positive
rate constant.

Figure 3 Effects on posterior probability of changes in false
positive rate, while holding prior probability and sensitivity
constant.

Figure 4 Effects on posterior probability of changes in prior
probability, while holding sensitivity and false positive rate
constant.

 0

 0.5

 1

 0  0.5  1

P
r(

A
|B
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 0  0.5  1  0  0.5  1
Pr(B|A) Pr(B|C) Pr(A)

Figure 5 Illustration of how the posterior probability depends
on the three parameters of Bayes’ rule. Each plot shows two
curves for the posterior probability as a function of one of the three
parameters (with the remaining two parameters held constant)
chosen from among one of two sets of values for(Pr(A), Pr(F|A),
Pr F A( | ) ), either (0.3, 0.95, 0.05) or (0.1, 0.7, 0.15).
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Armed with our understanding of the anatomy and
physiology of Bayes’ rule, we are prepared for pathophy-
siology. In Part II we explore common misinterpreta-
tions and misuses of elementary medical statistics that
occur in the application of significance testing, and how
these can be effectively treated by applying our under-
standing of Bayes’ rule.
Before one can appreciate the problems with signifi-

cance testing, one needs a clear understanding of a few
concepts from ‘classical statistics’, namely binary
hypothesis testing and P-values. We now proceed to
review these concepts.

Binary hypothesis testing
Binary hypothesis testing is familiar to most physicians
as the central concept involved in judging the results of
clinical trials. The basic setup was encountered in the
quiz that began the paper. For any proposition A, we set
up two hypotheses: H0 = ‘A is not true’, called the null
hypothesis; and H1 = ‘A is true’, called the alternative
hypothesis. In our quiz, the effect of a new drug was
being investigated and we had H0 = ‘the drug has no
effect’ vs. H1 = ‘the drug has some effect’. One of these
statements must be true as a matter of logical necessity.
To find out which one, an experiment is carried out (for
example a clinical trial), resulting in data D. We then
conclude, through a procedure described below, that the
data either favors H0, called ‘affirming the null hypoth-
esis,’ or favors H1, called ‘rejecting the null hypothesis.’
We will denote our conclusions as either D0 = ‘the data
favor the null hypothesis’, or D1 = ‘the data favor the
alternative hypothesis’.
Our conclusions can be right or wrong in four ways

(see Table 2). Correct results include ‘true positives’
(concluding D1 when H1 is true), and ‘true negatives’
(concluding D0 when H0 is true); the corresponding
probabilities Pr(D0|H0) and Pr(D1|H1) are called the
‘specificity ’ and ‘power’ of the study, respectively.
Incorrect results include Type I errors (concluding D1

when H0 is true), and Type II errors (concluding D0

when H1 is true); the corresponding probabilities Pr
(D1|H0) and Pr(D0|H1) are called the ‘Type I error rate’
and ‘Type II error rate’, respectively. There is a perfect
analogy (and mathematically, no difference) between
these probabilities and the ‘four fundamental forward
probabilities’ well known to physicians in the context
of diagnostic testing, namely, the true and false posi-
tive rates, and true and false negative rates. Similarly,
corresponding to the ‘four fundamental inverse prob-
abilities’ of diagnostic testing, namely positive and
negative predictive values and the false detection rate
and false omission rate, there are exactly analogous
quantities for the hypothesis testing scenario, that is Pr
(H0|D0), Pr(H1|D1), Pr(H0|D1), and Pr(H1|D0). (See the

Additional file 1 for a brief review of the fundamental
forward and backward probabilities of diagnostic test-
ing.) This analogy is summarized in Table 3 and has
been expounded beautifully in a classic paper by
Browner and Newman [63]. We will return to this ana-
logy near the end of the paper.

The null hypothesis significance testing procedure
Let us now consider the conventional statistical reasoning
process followed in drawing conclusions about experi-
ments. This reasoning is prescribed by a standardized sta-
tistical procedure, the ‘null hypothesis significance testing
procedure’ (NHSTP), or simply ‘significance testing’, con-
sisting of the following steps.

1. Specify mutually exclusive and jointly exhaustive
hypotheses H0 and H1.
2. Design an experiment to obtain data D, and define
a test statistic, that is a number or series of numbers
that summarize the data, T = T (D) (for example the
mean or variance).
3. Choose a minimum acceptable level of Type I
error, called the ‘significance level’, denoted a
4. Do the experiment, yielding data D, and compute
the test statistic, T = T (D).
5. Compute the P-value of the data from the test
statistic, P = P (T (D)).
6. Compare the P-value to the chosen significance
level. If P ≤ a, conclude that H1 is true. If P >a, con-
clude that H0 is true.

In the customary statistical jargon, when P ≤ a, we say
that the experimental results are ‘statistically significant’,
otherwise, they ‘do not reach significance.’ Also, note
that the P-value itself is a statistic, that is a number
computed from the data, so in effect we compute a test

Table 3 The analogy between diagnostic tests and
clinical trials

Diagnostic testing Clinical trials

Absence of disease Truth of null hypothesis

Presence of disease Falsity of null hypothesis

Cutoff between positive
and negative results

Significance level, a

Test result P-value

Negative result P-value > a
Positive result P-value < a
Sensitivity Power

False positive rate (1-
specificity)

Significance level, a

Prior probability of disease Prior probability of a difference between
groups

Posterior probability of
disease, given test result

Posterior probability of a difference
between groups, given study results
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statistic T = T (D), from which we compute a second
test statistic P = P (T(D)).

P-values
We now review what P-values mean. The technical defi-
nition that we will use differs in important ways infor-
mal definitions more familiar to physicians, and the
difference turns out to be consequential, as witnessed by
the existence of a large critical literature dealing with
practical and philosophical problems arising from defini-
tions in common use [5,7,13-17,26,28,50,64-83]. As an
overview to our own discussion of the conceptual issues
at stake, we note that the literature critical of P-values
can be roughly divided into two dominant themes [75].
First, there are problems of interpretation. For example,
consider the commonly encountered informal definition
of the P-value as the probability that the observed result
could have been produced by chance alone

The probability that the observed result could have
been produced by chance alone

This definition is vague, and tempts many users into
confusing the probability of the hypothesis given the data
with the probability of the data given the hypothesis
[13,17], that is it is unclear whether this definition refers
to a conditional probability with the hypothesis H0
before the conditioning line, Pr(H0|·), or after the condi-
tioning line, Pr(·|H0), which have very different meanings.
Another common complaint is that the conventional cut-
off value for ‘significance’ of P < 0.05 is arbitrary. Finally,
many have argued that real-world null hypotheses of ‘no
difference’ are essentially never literally true, hence with
enough data a null hypothesis can essentially always be
rejected with an arbitrarily small P-value, casting doubt
on the intrinsic meaningfulness of any isolated statement
that ‘P <x’. A second entirely different class of P-value
criticisms concerns problems of construction
[7,26,28,75,83]. This critique maintains that P-values as
commonly conceived are in fact conceptually incoherent
and meaningless, rather than simply being subject to mis-
interpretation. The charges revolve around a more expli-
cit yet still mathematically informal type of definition of
the P-value such as

the probability that the data (that is the value of the
summary statistic for the data), or more extreme
results, could have occurred if the intended experi-
ment was replicated many, many times, assuming
the null hypothesis is true.

The potential morass created by this definition can be
illustrated by imagining that an experimenter submits a
set of data, consisting, say, of 23 data samples, to a

statistical computer program, which automatically com-
putes a P-value. According to the definition above, to
produce the P-value, the computer must implicitly make
several assumptions, often violated in actual practice,
about the experimenter’s intentions, such as the
assumption that there was no intention to: collect more
or less data based on an analysis of the initial results
(the ‘optional stopping problem’); replace any lost data
by collecting additional data; run various conditions
again; or compare the data with other data collected
under different conditions [26,28,75]. Any of these alter-
native intentions would leave the actual data in hand
unaltered, while implicitly altering the null hypothesis,
either trivially by changing the number of data points
that would be collected in repeated experiments, or by
more profound alterations of the precise mathematical
form of the probability distribution describing the null
hypothesis. Consequently, the P-value apparently varies
with the unstated intentions of the experimentalist,
which in turns means that, short of making unjustified
assumptions about those intentions, the P-value is math-
ematically ill defined.
In what follows, we will avoid the ‘constructional’

objections raised above by using a mathematically expli-
cit definition for the P-value. Problems with interpreta-
tion will still remain, and the following section will
focus in detail on what we believe are the most serious
of the common modes of misinterpreting P-values. The
generally accepted mathematical definition for the
P-value is [84]:

the probability under the null hypothesis of obtain-
ing the same or even less likely data than that which
is actually observed, that is the probability of obtain-
ing values of the test statistic that are equal to or
more extreme than the value of the statistic actually
computed from the data, assuming that the null
hypothesis is true.

Note that this definition does not include any refer-
ence to the ‘intentions’ under which the data were col-
lected. To avoid any possible confusion, we emphasize
that this definition requires that the null hypothesis, H0,
be fully specified. This means, for example, that the
number of data samples n, constituting the data D, the
chosen data summary statistic T (D), and more generally
a mathematical formula for the probability distribution
of values for the data summary statistic under the null
hypothesis, Pr(T (D)|H0), be explicitly stated. In some
cases, this specification is straightforward. For example,
if the data is assumed to follow a normal distribution,
then the null hypothesis can be fully specified by simply
stating values for two parameters, the mean and stan-
dard deviation. In other cases the distribution can have
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a mathematically complicated form. Methods for specify-
ing and computing complex null hypotheses are beyond
the scope of this essay, but have been well worked out in a
wide variety of practically important cases, and are in wide
use in the field of statistics. The important point to grasp
here is that once the null hypothesis H0, is specified, or
more precisely, the relevant probability distribution Pr(T
(D)|H0), then computing the P-value can in principle pro-
ceed in a straightforward, uncontroversial manner, accord-
ing to its mathematical definition given above. As
mentioned above, without specifying the null hypothesis
distribution explicitly, the P-value is ill-defined, because
any raw data are generally consistent with multiple differ-
ent possible sample-generation processes, each which of
may entail a different P-value [25,26].
We now turn to explaining our final, technical defini-

tion of the P-value. We will do this by exploring the
definition from the vantage point of three different
examples. The third example presents an additional,
alternative definition of P-values which provides novel
insights into the true meaning of P-values by viewing
them from the medically familiar perspective of sensitiv-
ity and specificity considerations, in the context of ROC
curves. This final definition will be mathematically
equivalent, though not in an immediately obvious way,
to the definition just given.
Angle 1. P-values as tail area(s)
Graphically, a P-value can be depicted as the area under
one or two tails of the null-hypothesis probability distri-
bution for the test statistic, depending on the details of
the hypothesis being tested. For example, consider the
classification of patients’ systolic blood pressure as either
chronically hypertensive, H1, or not chronically hyper-
tensive, H0, on the basis of a single blood pressure mea-
surement. Let us assume that blood pressures for
normotensive patients obey a normal distribution
 ( )BP , as shown in Figure 6. If for a particular patient
we obtain a systolic blood pressure of SBP = 138.6, then
the P-value for this result is the probability in a non-
hypertensive patient of finding a blood pressure equal to
or greater than this value, or the area under the right
sided tail of  ( )BP , starting from SBP = 138.6.
If instead the null hypothesis states that the patient is

chronically normotensive, H0, so that the alternative H1

includes the possibility of either hypertension or hypo-
tension, then the P-value would be ‘two-sided’, since
values under an equally-sized left sided tail of the distri-
bution would be equally contrary to the hypothesis H0

and hence would have caused us to reject H0 according
to the null hypothesis significance testing procedure
(NHSTP).
Angle 2. P-values for coin flipping experiments
Let us carry out the P-value calculation in detail for a
simple coin flipping experiment, where we wish to

decide whether a coin is fair (equal probability of heads
or tails) or biased (unequal probabilities). Note that the
P-value in this case is ‘two-sided’. Following the NHSTP:

1. Let H0 = ‘the probability of heads is 1/2’, H1 =
‘probability of heads ≠ 1/2’.
2. The experiment will consist of flipping a coin a
number of times n, and the data D will thus be a
series of heads or tails. For our test statistic T , let
us compute the difference between 1/2 and the frac-
tion of heads, that is if k of the n coin tosses land as
heads, then T (D) = |1/2-k/n|. For this example, let
us put n = 10.
3. We set the significance level to the conventional
value a = 0.05 = 5%.
4. Having done the experiment suppose we get data
D = (H, H, H, H, H, H, T, H, H, T). This sequence
contains eight heads, so T (D) =|1/2-8/10| = 0.3.
5. To calculate the P-value, we must consider all the
ways in which the data could have been as extreme
or more extreme than observed, assuming that the
null hypothesis is true. That is, we need to consider
all possible outcomes for the data D such that T(D)
≥ 0.3, and calculate the joint probability of these
outcomes, assuming that the coin is fair. Clearly,
observing eight, nine, or ten heads would be ‘as
extreme or more extreme’ than our result of eight
heads. Since the null hypothesis assumes equal prob-
ability for heads and tails, symmetry dictates that
observing zero, one, or two heads would also qualify.
Hence, the P-value is:

p Pr T D H

Pr k k H

= ≥
= ≥ ≤
=

( ( ) . | )

( | )

. %.

0 2

8 2

10 94

0

0or

(See Additional file 1 for details of this and the next
two calculations.)
6. Since p ≥ 5%, the NHSTP tells us to accept the
null hypothesis, concluding that the coin is fair.
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Figure 6 Distribution of systolic blood pressures for a
population of healthy 60-69 year old males (from data in
[125]). The value SBP = 138.6 mmHg has a P-value of 0.05, equal to
the shaded area under the curve.
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Before leaving this example, it is instructive to exam-
ine its associated Type I and II error rates. The Type I
error rate (false positive rate) in this case is the prob-
ability of incorrectly declaring the coin unfair (H1) when
in fact it is fair (H0), that is, the probability of getting P
≤ a when in fact H0 is true. It turns out that had we
observed just one more head then the NHSTP would
have declared a positive result. That is, suppose k = 9,
or T (D) = |1/2 - 9/10| = 0.4.
Then:

p Pr T D H

Pr k k H

= ≥
= ≥ ≤
=

( ( ) . | )

( | )

. %.

0 4

9 1

2 15

0

0or

Thus, we see that P ≤ a whenever d ≥ 0.4, hence the
Type I error rate or false positive rate is:

FPR Pr D H Pr p H= = ≤ =( | ) ( | ) . %.1 0 0 2 15

Calculation of the false negative rate requires addi-
tional assumptions, because a coin can be biased in
many (in fact, infinitely many) ways. Perhaps the least
committed alternative hypothesis H1 is that for biased
coins any heads probability different from 1/2 is equally
likely. In this case the false negative rate turns out to be
FNR = Pr(D0|H1) = 72.73%
Angle 3: P-values from ROC curves
To take a third angle, we consider an alternative defini-
tion for the P-value [84]. The P-value is

the minimum false positive rate (Type I error rate)
at which the NHSTP will reject the null hypothesis.

Though not obvious at first glance, this definition is
mathematically equivalent to our previous definition of
the P-value as the probability of a result at least as
extreme as the one we observe. The effort required to
see why this is the case affords additional insight into
the nature of P-values.
Let us step back and consider the null hypothesis test-

ing procedure from an abstract point of view. The
NHSTP is one instance of threshold-decision procedure,
that is, a procedure that chooses between two alterna-
tives by comparing a test statistic computed from the
data T(D) with a threshold g (in the case of the NHSTP,
the statistic is the P-value, and the threshold is the sig-
nificance level a). The procedure declares one result
when the test statistic is less than or equal to threshold,
and the alternative result when the threshold is
exceeded. Identifying one of the alternatives as ‘positive’
and the other as ‘negative’, in general any such thresh-
old-based decision procedure must have a certain false
positive and false negative rate, determined by the

chosen threshold. More explicitly, let us denote the
positive and negative alternatives as H1 and H0, respec-
tively, and declare a positive result whenever T(D) ≤ g,
or a negative result whenever T(D) >g. A false positive
then occurs if T(D) ≤ g when in fact H0 is true, and the
probability of this event is denoted FPR(g) = Pr(T(D) ≤
g|H0). Similarly, a true positive result occurs if T(D) ≤ g
when H1 is true, and the probability of this event is
denoted TPR(g) = Pr(T(D) ≤ g|H1). If we allow the
threshold to vary, we can generate a curve of the false
positive rate versus the false negative rate; such a curve
is called a ROC curve. To make this discussion concrete,
let us return to our coin flipping example. In that case,
we set the ‘positive’ alternative to H1 = ‘the coin is
biased’ (that is Pr(Heads|H1) ≠1/2), and set the negative
alternative to H0 = ‘the coin is fair’ (Pr(Heads|H0) =
1/2). Setting the test statistic as before to T(D) = d =
|1/2 - k/n|, we then have:

FPR Pr d H

TPR Pr d H

( ) ( | ),

( ) ( | ).

 
 

= ≥
= ≥

0

1

The resulting ROC curve ROC(g) = (FPR(g), TPR(g)) is
plotted in Figure 7. (On a technical note, the way we
have set up our decision procedure, there are really only
seven achievable values of (TPR(g), FPR(g)) on this ROC
curve, marked by the circles: The first five values corre-
spond to the five possible values of d, 0, 0.1, 0.2, 0.3,
0.4, which correspond in turn to the following pairs of
possible values k for the number of heads in ten coin
tosses (0. 10), (1. 9), (2. 8), (3. 7), (4. 6) (each member
of the pair gives the same value for d); the sixth value
corresponds to the value d = 0.5, which corresponds to
a result of five heads; and the seventh value corresponds
to setting the threshold to any value beyond what is
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Figure 7 ROC curve for the coin flipping experiment with n =
10, H0 : Pr(Heads) = 0.5 vs.H1 : Pr(Heads) = 0.7. The curve is
generated by varying a threshold between 0 (corresponding to the
point (1, 1)) and 10 (corresponding to the point (0, 0)).
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obtainable, that is to g < 0. We have connected these
seven points with straight lines to create a more aesthe-
tically pleasing plot.)
Key points on the ROC curve are marked by circles,

and the corresponding value for is g noted. Points on the
ROC curve ‘down and to the left’ (low false positive rate,
low true positive rate) correspond to setting the thresh-
old low; whereas values ‘up and to the right’ (high false
positive rate, high true positive rate) correspond to set-
ting the threshold high. Clearly, if we wished to avoid all
false positive conclusions, we could set the threshold to
-∞, since all results will then be declared negative (Pr(d ≤
-∞|H0) = 0), but this comes at the expense of rejecting all
true positive results as well (since Pr(d ≤ -∞|H1) = 0).
Conversely, we can avoid missing any true positive
results by setting the threshold to g ≤ 0.5, since it is true
for all possible results that d ≤ 0.5 (hence Pr(d ≤ 0.5|H1)
= 1), but this simultaneously results in a maximal false
positive rate (since Pr(d ≤ 0.5|H0) = 1 also). Clearly, posi-
tive results are only meaningful when obtained with the
threshold g set to some value intermediate between these
extremes. Now, suppose that after conducting our coin
flipping experiment we decide to ‘cheat’ as follows. As
before let the outcome be that we get eight heads, or d =
|1/2 - 8/10| = 0.3. Rather than choosing the decision
threshold beforehand, we instead choose the threshold
after seeing this result, to ensure that the result is
declared positive. Our results will look best if we choose
the threshold g as small as we can, to let through as few
false positives as possible, while still letting our result
pass. This special choice of the threshold g is clearly the
value of our actual result, so we set g = d = 0.3, and voilà,
our result is positive. We cannot make the false positive
rate any smaller without making our result negative
according to the NHSTP.
Now for the point of this whole exercise: If we drop a

vertical line from the point on the ROC curve ROC(0.3)
= (TPR(0.3), FPR(0.3)) down to the x-axis to see where
it intersects, we see that the false positive rate is FPR
(0.3) = 10.94%, which is the result we calculated pre-
viously as the P-value. Thus the condition for declaring
a positive result (d ≤ g) is equivalent to the condition in
the NHSTP (P ≤ a), hence, as claimed, the P-value is
the minimum false positive rate at which the NHSTP
will reject the null hypothesis. As an immediate corol-
lary we also see that false positive rate of the NHSTP is
simply the significance level, that is:

Pr D H Pr P H( | ) ( | )1 0 1= ≤ = 

Is significance testing rational?
The null hypothesis significance test (NHST) should
not even exist, much less thrive as the dominant

method for presenting statistical evidence. . . It is
intellectually bankrupt and deeply flawed on logical
and practical grounds. - Jeff Gill [85]

We are now in a position to answer the question: Is
the null hypothesis significance testing procedure a
rational method of inference? We will show momenta-
rily that the answer is a resounding ‘NO!’, but first we
briefly consider why, despite its faults, many find it
intuitively plausible. Several books explore the reasons
in detail [59,86-88], and a full account is well beyond
the scope of this paper. We will focus on one particu-
larly instructive explanation, called ‘the illusion of prob-
abilistic proof by contradiction’ [13]. Consider once
again the valid logical argument form:

if is true, then is true.

is false.

is false.

A B

B

A∴

This argument is called ‘proof by contradiction’: A is
proved by ‘contradicting’ B, that is the falsehood of A
follows from the fact that B is false. It is tempting to
adapt this argument for use in uncertain circumstances,
like so:

If is true, then is probably true

is false

is false.

A B

B

A

.

.

∴

By analogy, this argument could be called ‘probabilis-
tic proof by contradiction’. However, this analogy
quickly dissolves after a little reflection: The premise
(that is the ‘if, then’ statement) leaves open the possibi-
lity that A may be true while B is nonetheless false.
More concretely, consider the statement ‘If a woman
does not have breast cancer, then her mammogram will
probably be negative.’ (This example is discussed more
extensively in an excellent online tutorial by Eliezer
Yudkowsky [61].) This statement is true. However, given
a positive mammogram, one cannot invariably pro-
nounce a diagnosis of breast cancer, because false posi-
tives do sometimes occur. This simple example makes
plain that ‘probabilistic proof by contradiction’ is an illu-
sion - it is not a valid argument. And yet, this is literally
the form of argument made by the NHSTP. To see this,
simply make the following substitutions:
A = ‘H0 is true’, and B = ‘P >a’, to get:

If is true, then probably

is false

H P

p

H

0

0

>
≤

∴




.

.

.
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Again, we have just seen that this is an invalid argu-
ment. One obvious ‘fix’ is to try softening the argument
by making the conclusion probabilistic:

If is true, then probably

is probably false

H P

P

H

0

0

>
≤

∴




.

.

.

Unfortunately, any apparent validity this has is still an
illusion. To see the problem with this argument, let us
return to the mammography example. Is it rational to
conclude that a positive mammogram implies that a
woman probably has breast cancer? The correct answer,
obvious to most physicians at an intuitive if not at a for-
mal statistical level is, ‘it depends on the patient’s clini-
cal characteristics, and on the quality of the test’. Very
well, then let us give a bit more information: Suppose
that mammography has a false positive rate of 20%, and
sensitivity of 80%. Can we now assign a probable diag-
nosis of breast cancer? Interestingly, most physicians
answer this question affirmatively, giving a probability of
cancer of 80%, a conclusion apparently reached by erro-
neously replacing the sensitivity Pr(H1|D1) with the posi-
tive predictive value Pr(D1|H1) [9,11,12]. The fallacy here
has been satirized thus:

It is like the experiment in which you ask a second-
grader: ‘If eighteen people get on a bus, and then
seven more people get on the bus, how old is the
bus driver?’ Many second-graders will respond:
‘Twenty-five.’....Similarly, to find the probability that
a woman with a positive mammography has breast
cancer, it makes no sense whatsoever to replace the
original probability that the woman has cancer with
the probability that a woman with breast cancer gets
a positive mammography. - Eliezer Yudkowsky [61]

To calculate the desired probability Pr(H1|D1) cor-
rectly, Bayes’ rule requires that we also know the prior
probability of disease. Suppose that our patient is a
healthy young woman, from a population in which the
prevalence of breast cancer is 1%. Then, given her posi-
tive mammogram the probability that she has breast
cancer is:

Pr H D( )
(. )(. )

(. )(. ) (. )(. )
. %.1 1

80 01
8 1 99 2

7 8=
+

=

To put it as alarmingly as possible, the probability that
she has breast cancer has increased by almost 8 fold!
Nevertheless, she probably does not have cancer (7.8% is
far short of 50%); the odds are better than nine to one
against it, despite the positive mammogram. Thus, while
further testing may be in order, a rational response is

reassurance and perhaps further investigation rather
than pronouncement of a cancer diagnosis. This and
other examples familiar from everyday clinical experi-
ence make clear that the null hypothesis significance
testing procedure cannot ‘substitute’ for Bayes’ rule as a
method of rational inference.
We have focused our criticism on what we consider to

be the most fundamental and most common error in
the interpretation of P-values, namely, the error of mis-
taking ‘significant’ P-values as proof that a hypothesis is
‘probably true’. There are many other well documented
conceptual problems with P-values as commonly
employed which we have not discussed. The interested
reader is referred to the excellent discussions in the fol-
lowing references [7,28].

Answers to the quiz
The answer to the quiz at the beginning of this paper is
plain from the preceding discussion. Given a P-value
that reaches significance (such that the NHSTP would
have us conclude that H1 is true), what conclusions are
we actually justified in drawing regarding the probability
that either hypothesis H1 or H0 is true? Answers (1), (2),
and (5) are incorrect because the NHSTP, which corre-
sponds to the ‘hard’ version of ‘probabilistic proof by
contradiction’ is an invalid argument. Answers (3), (4),
and (6) are invalid because the ‘softened’ version of the
same argument is still invalid.
To determine the probability that H1 is actually true

in light of the positive result D1 = ‘P <a’, that is, to cal-
culate Pr(H1|D1), Bayes’ rule requires that we have three
pieces of information. First, we need the false positive
rate, which as we have seen for the NHSTP is Pr(D1|H0)
= Pr(P ≤ a|H0) = a; this is the only piece of information
we were given in the quiz question. Second and third,
however, we need to know the ‘power’ (sensitivity) of
the study, Pr(D1|H1), and the pre-test probability of the
hypothesis, Pr(H1). Thus, the correct answer is ‘(7)
None of the above’.

Do prior probabilities exist in science?
Though most physicians are comfortable with the con-
cept of prior probability in the context of diagnostic test
interpretation, many are less comfortable thinking about
prior probabilities in the context of interpreting medical
research data. As one respondent to our quiz thought-
fully objected,

The big difference between a study and a clinical
test is that there is no real way of knowing how
likely or unlikely a hypothesis is a priori. In order to
have a predictive value in a clinical test, you need a
prevalence or pre-test probability. This does not
exist in science. It is the job of the scientist to
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convince us that the pre-test probability is reasonably
high so that a result will be accepted. They do this by
laying the scientific groundwork (introduction), laying
out careful methods, particularly avoiding bias and
confounders (methods), and describing the results
carefully. Thereafter, they use the discussion section
to outright and unabashedly try to convince us their
results are right. But in the end, we do the positive
predictive value calculation in our head as we read a
paper... As an example, one person reads the SPARCL
study and says, ‘I do not CARE that the P-value
shows statistical significance, it is hooey to say that
statins cause intracranial hemorrhage.’... They have
set a very low pre-test probability in their head.
Another person reads the same study and says, ‘I
have wondered about this because I have seen lots of
bleeds in people on statins.’ They have set a much
higher pre-test probability.

This response actually makes our point, perhaps inad-
vertently, about the necessity of prior probabilities.
Nevertheless, several important points raised by this
response warrant comment.
Do prior probabilities ‘exist’ in science?
First, to the philosophical question of whether prior
probabilities ‘exist’ in science, the answer is ‘yes and no’.
On the one hand, probability theory is always used as a
simplifying model rather than a literal description of
reality, whether in science or clinical testing (with the
possible exception of probabilities in quantum
mechanics). Thus, when one speaks of the probability
that a coin flip will result in heads, that a drug will have
the intended effect, or that a scientific theory is correct,
one is not necessarily committing to the view that nat-
ure is truly random. In these cases, the underlying rea-
lity may be deterministic (for example a theory is either
true or false), in which referring to probabilities repre-
sents merely a convenient simplification, but do not
really ‘exist’ in the sense that they would not be needed
in a detailed, fundamental description of reality. How-
ever, simplification is essentially always necessary in
dealing with any sufficiently complex phenomena. For
example, while it might be possible to conceive of a
supercomputer capable of predicting the effects of a
drug using detailed modeling of the molecular interac-
tions between the drug and the astronomical number of
cells and molecules in an individual patient’s body, in
practice we must make predictions with much less com-
plete information, hence we use probabilities. The use
of such simplifications is no less important in scientific
thinking than in medical diagnostic testing. Thus, inso-
far as probabilities ‘exist’ at all, they are not limited to
the arena of diagnostic testing.

Are prior probabilities in science arbitrary?
Given that prior probabilities for hypotheses in science
and medicine are often difficult to specify explicitly in
precise numerical terms, does this mean that any prior
probability for a hypothesis is as good as any other?
There are at least two reasons that this is not the case.
First, pragmatically, people do not treat prior probabil-
ities regarding scientific or medical hypotheses as arbi-
trary. To the contrary, they go to great lengths to bring
their probabilities into line with existing evidence,
usually by integrating multiple information sources,
including direct empirical experience, relevant theory
(for example an understanding of physiology), and lit-
erature concerning prior work on the hypothesis or
related hypotheses. These prior probability assignments
help scientists and physicians choose which hypotheses
deserve further investment of time and resources. More-
over, while these probability estimates are individualized,
this does not imply that each person’s ‘subjective’ esti-
mate is equally valid. Generally, experts with greater
knowledge and judgement can be expected to arrive at
more intelligent prior probability assignments, that is
their assignments can be expected to more closely
approximate the probability an ‘ideal observer’ would
arrive at based on optimally processing all of the exist-
ing evidence. Second, in a more technical vein, methods
for estimating accurate prior probabilities from existing
data are an active topic of research, and are likely to
lead to increased and more explicit use of ‘Bayesian sta-
tistics’ in the medical literature [29,31-36,83,89].
Taking responsibility for prior probabilities
Finally, regarding the responsibility of scientific authors
and readers to take prior probabilities seriously: We
emphatically agree that authors should strive to place
their results in context, so as to give the firmest idea
possible of how much plausibility one should afford a
hypothesis, prior to seeing the new data being presented.
Without this context, there is no way to appraise how
likely a hypothesis is to actually be true, or how strong
the evidence needs to be to be truly persuasive. The
neglect of thorough introductory and discussion sections
in scientific papers is decried by many as a natural side
effect of reliance on significance testing arguments
[7,90,91], and is blamed for the too-common phenom-
enon of unreproducible results in clinical trials [92-97],
and has even lead some authors to suggest that the
majority of published medical research results may be
false [5,98-100]. Similarly, it is a central thesis of this
paper that in reading the medical literature physicians
should strive to take prior probabilities into account.
Indeed, taking prior probabilities into account can be
viewed as a good summary of what it means to read the
medical literature critically.
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Has significance testing been perverted?
Considering the criticisms we have reviewed, it is nat-
ural to ask whether significance testing is being used as
its originators intended. Significance testing is actually
an amalgam of two approaches to statistical inference,
developed on the one hand by RA Fisher, who invented
the concept of P-values, and on the other hand by J
Neyman and K Pearson, who together developed the
theory of binary hypothesis testing. Hypothesis testing
and P-values were combined into the method of null
hypothesis significance testing by others, to the chagrin
of Fisher, Neyman and Pearson, who were vigorously
outspoken critics of one another’s methods [16,17]. In
this connection, the following quotation from Neyman
and Pearson on their philosophy towards hypothesis
testing (of which significance testing is a special case) is
particularly interesting:

...no test based upon a theory of probability can by
itself provide any valuable evidence of the truth or
falsehood of a hypothesis. . . But we may look at the
purpose of tests from another viewpoint. Without
hoping to know whether each separate hypothesis is
true or false, we may search for rules to govern our
behavior with regard to them, in following which we
insure that, in the long run of experience, we shall
not often be wrong [101].

Thus, Neyman and Pearson apparently did not intend
hypothesis testing to be used as it usually is used nowa-
days, as a method for appraising the truth of individual
hypotheses. Rather, their method was intended merely
to be correct in an aggregate sense. While this may be

acceptable, say, to decide the fates of mass-produced
objects in an industrial setting, it is unsatisfactory in
medical situations involving individuals. There, it is
imperative that we strive to be right in each case. Simi-
larly, few researchers would be content to use a method
of inference realizing that it cannot accurately appraise
the truth of the individual hypotheses. While signifi-
cance testing does not provide a way to know ‘whether
each separate hypothesis is true or false’, fortunately
Bayes’ rule does provide rational grounds for appraising
the strength of evidence in favor of individual
hypotheses.

How significant is a significant result?
If it is unjustified to regard a ‘statistically significant’
result as sufficient evidence for the truth of a hypothesis,
then what can we conclude when we read ‘P ≤ a’? How
much evidence does a statistically significant result pro-
vide for its hypothesis? The fact is that the amount of
evidence provided by a P-value depends on the prior
probability and power of the research methodology, in
the way prescribed by Bayes’ rule. Thus, there is no gen-
eric value of P that will render a hypothesis more likely
true than not (that is Pr(H1|P ≤ a) > 50%). Rather, the
true ‘significance’ of P varies from case to case, in the
same way as the meaning of a BNP value varies accord-
ing to a patient’s clinical characteristics when evaluating
for suspected congestive heart failure (see Additional file
1 Figure S1) [102,103]. It is helpful conceptually when
assessing P-values to envision a ’P-value nomogram’, as
illustrated in Figure 8. As shown, a P-value of 0.05 can
lead to very different posterior probabilities. Note that
the particular nomogram shown is not universal; it was
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Figure 8 Bayesian P-value nomogram for a hypothetical hypothesis testing problem. This nomogram is calculated assuming normal
distributions for the null hypothesis H0 and the alternative hypothesis H1, with variance equal to one, and means differing by a value of two.
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calculated by assuming specific distributions for H0 and
H1. But the basic idea that the degree of support for a
hypothesis provided by a P-value depends on the pre-
test probability is general.

Are physicians good Bayesians?
Probability theory was regarded by its early architects as
a model not only for how educated minds should work,
but for how they do actually work. This ‘probabilistic
theory of mind’ forms the basis for modern views on
the nature of rationality in philosophy, economics, and
more recently in neuroscience [104-108]. How can this
be, when there is widespread misunderstanding of the
most basic of statistical concepts like P-values and sig-
nificance testing, even among a group as educated and
accustomed to consuming statistical data as physicians?
We briefly consider arguments for and against the possi-
bility that physicians are, or can be, good Bayesians.

Anti-Bayes
In his evaluation of the evidence, man is apparently
not a conservative Bayesian: he is not a Bayesian at
all. - Kahneman and Tversky [109]

The most serious challenge to the probabilistic theory
of mind is the ‘heuristics and biases’ movement of
experimental psychology, started by a series of influen-
tial papers published in the late 1960 s and early 1970 s
by Kahneman and Tversky [109,110]. The central claim
of this movement is that people tend to make judge-
ments under uncertainty not according to Bayes’ rule,
but instead by simplifying rules of thumb (heuristics)
that, while convenient, nevertheless often lead to sys-
tematic errors (biases). With respect to medical reason-
ing, we can roughly categorize the types of biases by
whether they affect one’s clinical estimates of prior or
posterior probabilities.
Prior (pre-test) probabilities
Physicians’ estimates of the prior probability of disease
may vary wildly [10,111,112]. For example, given the
same vignette of the history, physical exam, and EKG
for 58 year old female with chest pain, physicians were
asked to assign probabilities to various diagnoses includ-
ing acute myocardial infarction (AMI), aortic dissection,
and gastroesophageal reflux. Estimates for AMI ranged
from 1% to 99%, and the probabilities assigned by many
physicians surveyed added to greater than 100% [10].
Two classic examples of cognitive biases that contribute
to this variability are the representativeness and avail-
ability biases.
Representativeness bias This is the tendency to violate
the old medical maxim, ‘when you hear hoofbeats, think
horses, not zebras.’ That is, the tendency to set the prior
probability inappropriately high for rare diseases whose

typical clinical presentation matches the case at hand,
and inappropriately low for common diseases for which
the presentation is atypical. This bias leads to overdiag-
nosis of rare diseases.
Availability bias Also called the ‘last case bias’ in the
medical context, this is the tendency to overestimate the
probability of diagnoses that easily come to mind, as
when, having recently seen a case of Hashimoto’s ence-
phalopathy, one automatically suspects this first in the
next patient who presents with confusion, a relatively
nonspecific sign. Another example is doubting that
smoking is harmful because one’s grandmother was a
smoker yet lived to age ninety.
Posterior (post-test) probabilities
Other studies have explored ways in which physicians
deviate from Bayes’ rule in updating prior probabilities
in light of new data [113,114]. Well known examples of
responsible underlying cognitive biases are the anchor-
ing, confirmation, and premature closure biases.
Anchoring bias This is the tendency to set one’s poster-
ior probability estimate inappropriately close to a start-
ing value, called an anchor. Errors can arise from
anchoring to an irrelevant piece of information (as when
patients are sent home from the low-acuity part of the
emergency department who would have been admitted
from the high-acuity part), or by generally undervaluing
new information when it does not support one’s initial
impression.
Confirmation bias Also known as belief preservation,
hypothesis locking, and selective thinking, this is the
tendency maintain one’s favored hypothesis by overvalu-
ing and selectively searching for confirmatory evidence
and undervaluing or ignoring contradictory evidence.
Reasons for this bias include vested emotional interest,
for example as when avoiding a potentially upsetting
diagnosis, or inconvenience, for example as when down-
playing medical symptoms in a patient with challenging
psychiatric problems.
Premature closure bias This is the tendency to make a
diagnosis before sufficient evidence is available. Prema-
ture closure bias can arise from emotional factors such
as discomfort over a patient’s or the physician’s own
uncertainty, or because of time pressure [113,114].

Pro-Bayes
[T]he theory of probability is at bottom nothing
more than good sense reduced to a calculus which
evaluates that which good minds know by a sort of
instinct, without being able to explain how with pre-
cision. - Laplace [115]

The heuristics and biases movement notwithstanding,
the probabilistic theory of cognition has been resur-
rected in recent years in the fields of neuroscience,

Westover et al. BMC Medicine 2011, 9:20
http://www.biomedcentral.com/1741-7015/9/20

Page 16 of 20



artificial intelligence, and human cognitive science. As
mentioned earlier, Bayesian theories have provided suc-
cessful explanations of the sub- or pre-conscious mental
phenomena, such as learning [40], visual object and pat-
tern recognition [45,116], language learning and speech
recognition [38,41]; and memory [42]. In the artificial
intelligence community, there is a general consensus
that many difficult engineering problems are best for-
mulated and solved within a probabilistic framework,
including computer vision, speech recognition, search
engine technology, and pattern recognition,
[43,44,46-48,50,51,53]. Similarly, Bayesian inference
has become the generally accepted framework for
understanding how the nervous system achieves its
feats, yet unmatched by engineering technology, of
visual and auditory perception, among other tasks
[104,108,117-119]. The thread tying these various pro-
blems and fields together is the need to draw rich infer-
ences from sparse data, that is, to reason under
uncertain conditions where the required conclusions are
underdetermined by the available evidence.
There is also a growing consensus that many higher-

level human cognitive processes also operate on
Bayesian principles [20,39,40]. Specific examples include
studies of human symbolic reasoning [120], reasoning
about and predicting the actions of other people [121],
and estimating various everyday quantities [122]. Taking
this last example as a case in point, Tenenbaum et al.
recently studied the abilities of subjects to predict the
values of uncertain quantities that arise in everyday rea-
soning situations. Subjects were told how long a particu-
lar everyday process had been going on so far (for
example how long a cake had been baking, or how long
a man had lived so far), and were asked to predict the
final value of the process (for example how much longer
before the cake will be done baking, or when the man
will die). The scenarios tested included total final profits
for movies, total runtimes of movies, the length’s of
poems, term lengths for US representatives, and cake
baking times. In these tasks, people’s judgements are
remarkably close to optimal Bayesian estimates. These
findings suggest that in many everyday tasks at which
people are ‘experts’, people implicitly use the appropri-
ate statistical distributions and, albeit unawares, carry
out optimal probabilistic calculations.

Instinctual Bayesianism?
How can the view that in many situations people per-
form Bayesian inference be reconciled with findings
from the Heuristics and Biases movement (and our quiz
results), showing that most people understand the ele-
mentary concepts of probability and statistics poorly at
best? In large part, the answer is that fluency with statis-
tics and probability theory at a formal level need not

cast doubt on Laplace’s claim that ‘good minds’ use
probability theory by ‘a sort of instinct’. Thus, although
physicians are vulnerable to the traps of experimental
psychologists in tests of formal verbal reasoning about
probability and statistics, nevertheless physicians are
adept at managing uncertainty. We suspect that studies
similar to that of Tenenbaum et al. will ultimately show
that, when dealing with uncertain situations they
encounter often, good physicians frequently are much
better Bayesians than the Heuristics and Biases move-
ment gives them credit for.

Summary
Until recently, the art of medical reasoning has arguably
gotten along well enough with little formal understand-
ing of mathematical probability. This has been possible
largely because, as Laplace observed, at some informal,
implicit level, the everyday reasoning of good minds
conforms to the laws of probability. However, physicians
can no longer afford the luxury of complete informality.
Without a solid understanding of basic probability, one
can no longer intelligently interpret the medical litera-
ture. The quiz results that began this essay are a sober-
ing reminder that most physicians still lack
understanding of elementary probability and statistics.
In particular, it is worrisome that physicians seem to so
easily fall prey to the illusion that significance testing
allows one to evaluate the truth of a hypothesis without
having to take into account contextual information like
prior studies and biological plausibility.
Like others we are concerned that the increasing use

of statistics without a parallel increase in statistical lit-
eracy renders the medical literature at risk for becoming
less scientific [7,90,91,123,124]. Nevertheless, all statisti-
cal argumentation ultimately boils down to the basic
question answered by Bayes’ rule: In what way should
one’s confidence in a particular claim change in
response to new data? Thus, a deeper appreciation of
Bayes’ rule may go a long way toward making physicians
less vulnerable to the fallacies inherent in conventional
applications of statistical significance testing.

Additional material

Additional file 1: Supplemental material.
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