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Abstract

Background: Intraplaque hemorrhage is a widely known factor facilitating plaque
instability. Neovascularization of plaque can be regarded as a compensatory response
to the blood supply in the deep intimal and medial areas of the artery. Due to the
physiological function, the deformation of carotid atherosclerotic plaque would
happen under the action of blood pressure and blood flow. Neovessels are subject
to mechanical loading and likely undergo deformation. The rupture of neovessels
may deteriorate the instability of plaque. This study focuses on the local mechanical
environments around neovessels and investigates the relationship between the
biomechanics and the morphological specificity of neovessels.

Methods: Stress and stretch were used to evaluate the rupture risk of the neovessels
in plaque. Computational structural analysis was performed based on two human
carotid plaque slice samples. Two-dimensional models containing neovessels and
other components were built according to the plaque slice samples. Each component
was assumed to be non-linear isotropic, piecewise homogeneous and incompressible.
Different mechanical boundary conditions, i.e. static pressures, were imposed in the
carotid lumen and neovessels lumen respectively. Finite element method was used to
simulate the mechanical conditions in the atherosclerotic plaque.

Results: Those neovessels closer to the carotid lumen undergo larger stress and
stretch. With the same distance to the carotid lumen, the longer the perimeter of
neovessels is, the larger stress and the deformation of the neovessels will be. Under
the same conditions, the neovessels with larger curvature suffer greater stress and
stretch. Neovessels surrounded by red blood cells undergo a much larger stretch.

Conclusions: Local mechanical conditions may result in the hemorrhage of
neovessels and accelerate the rupture of plaque. The mechanical environments of
the neovessel are related to its shape, curvature, distance to the carotid lumen and
the material properties of plaque.

Background
According to the medical statistics, stroke (either ischemic or hemorrhagic) is the third

leading cause of death and the primary cause of disability in the world [1,2]. In western

countries, about 80% to 85% of strokes among adults are ischemic [3]. Most of the

ischemic strokes are caused by the blockage in an artery that supplies blood to the

brain, and hence result in a deficiency in blood flow (ischemia).
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Atherosclerotic plaque rupture is the main cause of stroke and may occur without any

warning [4-7]. In the process of development and operation, atherosclerotic plaques may

suddenly rupture, causing plaque debris flow and intraluminal thrombosis. Researches

have shown that plaque instability is caused by cerebral infarction on the nervous system,

such as a risk factor for severe damage [8]. So it is very important to judge the stability of

atherosclerotic plaque for the prevention and treatment of vital stroke. Nevertheless, clini-

cal assessment of stroke risk is still mainly based on the degree of luminal stenosis severity

as measured [9]. However, more and more evidences suggest that degree of luminal steno-

sis alone is insufficient for identifying the critical condition [10].

Studies have demonstrated the correlation between large lipid rich necrotic core with a

thin or ruptured fibrous and atherosclerotic plaque rupture [11]. Some other factors,

such as plaque inflammation, fissured plaque, sex differences and intraplaque hemor-

rhage, are also considered [12-15]. Studies found that in the event of a plaque in patients

with rupture hemorrhage caused by plaque, the detection rate of neovessels is very high

[16,17]. Besides these factors, the mechanism of reducing plaque stability is unspecified

for the neovessels in the plaque under physiological conditions. Pathological neovessel

can be identified in early atherosclerosis. There is growing number of evidences suggest-

ing that intraplaque neovessels are closely associated with intraplaque hemorrhage

(IHP). But how do intraplaque neovessels promote IPH needs further investigation.

Finite element method is widely used in the biomechanical field. It can be used to pre-

dict plaque vulnerability based on peak plaque stress using human samples [18]. By using

finite element method, computational models combing mechanical factors and morpholo-

gic information can be employed to implement plaque mechanical analysis, and identify

additional critical mechanical factors so as to improve the current assessment criteria of

plaque vulnerability based on histology and image [19-23]. Teng et al performed finite ele-

ment analysis of mechanics in plaque with neovessels and showed that there are large

degrees of deformation and high variation in the mechanical loading around intraplaque

neovessels during the cardiac cycle [24]. Finite element analysis method can be used to

quantify the critical mechanical conditions around neovessels and characterize the associa-

tion between these conditions and plaque’s pathological features, such as the distribution

of red blood cells (RBCs) as a marker of IHP. Experimental studies have repeatedly con-

firmed that ischemia hypoxia is the basic cause of intraplaque angiogenesis [25,26], while

there is no specific law to follow about the size and shape of the neovessels.

The objective of this study is to further investigate the relationship between the critical

mechanical conditions (stress and stretch) around neovessels with the morphological

specificity (perimeter and curvature) and the distance to the main vessel lumen. The

purpose of this paper is to evaluate the stability of plaque and provide a new way for the

clinical assessment of stroke risk.

Material and methods
The present study was performed using computational structural analysis based on two

carotid plaque samples which were collected with endarterectomy for histopathological

examination from Department of Neurology, Beijing Tian Tan Hospital, with patient

consent obtained. One of them contains lipid core while another not. In the process of

staining, the lipid core occurred shedding in S2 (sample 2). The patient’s blood pressures

were 159mmHg and 140mmHg at systole respectively. The samples were formalin-saline

Lu et al. BioMedical Engineering OnLine 2015, 14(Suppl 1):S3
http://www.biomedical-engineering-online.com/content/14/S1/S3

Page 2 of 11



fixed, decalcified, embedded in paraffin and stained using hematoxylin and eosin (H&E),

and then stained using Platelet endothelial cell adhesion molecule-1(PECAM-1/CD31)

or Actin alpha, smooth muscle aorta (a-SMA). Both S1(sample1) and S2(sample 2) are

decalcification. Figure 1 shows the histological slice stained using H&E. There are a

great number of neovessels (Figure 1E) in the samples (which can be seen in the

slice stained by a-SMA). All contours were manually traced by using Motic DSAssistant

Lite (Motic, Inc., Amoy). Because it is a manual operation, we do not deny that there are

some tiny random errors. Those contours are lumen borders and plaque components.

AutoCAD (Autodesk, Inc., USA) was applied to establish the two-dimensional mod-

els of the H&E slices containing neovessels, fibrous cap, lipid core, fresh IPH and

other components called vascular area. All components were modeled as nonlinear

hyper-elastic, piecewise homogeneous and incompressible materials. Mooney-Rivlin

model was used to describe the material properties of the plaque [23,27]. Materials

properties are governed by the strain energy density function (Eq. 1).

W = C1(I1 − 3) + D1 exp[D2(I1 − 3)− 1], (1)

where I1 is the first strain invariant and C1, D1 and D2 are coefficients of materials

respectively. The details of these coefficients are shown in Table 1 according to the

studies of Teng et al. [24,28]

The blood pressures at systole of the patients (159 mmHg and 140 mmHg) were

provided by the Department of Neurology, Beijing Tian Tan Hospital. Finite element

analyses of static structural mechanics of atherosclerotic plaque under physiological

loading were performed using package ADINA8.8.1 (ADINA R&D, Inc., USA). Two

cases with different blood pressures of patients at systole were assigned to the main

vessel lumen of carotid artery, and the pressure in each neovessel was assumed to be

10 mmHg. “This value was chosen because it approximately reflects blood pressure in

Figure 1 Two samples of microscopic slices of plaque stained using H&E. (Left: S1; Right: S2).
A: Fibrous cap; B: Fresh intraplaque hemorrhage; C: Vessel; D: Lipid core; E: Neovessels.
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the venous environment. The experimental conclusions did not change when the value

was lowered to 5 mmHg” [24]. The plaque is located inside the vessel and the carotid

artery is surrounded by a lot of soft tissue, so we restricted the external displacement

of plaque. Boundary conditions are illustrated in Figure 2.

In order to get more accurate results, the neovessels were divided into two groups

based on its location (We checked the stress and stretch based on the grid numbers of

element, as shown in Figure 2), i.e. one group in IPH area with-RBC surrounded and

another group in area without-RBC surrounded. Each neovessel outline was divided

into more than 10 elements, There are more than 10000 elements in both two sam-

ples. Using the MATLAB (Mathworks, Inc., USA) to calculate the shortest distance

between each point and the lumen, and the minimum value was defined as the dis-

tance between neovessel and lumen. The coordinates of three adjacent points were

used to calculate the curvature of the neovessels, and the maximum value of curvature

was taken for further results exhibition and discussion. The association between this

geometric distribution and critical mechanical condition was further analyzed.

Results
There are 167 neovessels identified in S1, 42 of them (25%) locate in the fresh IPH

area and 125 neovessels are identified in S2, 20 of them locate in the fresh IPH area.

The emphases are focused on the effects of the distance to the lumen, the size and

curvature of neovessels and vessel material properties, respectively.

Effect of distance to lumen

According to the distance to the lumen of the neovessels, the mechanical situations of

neovessels are particularly considered. The analysis of the mechanical conditions of neo-

vessels in plaque will be demonstrated. Two groups of neovessels with similar curvature

and similar perimeter are randomly selected. The relationships between the local maxi-

mum principal stress Stress-P1 and the local maximum principal stretch Stretch-P1 with

the various distances to lumen of each neovessel are shown in Figure 3.

With the increase of the distance between neovessel and lumen, the Stress-P1 and

Stretch-P1 for each neovessel are decreased. The mechanical condition for intraplaque

neovessels is affected by the pressure of carotid artery. Therefore, it can be deduced

that for the neovessel located in the region of the same material, the closer to the

lumen, the greater risk of plaque rupture. The same result can be observed from the

other groups with similar curvature and perimeter, and from both samples whether

located in IPH area or not.

Effect of size of vessels

The sizes of neovessels in atherosclerotic plaques are different. According to the peri-

meter, neovessels are divided into two groups (one group with the larger perimeter

Table 1 Coefficients of strain energy density function

Components C1 (kPa) D1 (kPa) D2

Vessel material 36.8 14.4 2

Fibrous cap 73.6 28.8 2.5

Lipid core 2 2 1.5

Fresh IPH 1 1 0.25
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Figure 2 The 2D models for finite element analysis.

Figure 3 The relationship between critical mechanical conditions around the neovessels and their
distance from the main arterial lumen. (a) local maximum principal stress (Stress-P1) at systole when
neovessels without red blood cells surrounded; (b) local maximum principal stretch (Stretch-P1) at systole
when neovessels without red blood cells surrounded; (c) local maximum principal stress (Stress-P1) at
systole when neovessels with red blood cells surrounded; (d) local maximum principal stretch (Stretch-P1)
at systole when neovessels with red blood cells surrounded.

Lu et al. BioMedical Engineering OnLine 2015, 14(Suppl 1):S3
http://www.biomedical-engineering-online.com/content/14/S1/S3

Page 5 of 11



than the average and the other group with the smaller perimeter than the average).

The relationship between the mechanical condition and the perimeter for each neoves-

sel is evaluated by comparing the Stress-P1 and Stretch-P1 of every two neovessels

with different size and similar maximum curvature in the area with equal distance to

the lumen. The number of neovessels ranges from 5 to 30 in each comparison group

of the same distance to lumen. Figure 4 illustrates the result of the effect of the size

on its mechanical condition.

As is shown in Figure 4, in the areas with the same distance to lumen, the larger the

perimeter of neovessel is, the greater stress (Figure 4a) and deformation (Figure 4b)

the neovessel suffers. The same result is observed in the area with-RBC surrounded

and in area without-RBC surrounded (Figure 4c, d).

Effect of the curvature

Whether the mechanical situation of the neovessels will be changed if the curvature of

the neovessel is different? By using the MATLAB to calculate the curvature of each

neovessel, the neovessels with the same size and the same distance to the lumen were

chosen to compare the mechanical conditions between the neovessels with the maxi-

mum and the minimum curvature. The results are shown in Figure 5.

Under the same conditions, the neovessel with larger curvature suffers greater stress

and stretch in the area without-RBC (Figure 5a & 5b). The same result can also be

found in the area with-RBC (Figure 5c & 5d).

Effect of vessel material properties

In the abovementioned results, the neovessels are divided into two groups base on its

location in IPH area or not (i.e., with-RBC and without-RBC). The neovessels in S1

(the neovessels in IPH area in S2 are too lack to get accurate analysis result) are cho-

sen to compare the local maximum principal stress (Stress-P1) and stretch (Stretch-P1)

Figure 4 Comparison of the stress and strain under different conditions. (a) Comparison of stress
(Stress-P1) of neovessels without red blood cells surrounded; (b) Comparison of stretch (Stretch-P1) of
neovessels without red blood cells surrounded; (c) Comparison of stress (Stress-P1) of neovessels with red
blood cells surrounded; (d) Comparison of stretch (Stretch-P1) of neovessels with red blood cells surrounded.
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between neovessels with and without RBC surrounded. Table 2 compares the local

maximum stress and stretch between neovessels with and without-RBC surrounded.

Under the pressure of carotid artery, the neovessels with-RBC surrounded undergo

greater stretch than those without-RBC surrounded. The neovessels are more likely to

deform when they locate in IPH area.

Discussion
Histopathological examinations have revealed the association between IPH and the

presence of neovessels [29-31]. Neovascularization is the process of generating neoves-

sels mediated primarily by progenitor and/or endothelial cells leading to tube forma-

tion, resulting in a stabilized neovascular channel [29,32]. The neovessels are born of

the outer membrane of nourishing and distributed from the epicardial fat to the plaque

throughout vessel wall [33]. Blood components, such as RBC, neutrophils and other

proinflammatory cells, may migrate from the bloodstream into the plaque because of

the incomplete development of the vascular wall about angiogenesis [24,34,35]. Under

this condition, the plaque is more likely to distort, and further develop IPH. In pre-

vious studies, investigators are more willing to discuss the impacts of the plaque size

and stenotic degree, the inflammatory factors and the arterial pressure, and so on

[3,28,36-38]. The structure of vulnerable plaque contains the following features: (a)

large lipid core; (b) high density of macrophages; (c) low density of smooth muscle

cells in the cap; (d) high tissue factor content; (e) thin plaque cap in which the collagen

Figure 5 The relationship between critical mechanical conditions around the neovessels and their
curvature. (a) Comparison of stress (Stress-P1) of neovessels without red blood cells surrounded; (b)
Comparison of stretch (Stretch-P1) of neovessels without red blood cells surrounded; (c) Comparison of
stress (Stress-P1) of neovessels with red blood cells surrounded; (d) Comparison of stretch (Stretch-P1) of
neovessels with red blood cells surrounded.
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structure is disorganized [39]. However, the neovessels in the plaque should not be

ignored [17,29,40].

The motivation of the present study is trying to explain the mechanisms about the

neovessels in plaque from the biomechanical insights. As known to all, the rupture of

plaque is mainly due to the stress and strain suffered, so two-dimensional models con-

taining neovessels and other components were built according to the plaque slice. The

main findings of finite element analysis are as follows.

(1) The stress and strain decrease with the increase of the distance between neoves-

sel and lumen, which suggests that the carotid arterial pressure may play an important

role in the deformation of neovessels. There is no direct association between the two

groups of neovessels (i.e. one group in IPH area with-RBC surrounded and another

group in area without-RBC surrounded), so we didn’t discuss the comparison of stress

and strain values of them. The neovessels in the plaque suffered a cyclic load with the

pulsatile heartbeat. The stress and strain/stretch changes periodically. The neovessels

may fatigue under cyclic loading, and those close to lumen are more dangerous.

(2) The neovessel with larger perimeter suffers much greater deformation, which

indicates that the size is a significant factor for the fatigue of neovessels. The neoves-

sels features high permeability and poor stability. Thus, the longer perimeter they have,

the higher risk of rupture they face. Because the mechanical environments of the neo-

vessels are related to integrated conditions including its shape, curvature, distance to

the carotid lumen and the material properties of plaque, etc. We intended to show the

result to express the influence of a single factor condition; however those figures in

Figure 4 can not isolate the single factor while showing the total values of stress and

stretch. We defined the neovessel with equal distance to lumen (per 0.3 mm) and simi-

lar curvature values (difference within ten times) for a group to investigate the effect of

size on neovessels. We believe that the contradiction is due to the overall impact of the

whole integrated factors.

(3) Under the same conditions, the neovessel with larger curvature suffers greater

stress and stretch. The great curvature of neovessel with “sharp” edge generates stress

concentration which is more easily to induce hemorrhage rupture.

(4) Those neovessels with-RBC surrounded undergo greater Stretch-P1 than those

without-RBC surrounded. It indicates that the location of neovessels in plaque is also a

significant factor for the deformation of neovessels. The hostile mechanical environ-

ment around neovessels may be concerned with the divulging of RBCs, which can be

found around those neovessels suffered a large deformation. However, there is no sig-

nificant difference of Stress-P1 between the groups with-RBC and without-RBC.

Although the angiogenesis can be identified as an effective means of increasing myo-

cardial perfusion, the relationship between neovessels and plaque instability cannot be

Table 2 Comparison of the local maximum stress and stretch between neovessels with-
and without-RBC surrounded

Distance (mm) 0-0.6 0.6-1.2 1.2-1.8 1.8-

Stress-P1 (with-RBC) (kPa) [12.92,89.29] [5.46,61.33] [6.23,43.40] [1.55,25.26]

Stress-P1 (without-RBC) (kPa) - [0.63,10.08] [0.44,3.14] [0.42,1.87]

Stretch-P1 (with-RBC) [1.08,2.03] [1.02,1.23] [1.02,1.41] [1.01,1.14]

Stretch-P1 (without-RBC) - [1.22,2.68] [1.26,1.79] [1.28,1.49]
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ignored yet. Our study demonstrates that neovessels in plaque rupture and hemorrhage

may promote the plaque rupture, and increase the risk of stroke.

Some limitations in this study must be mentioned. First, only two samples with total

292 neovessels were modeled, which may not be enough for the strict verification to

support our hypothesis. Some factors, such as the density of neovessels ought to be

considered. Second, this study was a two-dimensional simulation, and the effect of the

blood flow was not taken into account. The flow in the lumen and the week flow in

the neovessels need to be considered for further hemodynamic calculation. In the pro-

cess of staining, the lipid core occurred shedding in S2, so we ignored it when per-

forming the numerical simulation analysis. But the results are within very small

discrepancy and still support our forecast.

Conclusions
Our hypothesis is that the mechanical situations of intraplaque neovessel are largely due

to the complexity of biomechanical interactions. We suggest that there are large degrees

of stress and deformation by the mechanical loading around the neovessels in plaque. By

using the numerical method to analyze the mechanical conditions of neovessels in the pla-

que, we found that local mechanical conditions contribute to the neovessel damage and

further IPH formation. Results show that those neovessels closer to the carotid lumen

undergo larger stress and stretch. With the same distance to the carotid lumen, the longer

is the perimeter of neovessels, the larger stress and the deformation are generated on the

neovessels. Neovessels surrounded by red blood cells undergo a much larger stretch. Local

mechanical conditions may result in the hemorrhage of neovessels and accelerate the rup-

ture of plaque. The mechanical environments of the neovessels are related to its shape,

curvature, distance to the carotid lumen and the material properties of plaque. The finding

of this paper may be applied to evaluate the stability of plaque and provide a new way for

the clinical assessment of stroke risk.
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