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Abstract
Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and
hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide
array of human diseases, including cancer. Various carcinogens may also partly exert their effect by
generating reactive oxygen species (ROS) during their metabolism. Oxidative damage to cellular
DNA can lead to mutations and may, therefore, play an important role in the initiation and
progression of multistage carcinogenesis. The changes in DNA such as base modification,
rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of
oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down
regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases
including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS
influences central cellular processes such as proliferation a, apoptosis, senescence which are
implicated in the development of cancer. Understanding the role of ROS as key mediators in
signaling cascades may provide various opportunities for pharmacological intervention.

The term cancer refers to more than hundred types of the
disease. Almost every tissue in the body can spawn malig-
nancies and some can yield several types. Cancer cells pos-
sess an even more insidious property to migrate from the
site where they originate and form masses at distinct sites
in the body. Cancer progression is a stepwise process
where the initiated cells, nodules, polyp or the papilloma
evolve further and become progressively more malignant.
The genes implicated in malignancy are often modified
forms of human genes. The activation of protooncogenes
into oncogenes may contribute to malignancy. Mutations
can also convert protooncogenes into carcinogenic onco-
genes [1,2].

Reactive oxygen species
Reactive oxygen species (ROS) are derived from the
metabolism of molecular oxygen [3]. ROS include super-
oxide anion radical (O2

-.), singlet oxygen (1O2), hydrogen
peroxide (H2O2), and the highly reactive hydroxyl radical
(.OH). The deleterious effects of oxygen are said to result
from its metabolic reduction to these highly reactive and
toxic species [4].

ROS normally exist in all aerobic cells in balance with bio-
chemical antioxidants. Oxidative stress occurs when this
critical balance is disrupted because of excess ROS, anti-
oxidants depletion, or both. To counteract the oxidant
effects and to restore redox balance, cells must reset
important homeostatic parameters. ROS are not always
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harmful metabolic byproducts; when tightly regulated,
ROS can act as intracellular signaling molecules [5,6].

In living cells, the major source of endogenous ROS are
hydrogen peroxide and superoxide anion, which are gen-
erated as by products of cellular metabolism such as mito-
chondrial respiration [7]. Alternatively, hydrogen
peroxide may be converted into water by the enzymes cat-
alase or glutathione peroxidase. Variability or inductive
changes in the expression of these enzymes can signifi-
cantly influence cellular redox potential. ROS can cause
tissue damage by reacting with lipids in cellular mem-
branes, nucleotides in DNA [8], sulphydryl groups in pro-
teins [9] and cross-linking/fragmentation of
ribonucleoproteins [10] (see figure 1). The relatively unre-
active superoxide anion radical is converted by superoxide
dismutase (SOD) into H2O2, which in turn take part in
the "Fenton reaction", with transition metal ion (copper
or iron) as catalysts, to produce the very reactive hydroxyl
radical [11-14].

Oxidative DNA damage and cancer
Damage to DNA by ROS has been widely accepted as a
major cause of cancer [15]. In patients with diseases asso-
ciated with a risk of cancer indicates an increased rate of
oxidative DNA damage or in some instances deficient
repair system such as Fanconi anemia, chronic hepatitis,
cystic fibrosis and various autoimmune diseases [16-20].
Human studies support the experimentally based notion
of oxidative DNA damage as an important mutagenic and
apparently carcinogenic factor [21]. ROS can damage
DNA and the division of cells with unpaired or misre-
paired damage leads to mutations. The majority of muta-
tions induced by ROS appear to involve modification of
guanine, causing G→T transversions [22-25]. If it relates
to critical genes such as oncogenes or tumor suppressor
genes, initiation/progression can result [26]. Indeed, these
species can act at several steps in multistage carcinogene-
sis. It is now assumed that ROS are involved both in the
initiation and progression of cancer [27].

Pathways illustrating the sources of reactive oxygen species and its role in the development of cancerFigure 1
Pathways illustrating the sources of reactive oxygen species and its role in the development of cancer.
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Mutations caused by oxidative DNA damage include a
range of specifically oxidized purines and pyrimidines,
alkali labile sites, single strand breaks and instability
formed directly or by repair processes [28-32]. Because of
the multiplicity of DNA modifications produced by ROS,
it has been difficult to establish the frequency and specif-
icity of mutations by individual oxygen radical induced
lesions. Some of these modified bases have been found to
possess mutagenic properties. Therefore, if not repaired
they can lead to carcinogenesis. Studies show that
although all the four bases are modified by ROS, muta-
tions are usually related to modification of GC base pairs,
while that of AT base pair rarely leads to mutations [33].
These mutations are usually base pair substitutions,
whereas base deletions and insertions are less frequent. In
human tumors, G to T transversions are the most frequent
mutations in the p53 suppressor gene [34-36]. Using sin-
gle stranded DNA template in a sensitive forward muta-
tion system, various mutations, including tandem double
CC→TT substitution have been observed in DNA treated
with oxygen free radicals [37]. Elevated levels of modified
bases in cancerous tissue may be due to the production of
large amount of H2O2, which has found to be characteris-
tic of human tumor cells [38,39]. Initiation of cancer in
humans by ROS is further supported by the presence of
oxidative DNA modifications in cancer tissue [26,40].

Cigarette smoke, which is rich in carcinogens such as nit-
rosamines and polycyclic aromatic hydrocarbons [41-44],
causes accumulation of 8-hydroxydeoxyguanosine (8-
OHdG). Lungs from cigarette smokers contain two to
three fold higher 8-OHdG [45], that could lead to muta-
tions, some of which might be induced by oxygen free
radicals, resulting in inflammatory responses, fibrosis and
tumor development [46]. Urine obtained from smokers
also has a four to ten fold elevation in altered nucleotides
that are known to be produced by ROS [47]. Urinary 8-
OHdG is a biomarker of oxidative stress, cancer, athero-
sclerosis and diabetes [48].

Oxidative DNA damage may be involved in the develop-
ment of breast cancer. Increased steady-state levels of
DNA base damage with a pattern characteristic of .OH
attack have been reported in inflammatory breast disease
[49] where malignant progression can occur. It is reported
that elevated levels of 8-oxo-dG adducts in DNA play a
fundamental role in breast cancer [50]. Evidence also
exists for the progression of breast tumor to the metastatic
state and is an important etiologic factor [51]. Carcinoma
of hepatic cells is often associated with chronic infection
by hepatitis B or C viruses or ingestion of aflatoxins [52-
56]. Oxidative stress induced by these viruses represents
one of the intracellular events that cause the genesis of
hepatocellular carcinoma [17,57]. G→T transition has
been shown to be one of the more common types of

mutation produced by aflatoxin lesion and ROS damage
to DNA [58]. 8-OHdG has also been reported to accumu-
late in hepatocellular carcinoma [59,60]. The measure-
ment of DNA damage and mutation in human liver as a
function of persistence of chronic hepatitis might be pre-
dictive for the onset of liver cancer. Chronic prostate
hypertrophy is diagnosed in most males by the age of 40
yr. But the late appearance of prostatic carcinoma suggests
that a multistep process is involved in tumorigenesis. The
paucity of known chemical agents associated with pros-
tate cancer indicates an association with endogenous cel-
lular processes [61-63]. The most reasonable candidates
for endogenously formed genotoxins that accumulate in
later life are the ROS.

The epidemiological studies involving measurement of
typical modified DNA bases in a large variety of individual
tumor tissue and their respective normal tissues may pro-
vide insights into the mechanism of carcinogenesis related
to ROS. Measurement of purine and pyrimidine derived
DNA lesions in tissues may prove to be useful in deter-
mining an association between free radical producing
agents and cancer risk.

ROS and diseases
There is growing awareness that oxidative stress plays a
role in various clinical conditions such as malignant dis-
eases, diabetes, atherosclerosis, chronic inflammation,
viral infection, and ischemia-reperfusion injury [64-69].
ROS can cause oxidative DNA and protein damage, dam-
age to tumor suppressor genes and enhanced expression
of proto-oncogenes [70-72] and oxidative stress has been
shown to induce malignant transformation of cells in cul-
ture [73]. Diseases associated with oxidative stress such as
diabetes mellitus and cancer show a pro-oxidative shift in
the redox state and impaired glucose clearance suggesting
that muscle mitochondria is the major site of elevated
ROS production. This condition may be referred to as
'mitochondrial oxidative stress'. Cancer patients com-
monly have decreased glucose clearance capacity, high
glycolytic activity and lactate production. It is, therefore,
suggested that the observed pro-oxidative shift is medi-
ated by an increased availability of mitochondrial energy
substrate. The 'inflammatory oxidative conditions' are
typically associated with an excessive stimulation of
NAD(P)H oxidase by cytokines and other factors. The
increased ROS production or changes in intracellular glu-
tathione levels are often involved with pathological
changes indicative of a dysregulation of signal cascades or
gene expression [74].

ROS are potential carcinogens because they facilitate
mutagenesis, tumor promotion and progression. The
growth promoting effects of ROS are related to redox-
responsive cell signaling cascades. Sometimes, even nor-
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mal cells show increased proliferation and expression of
growth-related genes if exposed to H2O2 or O2

-.. Certain
types of cancer cells also produce significant amounts of
ROS. ROS production is induced after the expression of
several genes associated with a transformed phenotype
including H-Ras or mox1.

Because of its high metabolic rate and relatively reduced
capacity for cellular regeneration, the brain is believed to
be particularly susceptible to the damaging effects of ROS.
In neurodegenerative diseases like Parkinson's, Alzhe-
imer's and amyotrohic lateral sclerosis (ALS), ROS dam-
age has been reported within the specific brain region that
undergo selective neurodegeneration. Protein oxidation
has been reported in the hippocampus and neocortex of
patients with Alzheimer's disease, Lewy bodies in Parkin-
son's disease and within the motor neurons in ALS [75].
Lipid peroxidation has also been identified in the cortex
and hippocampus of patients with Alzheimer's disease,
substantia nigra of patients with Parkinson's disease and
spinal fluid in patients with ALS. It is known that ROS can
cause neuron and astrocyte death through apoptosis and
necrosis. Mitochondria are involved in excitotoxic nerve
cell death through calcium-related bursts of ROS produc-

tion and opening of permeability transition pores. Oxida-
tive stress is also related to glutamate release and NMDA
receptor activation during cerebral ischemia-reperfusion,
production of O2

-. in neurons and brain macrophages and
glutamine-induced ROS production in astrocytes. Evi-
dence implicating ROS in major degenerative diseases is
also consistent with their role in brain aging. There is a
general agreement that oxidative stress contributes to
dopaminergic cell degeneration in Parkinson's disease.
Oxidative stress has also been implicated as one of the ear-
liest events in Alzheimer's disease [76].

ROS and viral infection
Reactive oxygen metabolites play a complex role in many
diseases and metabolic regulation. Because viruses repli-
cate in living cells, such metabolites influence the growth
of viruses in addition to serving as a host defense mecha-
nism. Humans infected with viruses (HIV, hepatitis, and
influenza) induce activation of phagocytes, which is asso-
ciated with production of ROS. The activated phagocytes
may also release pro-oxidant cytokines such as tumor
necrosis factor (TNF) and interleukin-1 [77-79].

Chronic hepatitis B (HBV) and hepatitis C virus (HCV)
infections are associated with an increased production of
ROS within the liver that is responsible for the oxidation
of intracellular macromolecules. Infection with these
viruses can also affect the host cell pro-/antioxidant bal-
ance by increasing cellular pro-oxidants such as iron and
nitric oxide and also by inhibiting the synthesis of antioxi-
dant enzymes. Antioxidants, together with agents interfer-
ing with the harmful effects of cytokines and lipid
mediators, may have a role in the treatment of viral dis-
eases. ROS may facilitate or even promote replication of
many viruses, depending on the cell and type of virus
involved. Enhanced oxidative stress modulates the HCV
RNA replication and hepatic cell survival via activation of
oncogenic transcription factors that leads to the genera-
tion of hepatocellular carcinoma (see figure 2) [80-82].
Redox-sensitive kinases, Src, JAK, PI3K-Akt and MAPK
(Erk, JNK, p38) regulate transcription factors through
phosphorylation of the protein modules (see figure 2).
Chronic HBV infection results in an increased total intra-
hepatic iron and/or increase in the pro-oxidant low-
molecular weight iron compartment of the liver. Previ-
ously, a strong correlation between the presence of HBV
surface antigen and iron deposition in the Kupffer cells
and spleens of infected individuals has been reported
[83]. In addition to increased intracellular iron, elevated
TNF-α has been found in hepatocytes from patients
chronically infected with HBV [84].

Humans infected with HIV have been shown to be under
chronic oxidative stress. HIV-seropositive humans exhibit
decreased concentrations of naturally occurring antioxi-

A link between hepatitis viruses and hepatocellular carci-nomaFigure 2
A link between hepatitis viruses and hepatocellular carci-
noma. Viral gene expression regulates the cellular gene 
expression via oxidative stress, followed by activation of cel-
lular kinases and transcription factors which leads to the gen-
esis of hepatocellular carcinoma.
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dant reductants such as total acid-soluble thiols, cysteine,
and glutathione in plasma, peripheral blood monocytes,
and lung epithelial-lining fluids [85]. In addition, ele-
vated levels of hydroperoxides and malondialdehyde are
found in plasma of HIV-infected individuals. In cell cul-
ture system, ROS promotes replication of HIV, and anti-
oxidants such as NAC inhibit the replication of the virus.

Oxidative stress has been reported to affect the cellular
protein kinase/phosphatase balance, which is described
in a number of tumors. The exogenous oxygen radical
load is contributed by a variety of environmental agents
(inhaled smoke and polluted air) and dietary antioxidants
[86-88]. Mutagens, tumor promoters and a variety of car-
cinogens including benzene, aflatoxin and
benzo(a)pyrene may exert their partly by generating ROS
during their metabolism [89-91].

ROS and signaling cascades
ROS is produced in non-phagocytic cells as a result of var-
ious signaling pathways such as receptor tyrosine kinases
(RTKs) which become activated by growth factors – epi-
dermal growth factor, platelet derived growth factor,
fibroblast growth factor as well as cytokines (tumor necro-
sis factor, γ-interferon and interleukins) leading to an
intracellular tyrosine phosphorylation cascade [64]. The
ROS activated signal transduction pathways are regulated
by two distinct protein families – the Mitogen Activated
Protein Kinase (MAPK) and the redox sensitive kinases.
The MAPKs transduce signals from the cell membrane to
the nucleus in response to a wide range of stimuli. MAPKs
are serine/threonine kinases that, upon stimulation,
phosphorylate their specific substrates at serine and/or
threonine residues. Such phosphorylation events can
either positively or negatively regulate substrate, and thus
entire signaling cascade activity. Thus, the MAPK signaling
pathways modulate gene expression, mitosis, prolifera-
tion, motility, metabolism, and programmed cell death.
Conventional MAPKs consist of three family members:
the extracellular signal-regulated kinase (ERK, subdivided
into ERK1 and 2); the c-Jun NH2-terminal kinase (JNK,
subdivided into JNK1, 2 and 3); and the p38 MAPK (sub-
divided into α, β, γ, and δ p38-MAPK [92].

MAPKs regulate processes important in carcinogenesis
including proliferation, differentiation, and apoptosis.
MAPK modulate gene expression through phosphoryla-
tion of a wide array of transcription factors. Of the three
subfamilies, the ERK pathway has most commonly been
associated with the regulation of cell proliferation. Activa-
tion of the ERK, JNK, and p38 subfamilies has been
observed in response to changes in the cellular redox bal-
ance. The balance between ERK and JNK activation is a key
determinant for cell survival as both a decrease in ERK and
an increase in JNK is required for the induction of apop-

tosis. Activation of MAPKs directly leads to increased AP-
1 activity resulting in increased cell proliferation. One of
the genes regulated by AP-1 is cyclin D1. AP-1 binding
sites have been identified in the cyclin D1 promoter and
AP-1 activates this promoter, resulting in activation of cyc-
lin-dependent kinase (cdks), which promotes entry into
the cell division cycle. c-Jun also stimulates the progres-
sion into the cell cycle both by induction of cyclin D1 and
suppression of p21waf, a protein that inhibits cell cycle
progression. JunB, considered a negative regulator of c-
jun-induced cell proliferation, represses c-jun-induced
cyclin D1 activation by the transcription of p16INK4a, a
protein that inhibits the G1 to S phase transition.

NF-κB activation has been linked to the carcinogenesis
process because of its roles in inflammation, differentia-
tion and cell growth. NF-κB regulates several genes
involved in cell transformation, proliferation, and angio-
genesis. Carcinogens and tumor promoters including UV
radiation, phorbol esters, asbestos, alcohol, and
benzo(a)pyrene are among the external stimuli that acti-
vate NF-κB. The expression of several genes regulated by
NF-κB (bcl-2, bcl-xL, TRAF1, TRAF2, SOD, and A20) pro-
motes cell survival at least in part through inhibition of
apoptotic pathways. Expression of NF-κB has been shown
to promote cell proliferation, whereas inhibition of NF-κB
activation blocks cell proliferation. Additionally, tumor
cells from blood neoplasms, and colon, breast, pancreas,
and squamous cell carcinoma cell lines have all been
reported to constitutively express activated NF-κB [93].

The second family consists of signaling factors that use
cysteine motifs as redox-sensitive sulphydryl switches to
modulate specific signal transduction cascades regulating
downstream proteins. The redox-sensitive signaling cas-
cade involves the cytoplasmic factors (thioredoxins),
nuclear signaling factors such as Ref-1 (Redox factor-1)
and transcription factors (AP-1, NF-κB, Nfr-1, Egr-1). The
cytoplasmic sulphydryl containing proteins such as
thioredoxins are critical upstream signaling proteins that
regulate multiple intracellular processes such as DNA syn-
thesis, cell growth, etc. The signaling cascades elicited by
ROS culminates in the activation of c-Jun and c-Fos subu-
nits of the active nuclear transcription factor, AP-1 (activa-
tor protein-1), that activate genes involved in cellular
proliferation. Redox-sensitive signaling factors regulate
multiple processes including proliferation, cell cycle and
anti-apoptotic signaling pathways. Inhibition of thiore-
doxins inhibits several pro-survival transcription factors
such as Egr-1, AP-1 and NF-κB resulting in a G1 phase
arrest [94] (see figure 3).

The role of reactive oxygen species in cell growth regula-
tion is complex, being cell specific and dependent upon
the form of the oxidant as well as the concentration of the
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particular reactive oxygen species. The modification of
gene expression by reactive oxygen species has direct
effects on cell proliferation and apoptosis through the
activation of transcription factors including MAPK, AP-1,
and NF-κB pathways. Oxidant-mediated AP-1 activation
results in enhanced expression of cyclin D1 and cdks,
which in turn promotes entry into mitosis and cell divi-
sion. Likewise, reactive oxygen species function as second
messengers involved in activation of NF-κB by tumor
necrosis factor and cytokines. DNA damage, mutation,
and altered gene expression are all required participants in
the process of carcinogenesis. Although these events may
be derived by different mechanisms, a common theme is
the involvement of reactive oxygen species and oxidative
stress in neoplastic transformation.
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