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Abstract

Abnormal rates of growth together with metastatic potential and lack of susceptibility to cellular signals leading to
apoptosis are widely investigated characteristics of tumors that develop via genetic or epigenetic mechanisms.
Moreover, in the growing tumor, cells are exposed to insufficient nutrient supply, low oxygen availability (hypoxia)
and/or reactive oxygen species. These physiological stresses force them to switch into more adaptable and
aggressive phenotypes. This paper summarizes the role of two key mediators of cellular stress responses, namely
p53 and HIF, which significantly affect cancer progression and compromise treatment outcomes. Furthermore, it
describes cross-talk between these factors.
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HIF-mediated responses to hypoxia
Important consequences of rapid tumor growth include
poor vascularization and insufficient oxygen delivery that
together lead to formation of hypoxic (poorly oxygenated)
areas [1]. Adaptation to hypoxia is facilitated by the activa-
tion of transcriptional machinery, in which hypoxia indu-
cible factor (HIF) plays a pivotal role. HIF is a
heterodimeric transcription factor composed of an oxygen-
dependent α-subunit and constitutively expressed β-
subunit. Regulation of the α-subunit is driven by enzymes
of the prolyl hydroxylase family (PHDs) and by the factor
inhibiting HIF (FIH) [2,3]. Under normoxia, PHDs hydrox-
ylate prolines at positions 564 and 402 (in HIF-1α isoform)
and FIH hydroxylates asparagine at position 803 [3]. Hy-
droxylation of prolines is required for recognition of HIF-
1α by the ubiquitin ligase complex via von Hippel-Lindau
(pVHL) tumor suppressor protein, which in consequence
leads to HIF-1α ubiquitination followed by its proteasomal
degradation [2]. Simultaneously, FIH prevents interaction
between HIF-1α and the transcriptional co-activator, p300.
Although there are three isoforms of the α-subunit: HIF-
1α, HIF-2α and HIF-3α, most attention is drawn to HIF-1α
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and HIF-2α. These subunits contain similar oxygen-
dependent degradation domains, but play different roles in
hypoxic tumor growth and progression (for extended re-
view see Keith et al.) [4]. Whereas HIF-1 mediates acute
responses to hypoxia, HIF-2 is more involved in adaptation
to chronic hypoxia and is functionally implicated in tumor
progression [5].
In situations of insufficient oxygen levels, PHDs and

FIH remain inactive, while HIF-1α is no longer hydrox-
ylated and escapes recognition by pVHL. This results in
its stabilization, accumulation and translocation to the
nucleus, where it interacts with a β-subunit leading to
creation of an active heterodimeric form of the tran-
scription factor. This heterodimer binds to specific cis-
acting hypoxia responsive elements (HREs) in the pro-
moters of target genes [6].
Several recent reports point out novel molecular

mechanisms that affect HIF-1α levels in normoxia. An
inhibitor of Janus Activated Kinase (JAK2), AG490, pre-
vents HIF-1α hydroxylation and thus interferes with
VHL-mediated degradation resulting in increased HIF-
1α protein half-life [7]. Another mechanism by which
HIF-1α can be rescued from degradation is via inter-
action with ubiquitin-specific protease 19 (USP19) [8].
Epigenetic mechanisms such as histone methylation can
also be involved in HIF-1α regulation, which was studied
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in clear cell renal cell carcinoma (ccRCC) [9]. Moreover,
HIF-1 activity is phosphorylation-dependent and thus
requires engagement of signaling such as mitogen-
activated protein kinase (MAPK), PI3K/Akt and mam-
malian target of rapamycin (mTOR), amongst others
(see review by Dimova et al.) [10].
HIF-induced cascades of events allow cells to survive

and overcome unfavorable conditions during hypoxia by
transcriptional reprogramming that leads to modulated
proliferation, angiogenesis, cell metabolism and many
other features of tumor phenotype. One of the promin-
ent HIF-1 downstream genes involved in this process is
the gene coding for carbonic anhydrase IX (CA IX). CA
IX is a member of the family of zinc metalloenzymes in-
volved in regulation of cellular pH by reversible conver-
sion of CO2 to bicarbonate and proton [11,12]. Its
activity is regulated by hypoxia through protein kinase A
and leads to acidosis of the tumor milieu, which is
known to be one of the hallmarks of solid tumors
[13,14]. CA IX also promotes tumor cell growth and sur-
vival and helps to eliminate the surplus of intracellular
acids generated through oncogenic metabolism [15,16].
Moreover, it facilitates migration and invasiveness of
tumor cells and thereby supports tumor progression
[17].
To satisfy the need for nutrients, tumor cells are

forced to create an extensive net of new vessels through
increased expression of pro-angiogenic molecules, in-
cluding vascular endothelial growth factor (VEGF),
which is also a well-known HIF target gene [18,19].
Additionally, VEGF can promote both angiogenesis and
metastasis via up-regulation of matrix metalloproteinase
28 and matrix metalloproteinase 14 [20].
Due to lack of oxygen, a key factor for respiration,

hypoxia is also known to induce a shift to glycolytic me-
tabolism [21]. HIF-1 plays a growth factor-dependent
role in the regulation of glycolysis in hematopoietic cells
even in the absence of hypoxia [22] and reduces mito-
chondrial respiration in RCC lacking VHL [23]. HIF was
also shown to be responsible for expression of specific
isoforms of glycolytic enzymes and transporters via alter-
native splicing [24].
There are many other molecular targets of HIF that

execute multiple adaptive responses to hypoxia depend-
ing on the cell type and physiological context as de-
scribed elsewhere [25,26].

p53-mediated responses to genotoxic stress
Tumor suppressor p53, which shows many similarities
to HIF-1 in terms of protein control by degradation, is
predominantly involved in adaptation of cells to
genotoxic stresses. p53 is a well-characterized transcrip-
tion factor that plays a crucial role in responses to DNA
damage, aberrant cell cycle control, apoptosis, and
senescence [27-29]. Comparably to HIF-1α, the basal
level of wild-type p53 is kept low due to murine double
minute 2 (MDM2)-dependent ubiquitination [30]. In re-
sponse to DNA damage p53 is stabilized and phosphory-
lated by ataxia telangiectasia mutated (ATM) protein,
which leads to its activation and binding to the regula-
tory region of target genes [31,32]. Moreover, p53 can be
regulated through methylation caused by MDM2-
dependent recruitment of methyltransferases [32]. In
contrast, MDM2 can also act as a p53 inducer. This is
mediated through the interaction of p53 mRNA region
containing the MDM2-binding site with the RING do-
main of MDM2, which impairs the E3 ligase activity of
MDM2 and promotes p53 mRNA translation [33]. This
interaction depends on ATM-mediated phosphorylation
of MDM2 at Ser395 [34]. Finally, activated p53 can then
start the machinery leading either to cell cycle arrest and
DNA repair or to apoptosis. For example, p53-
dependent upregulation of genes involved in inhibition
of IGF-1/AKT and mTOR pathways prevents cell growth
and division [29,35,36]. On the other hand, inhibition of
DNA damage-activated kinases leads to switch of the
p53-dependent growth arrest to apoptosis [37].
ATF3 gene, a downstream target of p53, encodes a

transcription factor involved in adaptation to hypoxia,
ER stress, oxidative stress and genotoxic stress [38].
ATF3 acts both as an effector of p53-mediated cell death
and a regulator of p53 signaling. A recent report indi-
cates that ATF3 has opposing effects on apoptotic tran-
scriptome in stress response and in cancer, where it was
found to be over-expressed [39]. Zhang and colleagues
[40] developed a four-module model to investigate p53
dynamics and the DNA damage response. They found
that primary modifications such as phosphorylation at
Ser-15 and Ser-20 cause cell cycle arrest, whereas further
modifications such as phosphorylation at Ser-46 fully ac-
tivate p53 which can then induce apoptosis. This report
more clearly elucidates how p53 converts between the
cell cycle arrester and the killer, which was previously
shown to be controlled by Wip1 (wild-type p53-induced
phosphatase 1) [41].
p53 does not only act as a transcriptional factor in the

nucleus, but also can move to the mitochondria where it
induces permeabilization of the mitochondrial outer
membrane consequently releasing pro-apoptotic factors
[28]. Suppression of autophagy via inhibition of AMP-
dependent kinase and/or activation of mTOR is another
cytoplasmic p53 function [42]. For the extensive insight
into the cytoplasmic functions of p53, see the review by
Green and Kroemer [28].
p53 as a tumor suppressor plays an important role in

maintaining of genome stability thus it is not surprising
that is mutated in more than 50% of cancers in which its
loss facilitates malignant transformation [43]. The
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majority of p53 mutations represent missense mutations
located in the DNA-binding core domain of p53, produ-
cing a full-length protein that is incapable of binding
DNA and is therefore nonfunctional as a transcriptional
activator/repressor. Compared to wild-type p53, mis-
sense mutant proteins show increased stability, which is
partly caused by their inability to induce MDM2 but also
by the formation of complexes with HSP90 and HSP70
[44].

Cross-talk between HIF-1 and p53
In addition, p53 participates in responses to hypoxia by
regulating expression of genes involved in cell cycle con-
trol. This happens via a pathway that is different than
that involved in the DNA damage response [45]. There
are many contradictory reports on mutual influence of
p53 and hypoxic signaling. Some of them claim that
hypoxia causes accumulation and increase in p53 protein
level [46,47], whereas others postulate degradation-
mediated decrease in p53 level [48,49] or no effect at all
[50]. These intricate relations have been extensively
reviewed by Sermeus and Michiels [51]. One explanation
of these contradictory statements can be found in the
phosphorylation status of HIF-1. It was shown that
dephosphorylated HIF-1 is a major form binding to p53,
precluding downregulation of p53 by MDM-2, and thus
enabling it to conduct apoptosis [52]. As both p53 and
HIF-1 are mediators of cell adaptation to many stresses,
they are known to be involved in similar processes such
as apoptosis, cell cycle control, metabolism etc.
(Figure 1). Severe and/or prolonged hypoxia activates
p53-dependent apoptosis, which is initiated by
stabilization of 53 by HIF-1 [53]. In contrast, another re-
port states that hypoxia causes growth arrest by decreas-
ing p53 phosphorylation, but has no impact on either
p21WAF1 or HIF-1 protein stabilization [54]. One of the
possible explanations is that these convergences can be
due to cancer cell type [55]. Opposite effects can be ob-
served upon genotoxic stress, where wild-type 53 abro-
gates HIF-1 activity triggering its proteasomal
degradation [56].
However, there is a line of evidence that HIF-1 can

also impair p53 activity, through the downregulation of
the tumor suppressor homeodomain-interacting protein
kinase-2 (HIPK2) [57]. HIPK2 phosphorylates p53 at
serine 46 in response to DNA damage and subsequently
activates its apoptotic function [58]. Moreover, HIPK2
inhibition can result from the hypoxia-induced
upregulation of MDM2 [59].
p53 can respond to DNA damage in cooperation with

70 kDa subunit of the replication protein A (RPA70).
Under hypoxia, wild-type p53 undergoes a conform-
ational change and acquires mutant conformation [60].
Furthermore, hypoxia leads to disruption of the complex
between p53 and RPA70, dissociation of RPA70 and acti-
vation of RPA70-mediated nucleotide excision repair
and non-homologous end-joining repair, which cause re-
sistance to apoptosis in hypoxic cancer cells [61]. That
report poses a new insight into impairment of the p53-
mediated apoptosis and consequent insensitivity of can-
cer cells to treatment. However, it is still hard to eluci-
date what starts the p53 and/or HIF-1 machinery for the
adaptation of cells to unfavorable conditions.
Thomas et al. [62] focused on tumor response to nitric

oxide (NO) exposure and proposed that both p53 and
HIF-1 are stabilized by NO in a dose- and time-
dependent manner, with a higher NO concentration re-
quired for p53 stabilization. They suggested that cells lo-
calized closer to the source of NO production can
undergo p53-dependent cell arrest and death, while
more distant cells respond with increased HIF-1 levels.
Additionally, their results indicated that HIF-1
stabilization by NO was independent of p53 status.
Altered metabolism is one of the prominent features

that promote tumor survival. The first who discovered
that tumors rely on anaerobic glycolysis even in the
presence of sufficient oxygen and produce large amount
of lactate was Otto Warburg [63]. Later this
phenomenon was named after him. The consequences
of this effect have been previously reviewed [64]. An-
other tumor characteristic is increased uptake of nutri-
ents that as stated by Vander Heiden et al. [65] is due to
oncogenic mutations mainly in Akt, Myc and Ras [66].
A multitude of mutations of genes encoding enzymes
participating in glycolysis, tricarboxylic acid cycle, mito-
chondrial oxidative phosphorylation and other molecular
pathways underlying the advantageous metabolism of
cancers have been already characterized [67-71]. Com-
prehensive insights into this phenomenon can be found
in recent works [72-75]. In this respect HIF-1 and p53
play crucial, but usually competing, roles. HIF-1 controls
expression of genes encoding e.g. glucose transporters,
glycolytic enzymes, lactate dehydrogenase etc. [25,76].
Interestingly, inactivating mutations in fumarate
hydratase and succinate dehydrogenase cause accumula-
tion of their substrates, which interfere with HIF-1α deg-
radation leading to its accumulation [77]. On the other
hand, loss of p53 contributes to enhancement of glucose
transport and metabolism through NF-κB pathway [78].
Furthermore, it increases lactate production, diminishes
oxygen consumption and enhances hypoxia-induced cell
death. Disruption of p53 function reduces the expression
of cytochrome c oxidase 2 (SCO2), which is necessary
for the respiratory chain function [79]. This indicates
that mutations in the TP53 gene contribute to Warburg
effect.
In order to eliminate damaged proteins and organelles

as well as to fulfill requirements for high ATP level,



Figure 1 HIF-1 and/or p53 regulated genes mediating adaptation to cellular stresses through activation of different pathways. Upon
hypoxia, the interaction between HIF-1α and von Hippel Lindau protein (pVHL) is disrupted, leading to HIF-1α translocation into nucleus,
dimerization with HIF-1β subunit and formation of HIF-1 active form, which can regulate transcription of target genes . HIF-1 activates lactate
dehydrogenase (LDH-A), pyruvate dehydrogenase kinase 1 (PDK1), phosphoglycerate mutase (PGM) and glucose transporter 1 (GLUT-1) to switch
into more glycolytic phenotype [25]. To prevent apoptosis, it induces survivin expression [25] and downregulates BAX, BID and caspases activity
[26]. HIF-1 can also induce autophagy by upregulation of beclin-1, BNIP3 and NIX [81]. Through modulating vascular endothelial growth factor
(VEGF) [18], angiopioetin-2 (Ang-2) [25], carbonic anhydrase IX (CA IX) [12] and p21WAF1 [90] expression, HIF-1 triggers activation of pro-survival
pathways. Different molecular stresses (including DNA damage, hypoxia, oxidative stress), cause dissociation of p53 from murine double minute 2
(MDM2) complex, enabling its binding to regulatory elements of target genes [31]. Thereby p53 can repress glycolysis by altering expression of
GLUT-1, PGM, TP53-induced glycolysis and apoptosis regulator (TIGAR) and inhibits pentose phosphate pathway by downregulating glucose-6
-phosphate dehydrogenase (G6PDH) [36]. p53 regulates expression of many pro-apoptotic proteins, including PUMA, NOXA, CD95, Apaf1, BAX,
BID and caspases [28]. Induction of autophagy by p53 relies on activation of damage-regulated autophagy modulator (DRAM) [83], sestrin 1,
sestrin 2 and AMP-dependent kinase (AMPK) [84], but depending on cellular localization it can also inhibit this process [86]. Regulation the
expression of transcription factor ATF3 enables adaptation to hypoxia, ER stress, oxidative stress and genotoxic stress [38], whereas during hypoxia
induction of p21WAF1 causes cell cycle arrest [102]. p53 suppresses Akt-mTOR axis by transactivation of PTEN, TSC2 and AMPKβ1 [36].
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cancer cells utilize the machinery of autophagy, a cata-
bolic process in which cytoplasmic cargos are embedded
in double-membrane structures called autophagosomes
to digest their content [80]. Among proteins involved in
triggering autophagy, BCL2/adenovirus E1B 19kDa-
interacting protein 3 (BNIP3), BCL2/Adenovirus E1B
19kDa Interacting Protein 3-Like (BNIP3L, NIX), to-
gether with Beclin-1 are induced under hypoxia in HIF-
1-dependent manner (see review by Mazure and
Pouyssegur) [81]. Moreover, HIF-1 promotes the pro-
autophagic signaling pathways in adjacent tumor stroma,
which not only provides cancer cells with necessary
chemical building blocks but also renders them less sus-
ceptible to apoptosis [82].
p53 involvement in autophagy appears to rely on two
contradictory functions. On one hand, p53 facilitates au-
tophagy by inducing expression of a damage-regulated
autophagy modulator (DRAM) [83], sestrin 1, sestrin 2,
AMP-dependent kinase (AMPK) [84] and/or inhibiting
mTOR pathway [85]. On the other, Tasdemir et al. [86]
postulate that cytoplasmic fraction of p53 can repress
autophagy through a transcription-independent effect
and that p53 inactivation enhances this process. On the
contrary, Naves et al. [87] found that neuroblastoma
cells with the mutated p53 undergo autophagy when ex-
posed to hypoxia mimetic CoCl2, but this pathway is ac-
tivated when p53 localizes to the nucleus. The studies
quoted above show that the ‘self-digestion’ is another
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example of the mutual communication between HIF-1
and p53 in regulation of the tumor cells survival.
Recent developments in the field of senescence, a

process leading to elimination of damaged cells from the
growing population and subsequently preventing cancer
occurrence, reveal a dual role for hypoxia. Leontieva
et al. [88] found that hypoxia inhibits a conversion from
the reversible cell cycle arrest to senescence (known as
geroconversion), nutlin-induced senescence and mTOR
activity. Additionally, in marrow-derived mesenchymal
stem cells (MSCs) hypoxia promotes proliferation [89]
and causes downregulation of p21WAF1 expression in a
HIF-1α-dependent manner [90]. On the other hand,
many of HIF-1- regulated genes are associated with the
senescence induction, including plasminogen activator
inhibitor (PAI1), cell cycle regulators, glycolytic enzymes
and secreted molecules (see review by Welford et al.)
[91]. The classic model of senescence shows that
hyperoxia can induce senescence through reactive oxy-
gen species (ROS). In accordance, senescence is
inhibited under low oxygen conditions simply due to de-
creased production of the mitochondrial ROS [92].
Interestingly, recent report indicates that overexpression
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phosphorylation of HIF-1 on Ser-696, which causes a
downregulation of mTORC1 signaling that regulates
a translational efficiency [100]. Not only hypoxia sup-
presses the mTOR pathway; p53 in response to stress also
negatively regulates mTORC1 by inducing the expression
of a plethora of target genes in the IGF-1/AKT and
mTOR pathways. This intrinsic regulation was reviewed
previously [29].
Another crosstalk between HIF-1 and p53 is observed

on the level of trans-activation. During hypoxia, these
transcription factors compete for the binding to the
CH1 domain of p300 cofactor [101]. Furthermore, it was
found that another cofactor, p300/CBP Associated Factor
(PCAF) is involved in this regulatory mechanism. A
study carried out by Xenaki et al. [102] focused on the
expression of the pro-apoptotic p53 target BID and re-
vealed a molecular mechanism underlying the regulation
of p53 transcriptional activity in hypoxia. They have
shown that hypoxia not only enables preferential direc-
tion of p53 to the promoter of p21WAF1 cell cycle ar-
rester via PCAF, but also decreases PCAF-dependent
acetylation of p53, which disrupts binding to its pro-
apoptotic targets. They found that PCAF is also a HIF-1
cofactor involved in HIF-1- mediated apoptosis, whereas
PCAF histone acetyltransferase (HAT) activity regulates
transcriptional selectivity.
Additional convergences are visible on the level of

regulation of these two transcription factors by VHL,
which as mentioned above, is a well-documented
ubiquitin-dependent executer of HIF-1 degradation
[2,103]. However, it was also reported that VHL posi-
tively regulates p53 activity, preceded by DNA damage,
via nucleating ATM and histone acetyltransferase to
p53. It also influences cell cycle arrest and apoptosis
triggered by p53 due to upgrading the p53-p300 inter-
action and p53 acetylation [103]. Moreover, ATF3 links
the molecular pathways of HIF-1 and p53 in response to
DNA-damage, where both transcription factors are over-
represented, which can be explained by the suggestion
that ATF3 synergizes with these transcription factors to
modulate their target gene expression [39]. Recently,
FIH was added to an even more complicated network in
which p53 and HIF-1 are involved: FIH silencing in
colon adenocarcinomas and melanoma cells greatly
abolishes cell proliferation and, more importantly, in-
creases both p53 and p21WAF1 protein levels [104].
These results support the role of FIH in the suppression
of the p53-p21WAF1 axis.

Impact of the p53 and HIF-1 interplay on cancer
progression
Despite the fact that p53 is known to prevent mutations
which cause genome instability and can lead to carcino-
genesis, it represents one of the most frequently mutated
genes in solid tumors [45]. Conformational changes re-
lated to missense mutations in the DNA-binding domain
disrupt p53 transcriptional activity resulting in impaired
ability of p53 to regulate the cellular response to hypoxia
in an effective way [105,106]. It was also established that
low oxygen pressure selects cells carrying p53 mutation
and due to that contributes to metastatic potential and
diminished apoptosis [46,107]. Interestingly, Gogna et al.
[60] using in-vivo electron paramagnetic resonance ox-
imetry 3D imaging found that conformationally mutated
p53 appears in tumor hypoxic core and that its conform-
ation is oxygen-dependent.
Furthermore, not only p53 mutations act in favor of

cancer progression. Also hypoxia correlates with more
aggressive tumor phenotypes and poor responses to
therapy [108]. This mainly involves stabilization of HIF-
1 and overexpression of its target genes [109]. For in-
stance, expression of a HIF-1 target CA IX has been in-
vestigated in various types of cancers, including breast,
colorectal, pancreatic etc. [110-112]. In these reports
overexpression of this hypoxic marker was associated
with poorer patient survival, less differentiated tumors
of higher grade and worse response to therapy. Similar
effects were described for VEGF in lung and gastric can-
cers [20,113]. Interestingly, high expression of HIF hy-
droxylases, which negatively regulate HIF-1 and are
themselves regulated by hypoxia were postulated as poor
prognostic factors in non small cell type lung cancers
[114], whereas their inhibition reduced survival of glio-
blastoma cells [115]. Concurrent overexpression of both
HIF-1 and p53 was found in many cancers as well [116].
An in vivo study, based on an experimental model of
chick embryo chorioallantoic membrane, revealed that
HIF-1α increases invasiveness of human small cell lung
carcinoma via promoting angiogenesis not only due to
overexpression of VEGF but also due to secretion of
pro-inflammatory factors [20]. Moreover, Khromova
et al. [117] found that accelerated growth of cancer cells
is associated with p53 mutations and caused by ROS-
mediated activation of the HIF-1/VEGF-A pathway,
which links both factors with neovascularization. In a
large cohort of colorectal cancers, HIF-1α but not HIF-
2α was shown to have an important negative prognostic
role in cancer aggressiveness and overall survival of pa-
tients [118]. Contradictory to that, Cleven et al. [110]
suggested that in the stroma of these tumors HIF-2α
and CA IX serve as poor prognostic factors in tumors
expressing wild-type p53 compared with tumors with
mutant form. Regarding p53, some studies join its ex-
pression with patient survival [119] another with inva-
sion depth [120] and poor differentiation [111] or worse
distant survival [121]. Moreover, another report indicates
no significant survival difference between wild-type and
mutant p53 [110]. This leaves an open question on how
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hypoxia selects for mutated p53 and thereby impacts on
patient outcome.
Hypoxia causes resistance to commonly used anti-

cancer agents either due to downregulation of genes that
are drug targets or because oxygen deprivation abrogates
activity of the drugs. Chemotherapeutics of the first
choice (doxorubicin, etoposide, cisplatin) cause DNA
damage and therefore activate p53 to conduct apoptosis.
HIF-1 by modulating expression of its target genes, ren-
der the cells less prone to treatment, although this effect
is cell type-dependent [55]. Insensitivity can be HIF-1 in-
dependent as well, but relies on p53 suppression [122].
Moreover, hypoxic cells divide less rapidly and are local-
ized further from functional blood vessels. Due to that,
drugs are unable to reach poorly oxygenated areas and
work less efficiently than in highly proliferating cells
[123].
Last but not least, overexpression of P-glycoprotein

(Pgp), a member of ATP-binding cassette (ABC) protein
superfamily has been reported to cause multidrug resist-
ance (MDR) of tumors [124,125]. Other studies eluci-
dated that increase in Pgp abundance is due to
transactivation by HIF-1 recruited to the MDR-1 gene in
MCF-7 spheroids and hypoxic cells. Importantly, both
MCF-7 spheroids and hypoxic cells show lower suscepti-
bility to doxorubicin treatment and reduced accumula-
tion of drugs [126].

Conclusions
It is well known that hypoxia and genome instability are
intrinsic tumor characteristics, which influence cancer
progression and hence patient outcome. This report de-
scribes mutual relations between p53 and HIF-1 as me-
diators of adaptation to diverse cellular stresses,
including DNA damage and hypoxia. Although they
share many similarities, they can either act in parallel or
compete with each other in regulation of diverse mo-
lecular pathways. These discrepancies have been exten-
sively studied, but there are still many gaps in
understanding what triggers pro-survival or lethal activ-
ity of these transcription factors. This work highlights
the importance of further investigation of this loop as
the data mentioned above indicate that it involves both
positive and negative regulators as well as epigenetic
mechanisms. This knowledge is indispensable not only
for proper patient treatment, which as reported here can
be influenced by both cancer cell type and tumor envir-
onment, but also for development of new drugs
targeting p53 and/or HIF-1 pathways.
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