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Abstract

Background: The standard approach to determine unique or shared genetic factors across populations is to
identify risk alleles in one population and investigate replication in others. However, since populations differ in DNA
sequence information, allele frequencies, effect sizes, and linkage disequilibrium patterns, SNP association using a
uniform stringent threshold on p values may not be reproducible across populations. Here, we developed
rank-based methods to investigate shared or population-specific loci and pathways for childhood asthma across
individuals of diverse ancestry. We performed genome-wide association studies on 859,790 SNPs genotyped in 527
affected offspring trios of European, African, and Hispanic ancestry using publically available asthma database in the
Genotypes and Phenotypes database.

Results: Rank-based analyses showed that there are shared genetic factors for asthma across populations, more at
the gene and pathway levels than at the SNP level. Although the top 1,000 SNPs were not shared, 11 genes

(RYR2, PDE4D, CSMD1, CDH13, ROBO2, RBFOX1, PTPRD, NPAS3, PDEIC, SEMA5A, and CTNNA2) mapped by these SNPs
were shared across populations. Ryanodine receptor 2 (RYR2, a statin response-related gene) showed the strongest
association in European (p value = 2.55 X 1077) and was replicated in African (2.57 X 1074 and Hispanic (1.18 X 1073
Americans. Imputation analyses based on the 1000 Genomes Project uncovered additional RYR2 variants associated
with asthma. Network and functional ontology analyses revealed that RYR2 is an integral part of dermatological or
allergic disorder biological networks, specifically in the functional classes involving inflammatory, eosinophilic, and

respiratory diseases.

Conclusion: Our rank-based genome-wide analysis revealed for the first time an association of RYR2 variants with
asthma and replicated previously discovered PDE4D asthma gene across human populations. The replication of
top-ranked asthma genes across populations suggests that such loci are less likely to be false positives and could
indicate true associations. Variants that are associated with asthma across populations could be used to identify
individuals who are at high risk for asthma regardless of genetic ancestry.
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Background

Asthma [MIM 600807] is a disease of chronic airway
inflammation that affects over 300 million individuals
worldwide, including 24.6 million in the USA [1]. It is
estimated that asthma-related health care costs the US
economy US$56 billion a year [2]. Asthma has important
racial disparities in prevalence, morbidity, mortality, and
drug response. In the USA, the prevalence of asthma
varies between racial groups, ranging from 7.8% in
European-Americans to 11.1% in African-Americans and
up to 16.6% in Hispanic-Americans [3]. While differences
in lifestyle and socioeconomic status between racial
groups may contribute to differences in asthma preva-
lence, population genetic variation may be partly respon-
sible for the current disparities in asthma susceptibility.

As of December 4, 2012, there are 28 genome-wide
association studies (GWAS) that identified 78 SNP-
asthma associations. The main strength of GWAS is its
ability to systematically explore truly novel candidate
SNPs/genes associated with chronic diseases. However,
many SNPs identified by GWAS explain only a small
fraction of the genetic risk [4-6]. Furthermore, there is
selection bias toward ‘top hits’ in GWAS. As reported by
Baye et al. [7], the problem of focusing on few top-hit
SNPs is that if the p value threshold is set too low, genes
that have little effect individually but are relevant to
complex traits when they interact with other genes are
not detectable. Recently, Torgerson et al. [8] conducted
genetic association studies across asthmatic populations
with a cutoff p value of 10™® and discovered 34 SNPs in
European-Americans, 4 SNPs in African-Americans and
African-Caribbeans, 32 in the Hispanic-Americans, and
75 in the combined meta-analysis. Although such study
can discover markers with large effect sizes, stringent
cutoff values may not be realistic for across-population
comparison given that each population has a unique
genetic and demographic history and that populations
vary in DNA sequence information, allele frequencies,
effect sizes as well as exhibit heterogeneity in linkage
disequilibrium (LD) patterns between the identified vari-
ants and the causative functional variants that underlie
disease risk [9-12].

Studies based on gene sets (a) have a larger effect size
on complex trait than individual SNPs, (b) have a greater
power to detect functionally relevant genes, and (c)
improve the interpretability and reproducibility of gen-
etic studies on complex diseases [13]. Approaches that
include genetic signals at all levels, for example, loci/
gene and pathways, without an arbitrary threshold of
statistical significance are needed. Such methods are
capable of extracting more information from GWAS
data by identifying loci that have functional similarities.
We hypothesized that such an approach could generate
sound biological bases for subsequent studies compared
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with studies that rely on single markers with low p
values.

Currently, across-population studies on asthma genetics
are limited and several questions are not properly
addressed, including the following: How often are the
same sets of SNPs, genes, or pathways associated with
asthma across populations? To what degree are asthmatic
subjects of different populations enriched for common
sets of susceptible loci? Answering these questions sys-
tematically will allow us to understand risk variants for
asthma that are population-specific or shared across pop-
ulations and implement better interventions for asthma. If
a common set of loci are associated with asthma across
populations, then it is reasonable to hypothesize that those
loci are more likely to share one or more pathways com-
pared to loci that are not shared or associated with
asthma. With the availability of data generated on the
same commercial SNP chips (i.e., high level overlap in the
SNP sets), we have the opportunity to compare genome-
wide associations with asthma across populations directly
and sift the wheat from the chaff [14]. Therefore, the ob-
jective of the current study was to systematically analyze
the presence of shared or population-specific genetic risk
factors for asthma among European, African-American,
and Hispanic asthmatic children at the locus and pathway
levels. To accomplish this, we performed genome-wide as-
sociation analysis of childhood asthma using 859,790 SNP
markers genotyped in a sample of 527 affected offspring
trios of different racial groups. Affected offspring trio or
family design is robust against population substructure,
which is of particular concern when studying African-
Americans or Hispanic-Americans with diverse ancestry
contributions. Comparing with case—control studies, where
cases and controls are often unrelated, affected offspring
trio design avoids population and DNA quality differences
between the cases and controls and the possibility that
some controls borrowed from other studies might be
affected with the phenotype of interest.

Results

Description of study subjects and association

Table 1 shows racial distribution and the number of
SNPs genotyped for each population, shared by all three
populations, and specific to each population in the
Childhood Asthma Research and Education (CARE) and
Childhood Asthma Management Program (CAMP) data-
bases. There are 859,790 autosomal SNPs genotyped in
the three populations that passed inclusion criteria;
among them 786,195 SNPs (91.4%) are shared by all
three populations. The number of population-specific
SNPs that are polymorphic in only one of the three
populations is 688 for European-American, 3,705 for
African-American, and 180 for Hispanic-American
population.
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Table 1 The number of affected offspring trios
and number of SNPs by population

Number of affected Number of SNPs

offspring trios

CAMP CARE CAMP and Genotyped Population-
CARE specific®

Population

EA 334 95 429 842,915 688

AA 42 10 52 855,949 3,705

HA 30 16 46 846,188 180
Total 406 121 527 859,790P 4,573
Shared 786,195

EA, European-American; AA, African-American; HA, Hispanic-American
populations. Number of SNPs that passed inclusion criteria and polymorphic
in only one of the three populations. PNumber of SNPs that passed inclusion
criteria and polymorphic in at least one of the three populations. “Number of
SNPs that passed inclusion criteria and polymorphic in all three populations.

Population-specific associations

Figure 1 shows the Manhattan plots of transmission
disequilibrium test (TDT) results for each population
separately and all three populations combined (mega-
analysis). More significant results were obtained for
European-American than African or Hispanic ancestry
populations. Although we see little genomic inflation
factors (M) (ranging from 1.03 to 1.2) in this study, our
ranked-based approach was not influenced by inflation,
and global genomic correction factor is not relevant. In
other words, the order of the markers based on rank
analysis did not change with correction for the genomic
inflation factor (data not shown). Additional file 1: Tables
S1, S2, S3, and S4 show the top 100 SNPs of each population
and the mega-analysis of the combined data. The p values of
the top 100 SNPs ranged from 1.81 x 10~ to 7.74 x 107° for
European-American, 9.76 x 107 to 2.72 x 10™* for African-
American, 4.20 x 1077 to 2.57 x 10~* for Hispanic-American
population, and 833 x 107 to 958 x 107° for the mega-
analysis. The top 100 SNPs were not shared between
any two or among all three populations. Among the
top 100 SNPs of the combined data, 18, 1, and none
are shared in the top 100 SNPs of European-American,
African-American, and Hispanic-American population,
respectively. From mega-analysis, we showed that simply
combining diverse data may not result in the identification
of variants important in all populations.

Among the genes that mapped to the top 100 loci of
European-Americans, CNTN1 (Contactin 1, [MIM 600016])
was proposed to have an important function in the invasion
and metastasis of lung adenocarcinoma cells [15]. The
gene STAT5A (Signal transducer and activator of tran-
scription 5A, [MIM 601511]) was indicated to be critical
in STAT6-independent Th2 cell differentiation and aller-
gic airway inflammation [16]. Among the genes mapped
from the top 100 loci of African-Americans, Ryanodine
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receptor-2 (RYR2 [MIM 180902]) has been implicated in
the calcium response that leads to increased airway
contraction [17,18] and extensive airway narrowing, which
characterizes a key event underlying asthma. Two other
top genes in African-Americans (CDH13 [MIM 601364]
and PTPRD [MIM 601598]) are related to lung cancer
and childhood asthma [19-21]. Among the top genes in
Hispanic-American population, RBFOX1 (RNA binding
protein, fox-1 homolog, C. elegans, 1 [MIM 605104]) was
reported to be related to survival in lung cancer patients
[22]. DAPKI1 (Death-associated protein kinase 1, [MIM
600831]) was shown to be associated with cell death and
inflammatory and immunological diseases. DOCKI (Dedi-
cator of cytokinesis 1 [MIM 601403]) was reported to be
moderately associated with asthma [23].

Additional file 1: Table S5 shows the number of SNPs
with p values below the cutoffs (0.05, 0.01, 107, 107>,
and 107°) in each population, in the combined sample,
and shared between populations. The three populations
shared 180 and 2 SNPs at a p value cutoff of 0.05 and
0.01, respectively. No SNPs were shared by any two or
all three of the populations with more stringent p value
cutoffs (<107*), which may be partly due to the genetic
heterogeneity across the study populations and the small
sample size of the study populations. Thus, instead of p
value cutoff, we focused on top-ranked SNPs/genes and
pathways/gene ontologies (GOs) in the rest of our
analyses.

Little overlapping among top-ranked SNPs

The left side of Table 2 shows the number of SNP
markers shared by any two populations or all three pop-
ulations among the top-ranked SNPs. Among the top
1,000 SNPs, 2 were shared by European-Americans and
African-Americans, 2 by European-Americans and
Hispanic-Americans, and none by African-Americans
and Hispanic-Americans. For the sets of top 2,000 SNPs,
European-Americans and African-Americans shared 4
SNPs, European-Americans and Hispanic-Americans
shared 7 SNPs, and African-Americans and Hispanic-
Americans shared none. When the top 10,000 SNPs were
considered, three SNPs were shared by all three popula-
tions, 2 more than what would be expected by chance
alone. Table 3 shows these SNPs and their p values in
each population. Among these shared sites, ARSB
(Arylsulfatase B, [MIM 611542]) was shown to regulate
colonic epithelial cell migration [24].

Although the same loci were not shared among the
top-ranked SNPs across populations, many top-ranked
SNPs of one population were replicated in the other two
populations at a nominal p value of 0.05. Table 4 shows
among the top 100 SNPs in each population how many
had p value less than 0.05 in the other two populations
or the mega-analysis, where the expectation by chance
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Figure 1 Manhattan plots of the trans-ancestral analysis. (A) European-American, (B) African-American, (C) Hispamc—Amencan popu\atlon,and

(D) all three populations combined. The y-axis displays the negative logarithm of the p value for each SNP marker; the x-axis displays the markers’ genomic
coordinates by chromosome. In (A), (B), and (C), colored dots (red for European-Americans, green for African-Americans, and light blue for Hispanic-Americans)
indicate markers with p value <1x 107°. Among these markers, those that passed inclusion criteria in the mega-sample are also indicated with their

= in the mega-analysis are indicated in blue.

15 16 1718 18

alone is 5. Among the top 100 SNPs of European-
American population, 8 in African-American and 18 in
Hispanic-American population had p value < 0.05. Among
the top 100 SNPs of African-American, 7 in European-
American and 2 in Hispanic-American population had p
value <0.05. Among the top 100 SNPs of Hispanic-
American population, 10 in European-Americans and 5 in
African-Americans had p value <0.05. Additional file 1:
Tables S1, S2, S3, and S4 show these SNPs and their p
values in all three populations and in the mega-analysis.
For example, the most significant SNP in European-

Americans (rs16929097, p value = 1.81 x 1077) was repli-
cated in African-Americans with a p value of 0.0114, and
the second most significant SNP in European-Americans
(rs17036023, IGSE3 [MIM 603491], p value = 2.04 x 1077)
was replicated in Hispanic-American population with a p
value of 0.0143. One of the top 100 SNPs of European-
Americans (rs16863100, p value =7.10 x 10°%) was repli-
cated in both African-Americans (p value = 0.0412) and
Hispanic-Americans (p value =0.0143). One of the top
100 SNPs in Hispanic-Americans (rs13486, p value =
8.77 x 10™°) was replicated in both European-Americans
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Table 2 SNP level and gene level overlap
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Number SNP level Gene level
(s):\jg;p Overlap Mapped genes Overlap®

EAand AA EAand HA AAand HA EA,AA,and HA EA AA HA EAand AA EAand HA AA and HA EA, AA, and HA
1,000 2 2 0 0 328 299 252 41/5 30/4 29/4 11/0
2,000 4 7 0 0 616 531 450 110/16 77/12 72/14 34/0
5,000 39 40 33 0 1272 1,121 961 322/71 266/54 242/61 126/3
10,000 170 235 145 3 2120 1,882 1677  686/199 624/158 575/178 353/18
50,000 3,549 4,228 3,463 284 5600 5515 5,193 3,163/1544 3,041/1,431 2962/1,454 2,151/401

EA, European-American; AA, African-American; HA, Hispanic-American populations. °Observed/expected by chance.

(p value=0.0365) and African-Americans (p value =
0.0039).

Replication of top-ranked asthma genes

Among the top 1,000 SNPs, 403, 417, and 405 SNPs
were mapped to 328, 299, and 252 genes, and interquar-
tile ranges (IQR) of the numbers of SNPs mapped to
each gene were (1, 1), (1, 1), and (1, 2) for European-
American, African-American, and Hispanic-American
population, respectively. Among the mapped genes,
European-American and African-American populations
shared 41 genes, European-American and Hispanic pop-
ulations shared 30 genes, and African-American and
Hispanic populations shared 29 genes (Table 2). In
addition, there are 11 genes shared by all the three pop-
ulations. These 11 genes are RYR2, CSMD1 [MIM

Table 3 Shared SNPs among top-ranked SNPs

rs ID Gene  Chr p value
EA AA HA
Shared SNPs among top 2,000 SNPs of EA and AA
rs7045156 9 374x107° 250x107° 317x107"
rs1048329  LRP2BP 4  889x10* 186x107° 1
rs12359404  SORCST 10 407x107* 532x10°* 317x 107"
1516875946  ARSB 5 465x107* 170x107°  455x 1072
Shared SNPs among top 2,000 SNPs of EA and HA
152928442 10 139x10™* 117x107" 1.62x107°
52272266 PLATA 3 123x107* 655x 107" 157x10°°
rs4128918 5  640x107° NA 270%1072
rs4008848 9  872x107* 715x107" 350x 107
19913559  RDM71 17 206x107* 819x107" 284x107°
rs6550392 3 911x10" 353%x107" 270x107°
rs9301462  RAB20 13 7.10x10°° 882x10" 270x107°
Shared SNPs among top 10,000 SNPs of EA, AA, and HA
1920672 NAV2 11 267x107° 143x107% 143x107°
rs11021111 11 556x107* 1.16x1072  1.26x1072
rs1314595  ATRNLT 10 3.12x107% 1.16x107% 815x107°

SNPs in italics were among the top 1,000. EA, European-American; AA,
African-American; HA, Hispanic-American populations; Chr, chromosome.

608397], CDHI3, ROBO2 [MIM 602431], RBFOXI
[MIM 605104], PTPRD, NPAS3 [MIM 609430], PDEIC
[MIM 602987], SEMASA [MIM 609297], CTNNA2
[MIM 114025], and PDE4D [MIM 600129]. Table 5 lists
the p values of these genes in the three populations, which
ranged from 2.55x 1077 to 1.62x 107>, RYR2 is a statin
response-related gene that showed the strongest associ-
ation in European-Americans (p value = 2.55 x 10~) and
was replicated in African-Americans (2.57 x 10™*) and
Hispanic-Americans (1.18 x 107%). PDE4D was identified
as an asthma susceptibility gene, and PDE4 inhibitors have
been developed as medications for asthma [25]. Variants
in PTPRD were reported to be associated with childhood
asthma in Taiwanese population [20].

To detect additional variants in the top-ranked RYR2
asthma gene across populations, we imputed untyped
SNPs in RYR2 using haplotypes from the 1000 Genomes
Project as reference panels. The number of SNPs in this
gene that passed the filtering criteria in European-
American, African-American, and Hispanic-American
populations was 262, 382, and 371, respectively, before
imputation, and 2,533, 2,884, and 2,304 after imputation.
Post-imputation SNPs were then ranked from most sig-
nificant to least significant according to their association
with asthma. Figure 2 shows the p value and LD plot of
the top 1% of the post-imputation SNPs for each popula-
tion. Additional file 1: Table S6 lists these SNPs, their p
values in each population, and possible functional effects.
In European-Americans, no imputed SNPs exceeded the
strongest association inferred from the genotyped SNP

Table 4 Replication of top 100 SNPs of each population
in other populations

Population Number of p values <0.05

EA AA HA Mega
EA 100 8 18 81
AA 7 100 2 33
HA 10 5 100 15
Mega 100 43 42 100

Replication is defined at a nominal p value of 0.05. EA, European-American;
AA, African-American; HA, Hispanic-American populations; Mega,
mega-analysis based on combined samples from all three populations.
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Table 5 Eleven genes shared by the top 1,000 SNPs of
each population

Genes Chr p values
EA AA HA

RYR2 1 255x 1077 257x107" 118x107°
CSMD1 8 423x10°° 415%107* 418x107*
CDH13 16 201107 231%x10°° 160x107°
ROBO? 3 201%x107° 393%x 1077 136x107°
RBFOX1 16 221107 176x 1072 3.86%x 107
PTPRD 9 238x107° 208x107" 312x107"
NPAS3 14 374%x107° 1581072 1.02x107°
PDEIC 7 962x107° 941x10°* 132x107°
SEMASA 5 108x 107" 403x 107" 134x107°
CTNNA2 2 183x107* 1.28x107° 157x107°
PDE4D 5 183x107* 402x107* 162x107°

EA, European-American; AA, African-American; HA, Hispanic-American
populations; Chr, chromosome.

(rs16835325, 2.55 x 1077). One imputed SNP (rs12136903)
showed moderate association with asthma (p value =
7.89 x 107%). In African-Americans, the strongest signal
from genotyped SNPs (rs2797447, p value = 1.09 x 107°)
was exceeded by an imputed SNP (rs2685301, p value =
4.15x 107 that is within a LD block of four of the top-
ranked genotyped SNPs. In Hispanic-Americans, associ-
ation from imputed SNPs again supported signals from
genotyped SNPs. Two imputed SNPs showed strong LD
with genotyped SNPs and second to the best association
with asthma (rs2779359 and chr1:237727031 both with p
value = 1.60 x 107°).
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Top-ranked pathways and GO terms

To gain further insights into the pathogenesis of asthma
and determine significant biological pathways and gene
ontologies and to reveal genes associated with asthma
across populations, we conducted gene set analysis based
on pathways and GO terms. Table 6 shows the pathways
and GOs that were over-represented with p value < 0.01
in at least one of the three populations when the top
1,000 SNPs were declared as noteworthy. Figure 3 shows
the amount of overlap across the three populations at
the pathway and GO level. When the top 1,000 SNPs
were declared as noteworthy, African-American and
Hispanic-American populations shared 1 of their top 20
pathways (Prefoldin mediated transfer of substrate to
CCT/TRiC) and 1 of their top 30 GOs (ribonuclease ac-
tivity); European-American and African-American popu-
lations shared 1 of their top 40 pathways (Shc-mediated
cascade), and African-American and Hispanic-American
populations shared 1 of their top 30 pathways (Stathmin
pathway) and 2 of their top 30 GO terms (cellular
macromolecule catabolic process and the macromol-
ecule catabolic process). In addition, among the three
sets of top 60 pathways, only 1 pathway was shared by
all three populations (arrhythmogenic right ventricular
cardiomyopathy). Additional file 1: Table S7 and S8
show the top 30 pathways and GOs for each population
and their p values when the top 1,000 SNPs were de-
clared as noteworthy. When less stringent top 2,000
SNPs were considered, African-American and Hispanic
populations shared four of their top ten pathways
(systemic lupus erythematosus, packaging of telomere
ends, RNA polymerase I promoter clearance, and RNA
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Figure 2 The p value and LD plot of post-imputation RYR2 SNPs for each population. Trans-ancestral analysis of genotyped and imputed
association results and LD of the top 1% SNPs of RYR2 after imputation. (A) European-American population, (B) African-American population, and
(C) Hispanic-American population.
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Table 6 Over-represented pathways and GOs

p values
EA AA HA

GO
Cellular response to stress 0.0006 1 1
Vitamin binding 0.0056 0.3392 1
JAK STAT cascade 0.0062 1 04304
Vitamin transport 0.0072 03210 0.2886
ER nuclear signaling pathway 0.0078 1 1
Regulation of gene-specific transcription 00078 1 1
Positive regulation of cell proliferation 04326 00006 04412
Lysosomal transport 1 0.0016 1

06714 0.0038 0.8342
03710 0.0050 0.2818

Carbohydrate binding

RNA catabolic process

Vacuolar transport 1 0.0052 1
Negative regulation of catalytic activity 0.7328 0.1720 0.0004
Protein kinase binding 1 0.7450 0.0016
Kinase binding 0.8654 0.5054 0.0040
Regulation of translation 08478 1 0.0050
Anion transmembrane transporter activity 1 0.7148 0.0080
Negative regulation of hydrolase activity 1 1 0.0100
Pathway
BioCarta G2 pathway 0.0008 1 1
Reactome E2F transcriptional targets at G1 S 0.0034 1 1
Reactome E2F mediated regulation of DNA  0.0036 1 1

replication

KEGG alanine aspartate and glutamate 0.5218 0.0032 04338

metabolism

04426 0.0088 1
03642 0.1202 0.0006
03682 0.8264 0.0060

BioCarta longevity pathway
Reactome amine ligand binding receptors

Reactome G alpha S signaling events

With p value <0.01 in at least one of the three populations when the top
1,000 SNPs are declared as noteworthy. EA, European-American; AA, African-
American; HA, Hispanic-American populations; KEGG, Kyoto encyclopedia of
genes and genomes.

polymerase I promoter opening). Two more pathways
were shared by the two populations among their top 20
pathways (RNA polymerase I and III and mitochondrial
transcription and telomere maintenance). In particular,
we found enrichment of the leukocyte trafficking path-
way which indicates that the accumulation and activa-
tion of inflammatory leukocytes in the lung or airway is
a feature shared by almost all respiratory diseases [26].
The leukocyte trafficking pathway has been suggested to
have a key role in asthma, which makes the finding in
our study biologically plausible. Children with asthma
may be considered to suffer from chronic inflammatory
stress [27].
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Higher population genetic differentiation was found at
variants that show association with asthma

Table 7 shows summary statistics of fixation index (Fsr)
and the relationship between population genetic differ-
entiation and population differences in association with
asthma for the shared SNPs among populations. Com-
pared with the Fst values between European-American
and Hispanic-American populations, those between
African-Americans and European-Americans (or Hispanic-
Americans) were higher, suggesting more population
genetic differentiation between African-Americans and
European-Americans (or Hispanic-Americans). Further-
more, population genetic differentiation was stronger in
asthmatic individuals (affected offspring) than the non-
asthmatic individuals (parents). Regardless of the data used
(affected offspring or parents), the observed numbers of
markers that satisfy difference between the rankings of p
values (DRP) > mean of DRP and Fgsy > mean of Fgr were
higher than the expected number of markers. The depend-
ence between population genetic differentiation and popu-
lation differences in association with asthma was significant
for European-American vs. African-American population
and for European-American vs. Hispanic-American popu-
lation. However, no significant relationship existed for
African-American vs. Hispanic-American population. We
believe this is due to either the relatively similar asthma
prevalence in African-Americans and Hispanic-Americans
or different mechanisms of asthma association in
European-American and African/Hispanic-American pop-
ulations. We conclude that for populations with different
asthma prevalence, such as European-Americans vs.
African-Americans and European-Americans vs. Hispanic-
Americans, SNPs that are more informative for ancestry or
exhibit large population genetic differentiation are more
likely to be different in their association with asthma in the
different populations.

Patterns of variation across populations

Figure 4 shows the density plot of minor allele frequencies
(MAF) of the three populations estimated using affected
offspring. For European-Americans, MAF had mean =
0.20, median =0.19, and IQR =(0.06, 0.34); for African-
American subjects, MAF mean = 0.22, median = 0.19, and
IQR = (0.09, 0.33); and for Hispanic-American subjects, the
MAF mean =0.21, median =0.19, and IQR =(0.07, 0.34).
Overall, MAFs in European-Americans were smaller than
African-American and Hispanic-American populations
and had a relatively larger peak at the lower end of the
MAF spectrum, which may be due to the current
reference genomes and commercial SNP panels included
in the Affymetrix 6.0 genotyping chip being primarily
selected based on identification and patterns of LD in
European ancestry population. This might also indicate
that the European-American population is less



Ding et al. Human Genomics 2013, 7:16
http://www.humgenomics.com/content/7/1/16

Page 8 of 17

w_

- Pathway - 1000 SNPs
B EA & AA

©41 B EA&HA

| AA&HA
O EA AA&HA

Jiiiiiil

10 20 30 40 50 60 70 80 90
Number of top pathways

Number of shared pathways

e
8 GO - 1000 SNPs
- © -

o

©

G <

k]

Z o

: da

=1

Z L —

10 20 30 40 50 60 70 80 90
Number of top GOs

Figure 3 Overlap of genetic risk factor for childhood asthma across the three populations: At the pathway and GO level. The number of
shared pathways (y-axis) among different numbers of top-ranked pathways (x-axis) when the top (A) 1,000 and (B) 2,000 SNPs were declared as
noteworthy. The number of shared GO terms (y-axis) among different numbers of top-ranked GO terms (x-axis) when the top (C) 1,000 and

(D) 2,000 SNPs were declared as noteworthy. EA, European-American; AA, African-American; HA, Hispanic-American populations.

fo_B

_g - Pathway - 2000 SNPs

®

Q

- 2

? -

m

=

w

B 0]

@

e}

J O -

= 10 20 30 40 50 60 70 80 90
Number of top pathways

o ©7 D

8 GO - 2000 SNPs

T O+

o

o]

L

B <

ks

&

L N+

g I_l

z . 1L

10 20 30 40 50 60 70 80 90
Number of top GOs

heterogeneous and less diverse compared with African-
Americans and Hispanic-Americans since African-
American and Hispanic-American individuals are of
admixed origin, while the European-Americans are simply
of varied European ancestry. Figure 5 shows the box and
whisker plot of MAF of the top 5,000 SNPs for each popu-
lation. Similar pattern was observed for the top 1,000 or
2,000 SNPs. MAFs of top-ranked SNPs in European-
Americans (mean =0.09, median=0.03, IQR=(0.01,
0.13)) were on average much lower than those in African-
Americans (mean =0.23, median=0.20, IQR=(0.11,
0.33)) and Hispanic-Americans (mean =0.24, median =
0.23, IQR =(0.13, 0.36)). Compared to overall MAF, top-
ranked SNPs had lower MAF in European-Americans. Re-
cent studies show that variants altering amino acid

sequence and protein function are enriched at low variant
allele frequency, 2% to 5% [28].

Discussion

Several studies have explored shared genetics among dis-
eases including coeliac disease and other immune dis-
eases [29], non-Hodgkin's lymphoma and autoimmune
diseases [30], obesity and asthma [21], and asthma and
chronic obstructive pulmonary disease [31]. However,
there is very little investigation into population-specific
or shared genetic risk factors for a specific disease across
different populations. In this report, we described the re-
sults of GWAS asthma associations in three populations,
namely European-Americans, African-Americans, and
Hispanic-Americans. The method we used is based on

Table 7 Population genetic differentiation and population differences in genetic association with asthma

Allele frequencies in CAMP and Fst DRP > mean (DRP) and Fsy > mean (Fsy)
CARE Mean Median Range Observed Expected p values®
From parents
Caucasian vs. African-American 0.0463 0.0263 (0, 0.5858) 108,245 107,720 0.007898
Caucasian vs. Hispanic 0.0078 0.0036 (0,0.1770) 95,757 94,447 7.749%x 107"
African-American vs. Hispanic 0.0387 0.0215 (0, 0.4989) 107,740 107,384 0.07227
From the affected offspring
Caucasian vs. African-American 0.0487 0.0274 (0, 0.6036) 107,987 107,432 0.004965
Caucasian vs. Hispanic 00114 0.0050 (0, 0.2226) 98,522 97,445 239%x10°8
African-American vs. Hispanic 0.0433 0.0238 (0, 0.5429) 107,458 107,225 0.2408

?p values of the chi-square test of the frequency table of DRP > mean (DRP) and Fsr > mean (Fsy). DRP, difference between the rankings of p values in the

two populations.
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the ranking of SNP associations from the most to the
least significant and testing in the context of functionally
relevant genes and gene networks. We observed that
there are shared genetic risk factors (genes and path-
ways) for asthma across populations, although none of
the top-ranked SNPs associated in each population was
replicated in others. The heterogeneity of top GWAS
‘hits’ could be a result of a combination of ancestry vari-
ations in the study populations, differences in asthma
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Figure 5 Box and whisker plots of MAF of the top 5,000 SNPs
for each population. The MAFs were estimated using affected
offspring. The bottom and top of the box are the lower and upper
quartiles, respectively, the band within the box is the median, and
the ends of the whiskers are the lowest/highest data value within
1.5 IQR of the lower/higher quartile. IQR is the difference between
the upper and the lower quartiles.
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phenotype definitions and unaccounted-for environmen-
tal factors.

When the top 10,000 SNPs for each population were
considered, only 3 SNP were found to be shared by all
three populations (rs1314595, ATRNLI [MIM 612869],
chromosome (chr) 10, with p value = 0.0003 in European-
Americans, 0.0082 in Hispanic-Americans, and 0.0116 in
African-Americans; rs920672, chr 11, with p value=
2.67 x 10~ in European-Americans and 0.0143 in both
African- and Hispanic-Americans; and rs11021111, chr 11,
with p value =0.0006 in European-Americans, 0.0126 in
Hispanic-Americans, and 0.0116 in African-Americans).
As suggested by Jansen et al. [32], whenever information
from multiple independent sources agree, it is more
likely the findings are valid and reliable than information
from a single source. Hence, replication of top-ranked
asthma genes or pathways across data from different pop-
ulations is a way to validate population-specific findings,
and such associations are less likely to be false positives
and could indicate functionality. In fact evolutionary
geneticists used the idea that ‘genes that are conserved
across populations are likely to be functionally important,
since they would confer a selective advantage to all
humans’ [33].

Among the top 1,000 SNPs of each population, there
were 11 loci shared by all three populations, and the genes
encoded by these loci are PDE4D, RYR2, CSMDI1, CDH13,
ROBO2, RBFOX1, PTPRD, NPAS3, PDEIC, SEMASA, and
CTNNA2 (p values ranged from 2.55 x 107" to 1.62 x 107>,
Table 5). PDE4D (phosphodiesterase 4D) functions as a
regulator of airway smooth muscle contractility and was
identified as an asthma susceptibility gene, and PDE4
inhibitors have been developed as medications for asthma
[25]. Variants in PTPRD (protein encoded by protein tyro-
sine phosphatase receptor-type delta) gene were reported
to be associated with childhood asthma in Taiwanese
population [20]. Melen et al. [21] in their study of shared
genetic factors between asthma and obesity in children
found association between PTPRD with both phenotypes
at the gene level (p < 0.05). NPAS3 (neuronal PAS domain
protein 3) encodes a member of the basic helix-loop-helix
and PAS domain-containing family of transcription fac-
tors. Zhou et al. [34] showed that NPAS3 haploinsufficient
mice survived postnatally but developed alveolar loss
and airway hyperreactivity. Genome-wide linkage has
identified linkage peak at chromosome 14q12-13 region,
where NPAS3 maps in asthmatic Caucasians [35-37].
ROBO?2 belongs to the Roundabout (ROBO) family, part
of the immunoglobulin superfamily proteins that are
highly conserved from fly to human. The encoded protein
is a receptor for and essential for signal transduction of
Slit2, a secreted protein that is known to function in axon
guidance and cell migration, plays a critical role in the de-
velopment of normal airways [38], and is an important
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etiologic factor in airway narrowing that accompanies
asthma [39].

The RYR2 gene is located from base pair 237,205,701
to base pair 237,997,287 on chromosome 1. Mutations
in RYR2 are causative of dysfunctional calcium channel
which often results in sudden cardiac death [40]. Recent
genome-wide association studies have also associated
RYR?2 variants with muscle toxicity and a potential phar-
macodynamic candidate gene in statin response-related
disorders; RYR2 encodes a ryanodine receptor and con-
tributes to the calcium response that leads to increased
airway contraction and extensive airway narrowing, which
characterizes a key event underlying asthma [17,18,41]. In
a recent GWAS study, an intronic variant (rs2819742) in
RYR?2 was significantly associated with cerivastatin-associ-
ated rhabdomyolysis at the a priori p value threshold of
4% 1077 (p=1.74x107"). An additional copy of the minor
allele of the RYR2 variant was associated with a reduced
risk of rhabdomyolysis (odds ratio (OR) = 0.48; 95% confi-
dence interval (CI)=0.36 to 0.63). Carriers of two copies
of the minor allele had a smaller risk of rhabdomyolysis
than carriers of two copies of the major allele (OR = 0.24;
95% CI =0.13 to 0.44) [42]. As the associated SNPs in the
RYR2 gene were common variants and could be due to
linkage disequilibrium from untyped functional variants,
we imputed both rare and common variants using the
1000 Genomes Project reference panel. Imputation can
also permit the comparison of studies which focused on
different SNPs. Using genotypes inferred through imput-
ation, we uncovered additional RYR2 variants (rs2685301
in African-Americans and rs2779359 in Hispanic-Americans)
that exhibited moderate association with asthma and sig-
nificant LD with genotyped SNPs.

Complementary to rank-based candidate gene selection
for a given disease, gene network analysis offers the advan-
tage of understanding the interaction of functionally
related genes that are associated with a disease and the
ability to find hub genes within a network that interact
with several other genes up- and downstream of them.
The high interconnectivity of hub genes with other corre-
lated genes within a biological network may imply func-
tional and biological importance of these genes. Further
analysis using Ingenuity Pathways Analysis (IPA) revealed
that the 11 genes shared among top-ranked loci of the three
populations are part of integrated and interconnected bio-
logical networks related to dermatological or allergic
disorders, particularly in the functional classes involving
inflammatory and immunological diseases (Figure 6). This
could reflect that the development of asthma involves the
‘atopic march’ that starts in the skin and progresses to the
respiratory and gastrointestinal tracts [43]. At the center of
the network is the ‘hub” CTNNBI (Catenin (cadherin-asso-
ciated protein), beta 1, [MIM 116806]) gene complex
[44,45], which occurs at cell-cell junctions in epithelial
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tissues and constitutes adherens junctions. Many studies
showed the importance of B-catenin as signaling pathway
in airway smooth muscle growth [46]. The role for E-
cadherin in asthma has also been studied. Heijink [47]
suggested that E-cadherin controls the response to aller-
gens, suppresses allergenic mediator production, and con-
tributes to the establishment of tolerance. De Boer et al.
[48] showed that the expression of epithelial alpha-catenin
and E-cadherin is lower in atopic asthma patients, and this
may result in a defective epithelial barrier in the airway
epithelium, which plays a critical role in asthma. Table 8
lists the top diseases and disorders related to these genes
where inflammatory and respiratory diseases are among
them. Shared pathways across all three populations were
observed among the top 60 pathways from the top 1,000
SNPs, and top 100 GO terms from the top 1,000 SNPs
(Figure 3).

Although we are limited by our modest sample size in
this study, it is important to note that the CAMP and
CARE affected offspring trio design have extremely well
characterized subjects with detailed phenotypic data. It
should be noted that large sample sizes may not help in
powering genetic studies and improve our understanding
on the genetic underpinnings of asthma phenotypes as
much as precise phenotyping [49]. Further, the trio de-
sign is robust against population substructure, which is
of particular concern when studying African-Americans
or Hispanic-Americans with diverse ancestry in case—
control study design, where cases and controls are de-
fined variably. Although there are different methods
(such as genomic control, structured association, and
principle component analysis) to correct for confoun-
ding, a good study design is the most efficient way to
avoid confounding in disease genetics study. The use of
family-based designs increases the power to detect asso-
ciations, controls for heterogeneity/population stratifica-
tion, and might elucidate the effects of allele origin as
well as transmission of phenotypes of disease modula-
tion. The order of markers based on our rank-based
approach remains the same before and after correcting
for genomic inflation factor (an indication of the scale-
invariant nature of the ranking method). Genetic hetero-
geneity among ethnic groups, which has been a source
of concern in GWAS, will not affect pathway-based
GWAS analysis. This is because although the mutated
genes or variants within those pathways are likely to
differ, affected individuals from different ethnic groups
may share the same disrupted pathways. Thus, multiple
GWAS can be easily combined, and pathway-based
GWAS accommodate and capitalize upon this substan-
tial degree of genetic heterogeneity. The current refer-
ence genomes and commercial tagging SNP panels
included in the Affymetrix 6.0 genotyping chip were pri-
marily selected based on higher minor allele frequencies
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and patterns of LD in European ancestry population.
Thus, due to relatively weaker LD and variation in minor
allele frequencies, for example, in African populations,
we may not have the power to detect all of the genetic
variants involved in asthma in this population as demon-
strated by the 1000 Genomes Project imputation analysis.
Indeed, whole-genome sequencing may be necessary to
identify population-specific variants in less studied popu-
lations such as African-Americans and Hispanics. Eventu-
ally, next-generation sequencing technologies will overtake

SNP arrays as the primary and less biased genotyping
methodology and advance our understanding on rare vari-
ants and population-specific influences on disease risk.
Additional functional analysis is also necessary to more
fully understand the roles that ancestry-specific variants at
these loci play in asthma.

Conclusions
In summary, our rank-based approach avoids the need
for a global cutoff value for statistically significant
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Table 8 Top diseases and disorders related to the 11
genes shared among the top 1,000 SNPs across
populations

Functions p values Genes
Cardiovascular 190%x 107°-3.86 CDH13, CSMD1, PDE4D,
disease x 1072 RBFOX1, RYR2
Genetic disorder 1.90x 107°=4.21 CDH13, CSMD1, PDE4D, RBFOXT,

x 1072 RYR2, ROBOZ2, NPAS3, SEMASA
Hematological 1.90x107°-1.63 CDH13, CSMD1, PDE4D,
disease x 1072 RBFOX1, RYR2
Psychological 7.15% 1074-345 NPAS3, RBFOX1, SEMASA,
disorders x 1072 PDE4D
Inflammatory disease 1.16 X 1073421 NPAS3, PDE4D, RYR2

x 1072
Respiratory disease 116X 107°-2.05 NPAS3, PDE4D

x 1072

associations. Importantly, since we did not rely on a statis-
tical cutoff to classify significant SNPs, our approach is
not susceptible to biases due to SNP density or LD struc-
ture [50]. This approach is more appropriate to compare
disease association results across populations that vary in
DNA sequence, allele frequencies, effect sizes, linkage
disequilibrium patterns, and gene-by-environment inter-
actions. We showed the existence of shared genetic risk fac-
tors for childhood asthma across the European-American,
African-American, and Hispanic-American populations.
Our rank-based genome-wide analysis revealed for the
first time an association of RYR2 variants with asthma and
replicated previously discovered PDE4D asthma gene
across human populations. The shared association of
asthma for a given gene across populations might likely
indicate true association and a broader spectrum of risk
factor at the loci. The associations of particular variants
(or even different variants within the same gene) across
populations and across studies may represent more uni-
versally important genes to the disorder and should be
given the highest priority [51]. Often, these variants may
not be the strongest associations in any one study, but the
consistent evidence for association in many different stud-
ies (e.g., as revealed in our different racial groups study)
would further suggest that the variant and gene have main
effects on the phenotype, are less likely influenced by
gene-gene or gene-environment interactions, and are
most likely to be true associations. Network analysis
revealed that RYR2 and PDE4D genes are directly in-
teracting in biological networks. Regulating the expression
of both genes along with the hub genes such as CTNNBI
could be important in the treatment of asthma across
populations. Hub genes tend to be conserved across evo-
lution. Thus, hub genes represent towards the evolu-
tionary fitness of an organism, and alterations in their
sequence or expression level are likely to be more deleteri-
ous. In this study, our goal was to identify variants that
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consistently associated with asthma across populations
and analytical methods. We believe that, once validated,
such cross-population variants could be used to identify
individuals who are at high risk for asthma regardless of
genetic ancestry. Additional studies are necessary to
further elucidate biological roles of RYR2 and pathways
related to RYR2 genes in asthma pathogenesis.

Methods

Subjects

dbGaP data from the CAMP and the CARE Network were
used to assess shared and population-specific risk variants
for childhood asthma across three populations, namely
European-American, African-American, and Hispanic-
American. CAMP and CARE are part of the SNP Health
Association Resource Asthma Resource project, which is a
genome-wide analysis of children who have participated
in the National Heart, Lung, and Blood Institute’s clinical
research trials on asthma. dbGaP was developed to archive
and distribute the results of studies that have investigated
the interaction of genotype and phenotype. Such studies
include genome-wide association studies, medical sequen-
cing, molecular diagnostic assays, as well as association
between genotype and non-clinical traits (http://www.
ncbi.nlm.nih.gov/gap). This database provides consistently
well-defined phenotypes measured across population.

We downloaded genotyping data performed using 1
million SNPs in the Affymetrix 6.0 chip and stored in
the database of dbGaP with permission under the ac-
cession number phs000166.v2.pl. In the three popu-
lations, a total of 859,790 autosomal SNP markers
passed the quality control filtering criteria (less than
15% missing data and Hardy-Weinberg equilibrium p
values >107°) and were included in the association
analysis. Our approach was as follows: for each popu-
lation, single-SNP analysis was first conducted using
the family-based TDT. SNPs were then mapped to
genes, and genes were mapped to gene sets, e.g., path-
ways and/or GO. Pathway level associations with
childhood asthma were obtained based on gene set
analysis. Loci and pathways were then ranked based
on the p value of association in the order of the most
significant to the least significant. Overlapping and
population-specific top-ranked genetic risk factors
across the three populations at the locus and pathway
levels were studied to investigate shared or unique
pathophysiological processes in the study population.
Figure 7 shows the work flow diagram. Alternatively,
to search for shared genetic risk factors for childhood
asthma, a mega-analysis with combined subjects from
the three populations was conducted since the TDT is
valid in the presence of population structure.

The datasets used in this manuscript were obtained from
previously collected, completely anonymized/deidentified,
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IRB-approved and NIH Controlled Access dbGaP data
under accession number phs000166.v2.p1 at http://dbgap.
ncbi.nlm.nih.gov.

Statistical analysis

TDT for affected offspring trio design

The family-based TDT [52] is one of the most frequently
used methods for family-based linkage/association stud-
ies. It evaluates the transmission frequency of an allele
from heterozygous parents to affected offspring. Follow-
ing the notations in Spielman et al. [52], among 2gq
parents of g affected offspring, Table 9 summarizes com-
binations of transmitted and non-transmitted alleles M;
and M, at a bi-allelic locus M.

The null hypothesis of no linkage between marker M
and a disease susceptibility locus D can be expressed as
0=0.5, where 6 is the recombination fraction between
M and D. Under the null hypothesis, the contributions
from two heterozygous parents are independent. When
only data from heterozygous parents (M;M,) are used,
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the TDT is a standard approximation of the binomial

test of the equality of the two proportions: b/(b + ¢) and

c/(b + ¢). The statistic is
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b+c

,  [b-(b+c)/2” +
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Under the null hypothesis of no linkage or no associ-
ation, the statistic has an asymptotic chi-square distribu-
tion with 1 degree of freedom. The TDT is based on
preferential allelic transmissions at a SNP site from het-
erozygous parents to the affected offspring. The rejection
of the null hypothesis implies the lack of recombination
between the tested marker and the disease susceptibility
locus. The TDT is robust against spurious associations
due to population stratification.

Genetic association analysis based on rank
For each population, the TDT was carried out using
PLINK v1.07 [53]. SNPs were then ranked based on the
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Figure 7 Work flow diagram. For each population, single-SNP analysis was first conducted using the family-based TDT. SNPs were then
mapped to genes, and genes were mapped to pathways/gene sets based on annotation databases. Pathway level associations with childhood
asthma were obtained based on gene set analysis. Overlapping and population-specific top-ranked genetic risk factors across the three
populations at the locus and pathway levels were studied to investigate shared or unique pathophysiological processes in the study population.
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Table 9 Combinations of transmitted and
non-transmitted alleles M; and M, at a bi-allelic locus M

Non-transmitted allele Total
M, M,
Transmitted allele
M, a b a+b
M, c d c+d
Total a+c b+d 29

p value of association from the most significant to the
least significant. A set of top 7 (1,000 to 50,000) SNPs
were identified for each of the three populations. The
top-ranked SNPs were then assigned to genes if the SNP
is located within 20 kb of that gene. This is because the
majority of trait-associated loci are located either within
genes or no more than 20 kb outside the genes [54,55].
Shared loci between any two populations or among all
three populations were quantified by examining overlap-
ping among the three sets of top n SNPs and their
mapped genes.

Two reasons prompted us to study the top-ranked loci
instead of classifying statistically significant association
using a threshold on p values. First, an optimal threshold
is difficult to identify especially for multiple populations
that differ in DNA sequence, allele frequencies, effect
sizes, and LD patterns. Second, studying the same num-
ber of top loci from each population based on ranking of
p values generates common results without confounding
with sample size. We reason that if a high-ranking locus,
although may not reach genome-wide significance, is
shared or involves a common pathway across all three
populations, it is more likely to have a causative disease
association.

Imputation

For top-ranked asthma genes across populations, imput-
ation of the untyped SNPs was performed using IM-
PUTE?2 with settings recommended for imputation with
an ancestrally diverse reference panel. Haplotypes from
the 1000 Genomes Project [56] (Phase I integrated vari-
ant set release v3 in NCBI build 37) were used as multi-
population reference panels [57]. Association analysis
was then done on imputed SNPs using PLINK after the
same method of filtering (i.e., less than 15% missing data
and Hardy-Weinberg equilibrium p values >10°). Asso-
ciation p values and linkage disequilibrium of top-
ranked SNPs in the top-ranked gene were examined and
plotted using snp.plotter [58].

Pathway/gene ontology analysis

Pathway analysis groups genes that are related biologic-
ally and tests whether these gene groups are associated
with asthma. The goal is to detect association by
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integrating signals of multiple loci that are grouped into
a pathway based on shared biological functions. Pathway
analysis can also improve the interpretability and re-
producibility of GWAS partly due to the substantial re-
duction of the multiple testing burden once genes are
grouped into pathways [13]. Due to population genetic
heterogeneity, different SNPs in or near the same gene
or in a functionally related gene may be associated with
the disease among individual cases in a GWAS sample.
This makes it less likely that a replicable association with
the disease would be found when testing SNPs one at a
time as is usually done in a GWAS. Pathway-based tests
provide a dynamic biologically plausible template to effi-
ciently integrate statistical information from the multi-
tude of SNPs with weaker effects that are otherwise
missed by conventional single-SNP GWAS analysis. Stat-
istical analyses of GWAS data that use biological path-
ways are represented by gene sets instead of SNPs, as
the units of analysis are valuable. Gene set-based path-
way analysis was first developed for gene expression
studies and aimed to detect statistically significant chan-
ges in the expression of gene sets [59-63]. Recently, the
method has been adapted for GWAS [55,64-67]. The
first step of pathway-based analysis is the assignment of
genes to gene sets based on existing annotation data-
bases. We considered pathways and GO terms provided
by the Molecular Signatures Database (MSigDB) v3 [63].
MSigDB includes 880 pathways that are canonical repre-
sentations of a biological process. These pathways con-
tain 186 KEGG [68] gene sets, 217 BioCarta gene sets,
430 Reactome gene sets [69], and 47 gene sets contrib-
uted by Signaling Gateway, Sigma Aldrich, Signaling
Transduction KE, and SuperArray. MSigDB also pro-
vides 1,454 GO categories [70] which include 825 gene
sets derived from biological processes (sets of molecular
events with a defined beginning and end), 233 gene sets
from cellular components (the parts of a cell or its extra-
cellular environment), and 396 gene sets from molecular
function categories (the activities of gene products at the
molecular level).

The Association List GO Annotator algorithm, pro-
posed by Holmans et al. [65] and implemented in the R
package SNPath [71], was used to determine if a path-
way/GO term is jointly associated with the trait of inter-
est. The algorithm evaluates whether noteworthy genes
are over-represented in a particular gene set compared
with genes in the rest of the genome. Genes were de-
clared noteworthy if the most significant SNP within the
gene was noteworthy (e.g., among the top 1,000 SNPs of
a particular population). A gene set test statistic was
then computed based on a modified Fisher's exact test,
and significance was finally assessed by gene re-sampling,
which is much less computationally intensive compared
to permutations of disease status or sample labels. For
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each population, a list of top-ranked pathways/GO was
obtained. Commonality among the top-ranked path-
ways/GO across the three populations was then
investigated.

Ingenuity pathways analysis

Pathway analyses on those 11 genes shared among top-
ranked loci of the three populations that are associated
with asthma were accomplished using Ingenuity Path-
ways Analysis 8.6 (Ingenuity Systems, Mountain View,
CA, USA). The goal was to determine whether these
genes in the three populations were part of integrated
and interconnected biological networks of genes that
have non-random enriched functional commonalities
among the study subjects. A data set containing the
eleven gene names was uploaded into IPA software to
map and generate putative networks based on the
manually curated knowledge database of pathways that
was developed from a manual review of more than
200,000 scientific articles. The gene networks were
generated using both direct and indirect relationships/
connectivity. These networks were ranked by scores that
measured the probability that the genes were included in
the network not by chance alone.

Trans-ancestral analysis on combined samples

Following our population-based GWAS analysis, we also
conducted a mega-analysis (by combining the data from
the three populations) to improve the power to detect
associated variants as a result of increased sample size.
Only SNPs that passed the filtering criteria in all three
populations were included in the mega-analysis. The as-
sociation results from the mega-analysis are valid since
the TDT results are not affected by population structure.
Merging samples, however, does have potential drawbacks.
Mixing populations could dilute association signals if
recombination has separated a causal variant from a geno-
typed marker in some of the populations.

Population genetic differentiation and association with
asthma
Next, we analyzed levels of population genetic differenti-
ation and investigated their relationship with population
difference in asthma associations. The rationale is that if
SNPs/genes that show population differentiation in both
allele frequency and association with asthma exist, these
SNPs/genes may partly explain the population differ-
ences in disease prevalence. A similar approach was used
by Kovacic et al. (2011) [72], where the authors priori-
tized candidate SNPs/genes for childhood asthma by
examining allelic frequency differences between popula-
tions with different asthma prevalence.

In our study, genetic differentiation between any two
populations for a particular SNP was measured using
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fixation index, Fsy, and population difference in associ-
ation with asthma was measured by the difference be-
tween the rankings of the p values of the SNP in each
population. We then examined the relationship between
the difference in the rankings of p values and values of
the Fsr measure. Frequency tables of DRP >mean of
DRP and Fgt > mean of Fgp were constructed, and the
independence between the two was tested using a chi-
square test. The observed and expected numbers of
SNPs with both DRP > mean of DRP and Fgr > mean of
Fst were compared. When the observed number is lar-
ger than the expected number, and the chi-square test
gives a significant p value (< 0.05), we can conclude that
SNPs that are more informative on ancestry or exhibit
large population genetic differentiation are also more
likely to be different in their disease association in differ-
ent populations. These analyses were conducted for any
two pair of the three populations, where the Fg1 was cal-
culated using either parents or the affected offspring in
the CARE and CAMP data. We expect to see significant
association between DRP and Fgt for populations with
difference in asthma prevalence.
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