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Abstract

Background: In general, growth and differentiation are mutually exclusive but are cooperatively regulated
throughout development. Thus, the process of a cell’s switching from growth to differentiation is of great
importance not only for the development of organisms but also for malignant transformation, in which this process
is reversed. We have previously demonstrated using a Dictyostelium model system that the Dictyostelium
mitochondrial ribosomal protein S4 (Dd-mrp4) gene expression is essential for the initiation of cell differentiation:
Dd-mrp4-null cells fail to initiate differentiation, while the initial step of cell differentiation and the subsequent
morphogenesis are markedly enhanced in mrp4°F cells overexpressing the Dd-mrp4 in the extramitochondrial
cytoplasm. This raised a possibility that the ectopically enforced expression of the Dd-mrp4 in human cells might
inhibit their growth, particularly of malignant tumor cells, by inducing cell differentiation.

Methods: Four kinds of human tumor cell lines were transfected by three kind of vector constructs (the empty
vector: pcDNA3.1 (Mock); pcDNA3.1-rps4 bearing Dictyostelium cytoplasmic ribosomal protein S4; pcDNA3.1-mrp4
bearing Dictyostelium mitochondrial ribosomal protein S4). As controls, four kinds of human primary cultured cells
were similarly transfected by the above vector constructs. After transfection, growth kinetics of cells was analyzed
using cell viability assay, and also the TUNEL method was used for evaluation of apoptotic cells.

Results: Ectopically expressed Dd-mrp4 suppressed cell proliferation through inducing apoptotic cell death
specifically in the human lung adenocarcinoma (A549), epithelial cervical cancer (Hela), hepatocellular carcinoma
(HepG2) and colonic carcinoma (Caco-2), but not in primary cultured normal cells, such as human brain
microvascular endothelial cells (HBMECs); human umbilical vein endothelial cells (HUVECs) and human normal
hepatocytes (hHeps™), with one exception (human cardiac fibloblasts (HCF)).

Conclusion: The present finding that the ectopically enforced expression of Dd-mrp4 in human several tumor cell
lines specifically suppresses their proliferation suggests strongly that the Dd-mrp4 gene derived from Dictyostelium
mitochondria may provide a new promising therapeutic strategy for disrupting cell viability pathways in human cancers.
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Background

Apoptosis is a process of cell death that serves as a
major mechanism for precise regulation of cell numbers,
and as a defense mechanism to remove potentially danger-
ous cells like tumor cells. Apoptosis also covers important
functions in a wide range of cellular processes ranging
from growth to differentiation. Mitochondria exert a key
role in many pathways leading to programmed cell death
[1-3], though the precise mechanisms underlying the role
in apoptosis remain to be elucidated [4-7]. Although regu-
lation of the cell death machinery has been shown to be
somewhat different from one species to another, from
studies in Caenorhabditis elegans, Drosophila melanogaster
and mammals, it is mainly controlled by mitochondrial
proteins. In mammals, activation of caspases (cysteine
proteases that are the main performer of apoptosis) is
under the tight control of the Bcl-2 family proteins that
primarily act by regulating the release of caspase activa-
tors from mitochondria as the central administrator of
apoptosis [8,9].

The mammalian mitochondrial ribosome (mitosome)
is largely responsible for the synthesis of 13 proteins of
the inner membrane, and these proteins are components
of the oligomeric complexes essential for oxidative
phosphorylation [10,11]. Accordingly, mitosomes syn-
thesise a substantial amount of cellular components
needed to generate ca. 90% of the ATP required
for eukaryotic cells. Some studies have identified
several mitochondrial ribosomal proteins as apoptosis-
inducing factors, including the death-associated proteins
DAP3 and PDCD9 [2,12]. Mitochondrial ribosomal
protein L41 (MRPL41) suppresses the growth of can-
cer cells in nude mice, by induction of p53-induced
mitochondrion-dependent apoptosis [13]. Saini et al.
[14] have also demonstrated that S29 ribosomal pro-
tein (RPS29) induces mitochondria-mediated apop-
tosis of the human laryngeal carcinoma cell line (Hep2
cells) through the activation of p38 MAPK and JNK
signaling. Recently, Tsofack et al. [15] have immuno-
histochemically revealed that high expression of the X-
linked ribosomal protein S4 (RPS4X; encoded by human
sex-chromosome X), which is involved in cellular trans-
lation and proliferation, is implicated for less aggressive
ovarian tumors, slower disease progression, and less
deaths associated with this disease, while that lower
levels of RPS4X are correlated to poor survival and disease
progression.

Based on numerous genome analyses, mitochondria
are believed to be originated from an early endosymbi-
otic event between a eubacterium and its host cell, and
the closest free-living relatives of mitochondria are
suggested to be members of the rickettsial subdivision
of the a-proteobacteria. Therefore, the mitochondrial
ribosomal protein (MRP) has been generally expected
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to display higher structural and functional similarities
to a bacterial ribosome than to a eukaryotic cytoplas-
mic ribosome.

Dictyostelium discoideum is a social amoeba whose life
cycle consists of two distinct phases—growth and differ-
entiation—that are easily controlled by nutritional condi-
tions. D. discoideum (axenic strain Ax-2, Ax-3, or Ax-4)
cells grow and multiply by mitosis as long as nutrients
are supplied. Upon exhaustion of nutrients, however,
starving cells initiate to differentiate and aggregate each
other by chemotaxis to form multicellular structures.
The cell aggregate (slug) eventually culminates to form a
fruiting body consisting of a mass of spores (sorus) and
a supporting cellular stalk. The life cycle of Dictyoste-
lium cells is relatively simple, but it contains almost all
of the cellular processes (movement, adhesiveness, dif-
ferentiation, pattern formation, efc.) essential for the es-
tablishment of multicellular organization. In basically
haploid Dictyostelium cells, gene disruptions by homolo-
gous recombination are available for analysis of precise
gene functions. Insertional mutagenesis by the restric-
tion enzyme—mediated integration (REMI) method has
also been established to isolate and characterize intri-
guing functional genes [16]. Thus Dictyostelium is a use-
ful model system for analyzing a various aspects of
cellular development. The process of a cell’s switching
from growth to differentiation is of great importance not
only for the development of organisms but also for ma-
lignant transformation, in which this process is reversed.
Using axenic strain Ax-2 cells, we have precisely specified
a critical checkpoint (growth/differentiation transition or
GDT point), from which cells start differentiation in re-
sponse to starvation, in the cell cycle of Dictyostelium cells
[17-19]. Accordingly, integration of GDT point—specific
events with starvation-induced events is needed to under-
stand the mechanism regulating GDTs. Beyond our im-
agination, increasing evidence indicates that mitochondria
have novel, essential, and multiple functions as the regula-
tory machinery of the initiation of differentiation, cell-type
determination, cell movement and pattern formation [20].
For example, a mitochondrial gene cluster (dia3 consist-
ing of nadll, nads, rps4, rps2, and nad4L) including ribo-
somal protein S4 (mrp4 of Dictyostelium discoideum cells:
Dd-mrp4), are specifically expressed in response to starva-
tion around the GDT point and play essential roles in the
initiation of cell differentiation in Ax-2 cells [21]. Partial
disruption of Dd-mrp4 by homologous recombination
causes impaired differentiation, thus resulting in the failure
of many cells to aggregate [21]. Transformants (Dd-mrp4™®
cells) generated by antisense-mediated gene inactivation
also exhibit markedly delayed differentiation [21]. More-
over, mrp4-null cells created by an elegant method, in
which only the mrp4 gene was specifically disrupted
by a combination of homologous recombination and
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delivery of an appropriate restriction endonuclease
(Sfol) into mitochondria, fail to differentiate even after
a prolonged time of starvation [20,22]. In contrast, Dd-
mrp4°F cells ectopically overexpressing Dd-mrp4 exhibit
markedly enhanced differentiation after starvation [21].
Taken together these data raised a possibility that over-
expression of the extraneous Dd-mrp4 gene in human
cells might inhibit their proliferation, particularly of
malignant tumor cells, by inducing terminal differenti-
ation including programmed cell death (apoptosis). To
test this possibility, effects of enforced expression of
the Dd-mrp4 on the proliferative activity of several
lines of tumor and primary cells were examined in the
present work, using cell viability assay and the TUNEL
method. As was expected, our results have demon-
strated that the ectopically enforced Dd-mrp4 expres-
sion specifically suppresses proliferation of all the
human tumor cell lines examined, by inducing cell dif-
ferentiation which is possibly attributable to either the
attenuated pro-apoptosis signaling. This finding strongly
suggested that the Dd-mrp4 mRNA and/or its product
(Dd-MRP4 protein) might act as a new promising tar-
get for specifically disrupting cell viability pathways
in human tumor cells and consequently for cancer
therapy.

Methods

Cell lines and cell culture

HBMECs (human brain microvascular endothelial cells)
and HUVECs (human umbilical vein endothelial cells)
were purchased from DS Pharma Biomedical (Osaka,
Japan). HBMECs and HUVECs were cultured in
collagen-coated plates in HuMedia EG-2 (Kurabo,
Osaka, Japan). HCF (Human cardiac fibroblasts) were
purchased from ScienCell Research Laboratories (Carlsbad,
CA). HCF were cultured in RPMI 1640 medium with
L-glutamine and 10% FBS. hNHeps™ (Human normal
hepatocytes) cells were purchased from Lonza (Lonza,
Woalkersville, MD). hNHeps™ cells were maintained in
hepatocyte culture medium (Lonza). A549 (human
lung adenocarcinoma) and HeLa (human epithelial
cervical cancer) cells were purchased from Sigma-
Aldrich (St. Louis, MO). HepG2 (human hepatocellular
carcinoma) cells were provided from Cosmobio (Tokyo,
Japan). Caco-2 (human colonic carcinoma) cells were
purchased from American Type Culture Collection
(Rockville, MD). A549, HeLa, HepG2, and Caco-2 cells
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) (Wako Pure Chemical Industries, Osaka, Japan)
containing 50 units/ml penicillin and 50 pg/ml strepto-
mycin (Sigma-Aldrich, St. Louis, MO), and supplemented
with 10% FBS (Wako Pure Chemical Industries). These
cells were cultured at 37°C in a humidified atmosphere
of 5% COz.
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Construction of the expression vector of the rps4 gene
and mrp4 gene

Genomic DNAs were extracted from D. discoideum
(strain Ax-3) cells according to the methods described
previously [23]. The DNA fragments that encode the
full-length rps4 gene (804-bp) or mrp4 gene (903-bp)
were separately amplified from the genomic DNA by
PCR using the following amplification conditions; a
2 min pre-denaturing step at 94°C followed by 35 cycles
of amplification, with a 10-denaturing step at 98°C, a
30- sec annealing step at 55°C, and a 1-min extension
step at 72°C. The final extension step was 10 min at
72°C. The primers used are listed in Table 1. The PCR-
amplified rps4 gene and mrp4 gene were first cloned
into the pMD20-T vector (Takara Bio, Otsu, Japan) and
then cloned into the pcDNA3.1/Hygro (-) vector to
construct the pcDNA3.1-rps4 vector and pcDNA3.1-
mrp4 vector, respectively (see Figure 1). To estimate
microscopically the efficiency of vector transfection, a
vector contrast (pcDNA3.1-gfp) bearing the full-length
gfp gene (772 bp) instead of the full length rps4 or
mrp4 gene was also prepared.

Transfection

A single day prior to transfection, cells were plated in 6-
well culture dishes at a density of 5.0 x 10> cells per well
(2.0 ml/well). Transfection was performed using Lipofec-
tamine 2000 reagent (Invitrogen, Carlsbad, CA) with
methods as recommended by the manufacturer. In brief,
transfection was initiated when the cells were 70-80%
confluent. For each well, 4 pg plasmid DNA was added
into 250 pl of Opti-MEM (Invitrogen), 5 ul of lipofecta-
mine 2000 into 250 pl of Opti-MEM, and then mixed
plasmid DNA with Lipofectamine 2000. The mixture
was added to cells in the 6-well plates, giving an end vol-
ume of 1 ml. The Opti-MEM medium containing the
complexes was incubated for 6 hrs at 37°C, then re-
placed with 2 ml of standard growth media and cultured
at 37°C for 42 or 66 hrs. Two days after transfection, cell
viability was measured as described below.

Cell viability measurements

Cell viability was determined using cell counting kit-8
(Dojindo, Kumamoto, Japan) according to the manufac-
ture’s instructions. Briefly, the day before cell counting,
trypsinized cells (2 x 10* cells/well) were plated in 96-

Table 1 Oligonucleotide primers used in this study

Primer name 5-3' nucleotide sequence

NS4-FH3 gatggatccatggctcgtggtccaaa
NS4-RB1 gcaagcttttaagcaacggtttcgattttttcacc
MtS4-FH3 taggatccatgagacaacgaaaaaatgtgacaaaattt
MtS4-RB1 Cgaagcttttatcttagtcttttatatttctttaataaag
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Figure 1 Construction of expression vectors. (A) A schematic representation of the recombinant plasmids. The pcDNA3.1-rps4 vector was
constructed by inserting the rps4 gene fragment into Xbal and Kpnl sites of pcDNA3.1/Hygro (-) between the Pcyy (cytomegalovirus promoter)
sequence and the BGHpA (bovine growth hormone polyadenylation) sequence. The pcDNA3.1-mrp4 vector was constructed by inserting the Dd-
mrp4 gene into pcDNA3.1/Hygro (-), in the same way as pcDNA3.1-rps4 vector. (B) Identification of the pcDNA3.1-rps4 vector by using restriction
enzyme digestion and agarose gel electrophoresis. Lane C, non-digested; lanes 1-3, expression vector digested with Xbal, Kpnl, and Xbal & Kpnl,
respectively. (C) Identification of the pcDNA3.1-mrp4 vector by using restriction enzyme digestion and agarose gel electrophoresis. The lanes are
the same as those shown in (B).
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well plates, and 16 hrs later, incubated in 96-well plates
with a tetrazolium compound (WST-8) solution (10 pl/
well) at 37°C for 2 hrs. The quantity of formazon product
measured at 450 nm is directly proportional to the num-
ber of live cells in the culture. The number of viable cells
was assessed by measurement of absorbance at 450 nm
using Multiskan JX (Thermo electron corp., Madison,
WI). The experiments were repeated in triplicate wells.

TUNEL assay

A TUNEL (terminal deoxynucleotidyl transferase dUTP
nick end labeling) assay, a common method for detect-
ing apoptotic programed cell death (DNA fragmentation
that results from apoptotic signal cascades) was carried
out using the In Situ Cell Death Detection Kits (Roche
Diagnotics Corp.) according to the manufacturer’s in-
structions. Briefly, transiently transfected HepG2 cells
were grown on chamber slides. After 48 hrs, cells were
fixed immediately in 4% (vol/vol) paraformaldehyde for
1 hr, permeabilized using 0.3% Triton X-100, and then
incubated at 37°C for 1 hr with TdT-mediated TUNEL
reaction mixture containing FITC (fluorescein isothio-
cyanate)-conjugated anti-Br-dUTP mAb (monoclonal
antibody). For a positive control, HepG2 cells were
treated with DNase I as specified by the manufacturer.

Statistical analysis

All the data were expressed as mean + SD. The statistical
significance of difference in cell viability assay was ana-
lyzed using the Student’s t-test. Results represent data
from three independent experiments for each group, and
P-values of <0.05 were considered statistically significant.

Results

Similarities of RPS4 and MRP4 in the amino acid
sequences between human and Dictyostelium
Mitochondrial ribosomes (MRPs) contain bacteria-type
proteins reflecting their endosymbiotic heritage. After re-
flection on the matter, a subset of these genes is retained
within the mitochondrion in eukaryotic cells, but most of
mammalian MRPs are products of nuclear genes. Thus
these proteins are synthesized in cytoplasmic ribosomes
by mitochondria for assembly with the mitochondrially
encoded rRNA [24]. Unexpectedly, mammalian MRPs
(55S) are different from bacterial (70S) and cytoplasmic
ribosomes (80S), as well as other kinds of mitochondrial
ribosomes. For example, human MRPs are devoid of
several of the major RNA stem structure of bacterial ri-
bosomes but they hold a higher number of proteins (ca.
80 proteins), suggesting a model where proteins may
displace RNA structural elements during the evolution
of these ribosomes [25]. Thus MRPs are imported into
mitochondria where they assemble cooperatively with
mitochondrially transcribed rRNAs into ribosomes that
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are responsible for translating the 13 mRNAs for essen-
tial proteins of the oxidative phosphorylation system.

To monitor the effect of ectopically enforced Dd-MRP4
expression on growth kinetics of human cells, Dd-MRP4-
expressing human cells (Dd-mrp4°F-cells) and Dd-RPS4-
expressing human cells (Dd-rps4°F-cells as a negative
control) were prepared by transfection using the
pcDNA3.1-mrp4 vector and pcDNA3.1-rps4 vector, re-
spectively. Several human primary cell lines such as
brain microvascular endothelial cells (HBMECs) and
umbilical vein endothelial cells cardiac fibroblasts (HUVECs)
were also transformed using the pcDNA3.1 (Mock),
pcDNA3.1-rps4 or pcDNA3.1-mrp4 vector as controls.

The human homologue of mitochondrial Dd-MRP48
(300 amino acids) is probably RPS4X (Hs-RPS4X; 263
amino acids) that is encoded by a nuclear gene of the
human sex chromosome X and an isoform of ribosomal
protein S4 [15,26]. RPS4Y (Hs-RPS4Y; 263 amino acids)
encoded by the human sex chromosome Y has an amino
acid sequence similar to Hs-RPS4X, and differs only at
19 of 263 amino acids (Figure 2) [27]. Somewhat surpris-
ingly, though Dictyostelium is evolutionally far from hu-
man, the homology of Dd-RPS4 (267 amino acids) and
Hs-RPS4X, both of which is present as a subunit of cyto-
plasmic ribosomes but not in mitochondria, is consider-
ably high (66% Identity, 92% Similarity in the amino acid
sequence), as shown in Figure 2. In contrast, Dd-MRP4
has less similarity (38% Identity, 76% Similarity in the
amino acid sequence) to RPS4X (Hs-RPS4). This seems
to indicate that the Dd-mrp4 gene and its product (Dd-
MRP4) were persistently retained in mitochondria with-
out being transferred to the nucleus during the course of
evolution. Here it is of interest to note that Dd-MRP4 is
very unique in that it has several nuclear localization signals
within the molecule (Figure 2; underlined parts). Also, the
reason why Dd-MRP4 can be encoded by mitochondrial
genome itself in the cytoplasm of Dictyostelium cells is
presently unknown and remains to be elucidated as a chain
of evolutionally amazing and rather unexpected incident,
because MRPs are generally encoded by nuclear genome in
eukaryotic cells.

Fortunately, judging from the Codon Usage Database
(NCBI-GenBank), it was found that the amino acid se-
quence of Dd-MRP4 expressed enforcedly by the
pcDNA3.1-mrp4 vector in the cytoplasm of human
cells is completely the same as that of Dd-MRP4 natur-
ally expressed in Dictyostelium mitochondria (data not
shown). In order to allow the Dd-MRP4 expression in
human mitochondria, we tried to make a vector construct
bearing a mitochondrial localization signal (MLS), but
strangely failed to obtain any Escherichia coli clone that
could express Dd-MRP4 as well as Dd-MRP4 with MLS at
the N-terminus in spite of at least 20 times of trials, be-
cause of unknown reasons.
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Figure 2 Alignment of Dictyostelium MRP4 (Dd-MRP4), human RPS4X (Hs-RPS4X), human RPS4Y (Hs-RPS4Y), and Dictyostelium RPS4
(Dd-RPS4). Amino acid sequences were deduced from full-length of cDNAs. Spaces (hyphens) indicate gaps proposed to optimize alignment;
block letters, matching residue among either Hs-RPS4X, Hs-RPS4Y, and Dd-RPS4 or between Dd-RPS4 and Dd-MRP4; predicted nuclear localization

Specific suppression of the proliferation of human tumor

cells by the ectopically enforced expression of Dd-mrp4 gene
To know if the ectopically enforced expression of Dd-
mrp4 gene is effective on growth of the primary cultured
cells, such as human brain microvascular endothelial cells
(HBMECs) and human umbilical vein endothelial cells
(HUVEC:), they were transfected with three kinds of
vector constructs (pcDNA3.1 (Mock), pcDNA3.1-rps4, or
pcDNA3.1-mrp4 vector), and this was followed by in-
cubation in growth medium. As a result, no significant
effects on cellular proliferation were observed with one
exception (human cardiac fibroblasts: HCF), as shown
in Figure 3. human cardiac fibroblasts (HCF) were ori-
ginally isolated from the ventricles of an adult heart.
They are known to play a central role in the mainten-
ance of the extracellular matrix in the normal heart
and the synthesis of growth factors and cytokines [28].
Under pathophysiological conditions, HCFs are in-
volved in restoration of a scar after cardiac fibrosis,
and cardiac hypertrophy [28]. Although the reason
why the HCF growth was rather suppressed by the
enforced expression of Dd-mrp4 gene is presently

unknown, it is possible that HCFs might have a some-
what tumor-like nature.

Importantly, it is of value to note that enforced Dd-
mrp4 expression is capable of suppressing significantly
growth in all of the tumor cell lines (Caco-2, A549, HelLa,
and HepG2 cells), though the levels of growth suppression
is somewhat different depending on the tumor cell lines
used: the most remarkable suppression of growth was no-
ticed in HepG2 cells (Figure 4). This indicates that the
Dd-mrp4 mRNA and/or Dd-MRP4 protein have a potent
suppressive effect on the proliferation of at least several
human tumor cell lines.

Figure 5 shows growth kinetics and morphological
characters of HepG2 cells transfected by the several
vector constructs. The efficiency of vector transfection
was monitored using HepG2 cells transformed by
pcDNA3.1-gfp vector. Judging from cell counts of
GFP-stained cells, 37.9 + 2.8% of cells were estimated
to be transformed by the vector, though the degree (i.e.
the strength of GFP fluorescence in cells) of transfec-
tion was considerably differential in the cell population
(Figure 5A).



Chida et al. Cancer Cell International 2014, 14:56
http://www.cancerci.com/content/14/1/56

Page 7 of 12

Figure 3 Effects of enforced Dd-mrp4 expression on the proliferation of several human primary cultured cells. HBMECs, HUVECs, HCV
and hNHeps cells were seeded in a 6-well plate and transfected with the pcDNA3.1, pcDNA3.1-rps4 (negative control), or pcDNA3.1-mrp4 vector
for 6 hrs. After 42 hrs of incubation at 37°C, the cells were treated with WST-8 solution for 2 hrs, and their viability was monitored as described in

[[] pcDNA3.1
180 « HBMECs
ns
.‘E
Q2
5 100} L
a
D
(&)
S 50}
X
0

8o T

150 |
€ P<0.05
‘(":E
2 T
S 100 -
o
D
o
S 50k
=X

0
Methods. The results represent the mean + SD in three independent experiments. ns; not significant.

[l pcDNA3.1-mmp4

180, HUVECs
150
IS ns
© 1
Q
= 100} L
o
D
(&)
S 50k
X
0
180 - hNHeps
150
< ns
.E
% 100 | T
a8
D
o
S 50k
=X
0

When HepG2 cells transfected with the pcDNA3.1
(Mock) or pcDNA3.1-rps4 were incubated in growth
medium, they continued to proliferate at least during
the first 72 hrs of incubation after the vector transfec-
tion (Figure 5B). In the case of HepG2 cells transfected
with the pcDNA3.1-mrp4 vector, however, their prolif-
eration was fairly repressed during the first 24 hrs of in-
cubation, and the cell number was rather decreased
during another 24 hrs of incubation, as shown Figure 5B.
Here it is notable that the once the decreased cell number
increases during another 24 hrs of incubation (Figure 5B).
Although the precise reason for this increase of cell

number is presently unknown, it is quite possible that
HepG2 cells with little or no Dd-mrp4 gene, i.e.
scarcely transformed cells in the population, may grow
and multiply.

To know if the growth suppression in HepG2 cells
transfected with the pcDNA3.1-mrp4 vector is due to
apoptotic cell death, we performed a TUNEL assay. As a
result, HepG2 cells transfected with the pcDNA3.1
(Mock) or pcDNA3.1-rps4 were not stained with the
FIFC-conjugated antibody, while that HepG2 cells ex-
pressing the pcDNA3.1-mrp4 were destined to die by
apoptosis and therefore were strongly stained with the
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antibody because of DNA fragmentation (Figure 5C). Inci-
dentally, when HepG2 cells transfected with the pcDNA3.1
(Mock) were pretreated with DNase-I, they exhibited
FITC-staining (the most-right column of Figure 5C).
Only, in the population of HepG2 cells tried to be trans-
fected with the pcDNA3.1-mrp4 there were observed a
considerable number cells that was not stained with the
FITC-conjugated antibody. Judging from the transfection
efficiency (presumably ca. 38% in the case of HepG2 cells)
described above, they would be most probably HepG2 cells
that were failed to be transfected with the pcDNA3.1-mrp4.

Discussion
In eukaryotic cells, mitochondria are self-reproducing
organelles with their own DNA and they play a central

role in ATP synthesis by respiration. Increasing evidence
indicates that mitochondria also have critical and mul-
tiple functions in the initiation of cell differentiation,
cell-type determination, cell movement, and pattern for-
mation. This has been most strikingly realized in devel-
opment of an excellent model organism, Dictyostelium
discoideum [20]. For example, the expression of Dd-mrp4
gene is essential for the initiation of cell differentiation, as
previously described [20-22]. The Dictyostelium homologue
(Dd-TRAP1) of TRAP-1 (tumor necrosis receptor-
associated protein 1), a mitochondrial molecular chaperone
belonging to the Hsp90 family, allows the pecocious transi-
tion of cells from growth to differentiation via a novel
prestarvation factor (PSF-3) in growth medium [28,29].
Moreover, a cell-type-specific organelle named a prespore-
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Figure 5 Growth kinetics and morphological characteristics of human tumor HepG2 cells trnsnfected with the pcDNA3.1, pcDNA3.1-rps4
(negative control), or pcDNA3.1-mrp4 vector construct. (A) Efficiency of vector transfection into HepG2 cells. At 24 and 48 hrs after transfection of
the pcDNA3.1 (Mock) or pcDNA3.1-gfp (inserted instead of rps4), phase-contract (PC) and fluorescence (GFP) micrographs were taken to evaluate the
efficiency of vector transfection. It is manifest that a considerable number of cells are strongly stained with GFP. Bar, 20 um. (B) After the vector
transfection, HepG2 cells transfected by the pcDNA3.T (Mock) or pcDNA3.1-rps4 (negative control) continue to increase their cell number in growth
medium. In the case of HepG2 cells transfected by the pcDNA3.1-mrp4, increase in the cell number is significantly suppressed during the first 48 hrs of
incubation. However, once the decreased number of cells begins to increase during 48-72 hrs after transfection. The results represent the mean+SD

in three independent experiments. (C) TUNEL assay. HepG2 cells transfected with the pcDNA3.1 (Mock), pcDNA3.1- rps4, or p)cDNA3.1-mrp4 were
incubated for 48 hrs and subjected to a TUNEL assay, as described in Methods. From morphological assessment of apoptosis detected by FITC-staining
(FITC) and phase-contrast (PC) images of the same field, it is evident that HepG2 cells transfected with the pcDNA3.1 (Mock) or pcDNA3.1- rps4 are not
stained with the FIFC-conjugated antibody, but that HepG2 cells ectopically expressing the pcDNA3.1-mrp4 are strongly stained with the antibodly.

As shown in the most-right column, when HepG2 cells transfected with the pcDNA3.1 (Mock) was pretreated with DNase-l, they were stained with the
FITC-conjugated antibody because of DNA fragmentation as observed in the process of apoptosis. Bar, 50 um.

specific vacuole (PSV) is constructed by mitochondrial
transformation with the help of the Golgi complex
[21,30,31].

In Dictyostelium, mitochondrial large ribosomal RNA
(mtlrRNA) is required for normal phototaxis and thermo-
taxis of a migrating pseudoplasmodium (slug) [32]. It has
been shown that the mitochondrial function is also im-
paired by mutations affecting nuclear-encoded proteins
required for correct folding in the organelle of both
mitochondrially- and nuclear-encoded proteins, and
that antisense RNA inhibition of the expression of chap-
eronin 60, one of such proteins, impairs signal transduc-
tion for phototaxis of Dictyostelium slugs [33]. With
respect to chemotaxis, a novel mitochondrial protein
(Tortoise) has been shown to be essential for directional
movement of Dictyostelium cells in cAMP gradients
[34]. The Dictyostrelium mitochondria are also closely
involved in a variety of cellular activities including CN-
resistant respiration and apoptosis.

As reported previously, transformants (Dd-mrp4™ cells)
generated by antisense-mediated gene inactivation exhibit
markedly delayed differentiation, while the initial step of
cell differentiation is enhanced in Dd-mrp4°F cells over-
expressing the Dd-mrp4 mRNA in the extramitochondrial
cytoplasm [21]. Here it is of interest to note that the
antisense-mrp4 RNA synthesized in the extramitochon-
drial cytoplasm is effective as the partial disruption of
Dd-mrp4 gene. This seems to indicate that a trace of the
Dd-mrp4 mRNA and/or Dd-MRP4 protein, both of
which are synthesized in mitochondria, may be released
to the extramitochondrial cytoplasm. Alternatively, it is
also possible that the antisense-mrp4 RNA may enter
mitochondria to inactivate Dd-mrp4 mRNA. Based on
PSORTII prediction, mysteriously enough, the Dd-MRP4
is very unique in that it is a mitochondrial protein
encoded by mt-DNA itself, but has several nuclear
localization signals in the molecule [21]. Actually, it has
been confirmed that the Dd-MRP4 protein produced in the
cytoplasm of the Dd-mrp4°F cells is preferentially trans-
ferred into the nucleus [35]. Although the fact that only the

4AS

MRP4 protein of Dictyostelium has several nuclear
localization signals is puzzling, at least a part of the Dd-
MRP4 protein seems to work in the nucleus to regulate
cell differentiation. In other organisms, their MRP4 pro-
teins have no nuclear localization signals. It is generally
difficult for proteins located in the mitochondrial matrix
to go out to the cytosol, because mitochondria are parti-
tioned by two (outer and inner) membranes. However,
several mitochondrial proteins like apoptosis-inducing
factor (AIF; [36]), endonuclease G (EndoG; [37]), and heat
shock protein 70 (Hsp70; [38]) have been shown to move
to the nucleus in response to apoptosis and heat shock.
All of these proteins are encoded by the nuclear genome
DNA, followed by translocation to the mitochondrion and
then again to the nucleus. Thus the behavior of Dictyoste-
lium MRP4 produced from the mitochondrial genome
DNA must be greatly notable, though the mechanism by
which the ectopically expressed Dd-mrp4 in human tumor
cells is capable of suppressing specifically their prolifera-
tion is presently unknown and remains to be elucidated in
future studies. Provided that it is possible to deliver Dd-
MRP4 with a MLS at the N-terminus into human mito-
chondria by the use of a well-directed vector construct,
one might expect a more marked inhibitory effect of Dd-
MRP4 on tumor growth, as compared with Dd-MRP4
lacking a MLS. Recently, importance of human ribosomal
protein S4 (RPS4X) produced from the nuclear genome
DNA (sex-chromosome X) has been regarded as a pre-
dictive and prognostic marker in human serous epithelial
ovarian cancer, because its high expression is coupled with
a lower risk of individual death and later disease progres-
sion, as compared to low expression of RPSX4 [15]. This
seems to indicate that RPSX4 might restrain the progres-
sion of aggressive cancers, possibly through preferential
suppression of tumor proliferation by means of their se-
lective apoptosis, as in the case of Dd-MRP4.

Apoptosis is a physiological cell suicide program that
is critical for the normal development and maintenance of
healthy tissues. Inhibition of apoptosis brings numerous
cancers, autoimmune diseases, inflammatory diseases, and
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viral infections, because cells are excessively accumulated
by an increase of cellular proliferation. The cancer is often
characterized by an overexpression of IAP (Inhibitor of
Apoptosis) family members. The best characterized IAP is
XIAP (X-linked inhibitor of apoptosis protein), which
binds caspase-9, caspase-3 and caspase 7, thereby inhibit-
ing their activation and preventing apoptosis. As a result,
the malignant tumor cells undergo an abnormal response
to apoptosis induction: cell-cycle regulating genes (such as
P53, ras or c-myc) are mutated or inactivated in diseased
cells, and further genes such as Bc/-2 also modify their ex-
pression in tumors. For example, p53 prevents the cell
from replicating by arresting the cell cycle at G1 to give
the cell time to repair the DNA-damage, but it induces
apoptosis if the damage is too extensive to repair [39].
Therefore, any disruption to the regulation of the p53 or
interferon genes results in impaired apoptosis, followed by
the possible formation of tumors. In this connection, it
has been demonstrated that p53 and E2F are crucial for
the induction of cell death downstream from retinoblast-
oma suppressor (RB) deficiency [40-45]. Recently, Hilgen-
dorf et al. [7] have shown that a fraction of the RB pool
localizes constitutively to the mitochondria, where Bax
(Bcl-2-associated X protein) is normally resided in IMR
human cells and mouse liver cells, including phosphory-
lated forms of RB, and that RB is able to interact with
Bax, conformationally activate it, and then trigger mito-
chondrial outer membrane permeabilization (MOMP),
followed by cytochrome c release, as an essential step in
the initiation of apoptosis. Importantly, an RB mutant
lacking the nuclear localization signal but carrying a
mitochondrial import signal has been shown to be
enough to drive apoptosis [45]. Such remarkable ability
of RB is also noticed in p53-null oestrosarcoma tumor
cells [46]. Taken together these data suggest that the
proapoptotic action of RB at the mitochondria may be
essential as its transcriptional tumor suppressor func-
tion, and further this RB function is p53-independent.
On the other hand, it has been found that p53 interacts
with Bcl-2 or Bcl-X; at the mitochondria to neutralize
their activity and thus activate proapoptotic Bax (Bcl-2-
associated X protein) and Bak (BRI1-associated receptor
kinase) proteins to drive MOMP. This has been con-
firmed by the fact that tumor-derived p53-null mutants
fail to interact with Bcl-2 or Bcl-Xp [47]. Recently, the
role of p53 has been shown to be to extend even beyond
apoptosis; p53 can enter the mitochondrial matrix and
then drive necrosis [48].

Conclusion

The most important finding made by the present work
is the fact that the ectopically enforced Dd-mrp4 expres-
sion can suppress specifically all of the tumor cell lines
examined, but not most of the primary cultured cells.
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Although the action mechanism in apoptosis-related sig-
naling pathways are presently unknown, it is most likely
that Dd-mrp4 mRNA and/or Dd-MRP4 protein expressed
extraneously in human tumor cells may carry out the p53-
or RB-like functions to suppress their proliferation via the
induction of proapoptosis. This also suggests that the Dd-
mrp4 gene derived from Dictyostelium mitochondria may
provide a new promising therapeutic strategy for disrupt-
ing cell viability pathways in human cancers. In this con-
nection, the establishment of an improved method for
transfecting human cancer cells more efficiently with the
Dd-mrp4 gene will serve to induce more completely the
apoptotic cell death of human tumors.
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